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In this supplementary material, we provide additional details on various aspects of our work. First, we1

provide further architecture details for our fusion module and decoder in Sec. 1. Next, we present the2

loss details of the three pre-training objectives for our proposed LiDAR and Multi-View Camera Mask3

Modeling in Sec. 2. In Sec. 3 we describe the strategy for selecting the subsets of the dataset used4

in our data efficiency experiment (Sec. 4.2 of the main manuscript). Lastly, we provide additional5

qualitative results for ProFusion3D in Sec. 4.6

1 Additional Architectural Details of ProFusion3D7

Inter-Intra Fusion: For each of the inter-intra base units, the corresponding channel dimension of8

the query, key, and value embeddings are set to 192. The following Feed-Forward Network (FFN)9

consists of two fully-connected layers with GeLU activation after the first one. The first layer expands10

the input channels to 1024 while the second layer condenses it back to the original embedding11

dimensions (192).12

The convolutional block of the fusion module uses two consecutive 3 × 3 depthwise separable13

convolutions, each with dilation rates of 2 and 4, respectively. The number of channels in these14

convolutions is twice the embedding dimensions (384).15

Decoder: We employ two DETR-style decoder layers in the BEV decoder, PV decoder, and Joint16

Decoder. We follow similar parameter settings as described in [1] for each of the decoder layers. The17

sequence of operations within each layer is as follows: self-attention, normalization, cross-attention,18

normalization, FFN, and normalization. The embedding dimensions are set to 256, and the FFN19

channels are set to 2048. Both the attention and FFN dropout rates are configured to 0.1. We20

set the number of queries to 600 for initializing Q0. The initial object queries Q0 interact with21

the 3D position-aware BEV features F 3D
bev in the BEV decoder to update their representations to22

Qbev. In parallel, Q0 also interacts with the 3D position-aware PV features F 3D
pv in the PV decoder23

to update their representations to Qpv. Following this, Qjoin = [Qbev;Qpv] interacts with the 3D24

position-aware joint features F 3D
join = [F 3D

bev ;F
3D
pv ] in the joint decoder to generate the final updated25

query representations.26

We use two FFNs to predict the 3D bounding boxes and the classes using the updated queries in each27

of the decoder layers. The prediction for each decoder layer is then as follows:28

b̂d
i = ϕreg(Qd

i ), p̂d
i = ϕcls(Qd

i ) (1)

where ϕreg and ϕcls represent the FFNs for regression and classification, respectively. Qd
i are the29

updated object queries of the i-th decoder layer of the d-th decoder, where d ∈ {bev, pv, joint}.30

We train ProFusion3D through set prediction by using bipartite matching for one-to-one assignment31

between predictions and ground truths. Specifically, we use the focal loss for classification and L132

loss for 3D bounding box regression:33
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L(y, ŷ) = λ1Lcls(p, p̂) + λ2Lreg(b, b̂) (2)
where λ1 and λ2 are the hyperparameters to balance the two loss terms.34

2 Loss Functions for Pre-Training Objectives35

For the multi-modal masked modeling, we introduce three pre-training objectives: masked token36

reconstruction, unmasked token denoising, and masked token cross-modal attribute prediction. To37

train each objective we employ the following losses:38

Masked Token Reconstruction: In this pre-training objective, we reconstruct each masked image39

patch from the PV branch and voxels from the BEV branch. For the image patch reconstruction, we40

employ L1 loss between the predicted values of the masked pixels and the corresponding RGB values41

as follows:42

LL1 =
1

Nmp

Nmp∑
i=1

∣∣∣Îi − Ii

∣∣∣ (3)

where Îi and Ii are the predicted and ground truth RGB value of the i-th masked pixel, respectively,43

and Nmp is the total number of masked pixels.44

For the voxel reconstruction, let Pgt,i = {x1, x2, · · · , xN} be the i-th masked voxel where N is the45

number of fixed points in voxels and Prec,i = {x̃1, x̃2, · · · , x̃N} be the corresponding reconstruction.46

Then the Chamfer loss is defined as follows:47

LChamfer(Pgt,i, Prec,i) =
1

|Pgt,i|
∑

x∈Pgt,i

f(x, Prec,i) +
1

|Prec,i|
∑

x̃∈Prec,i

f(x̃, Pgt,i),

f(x, P ) =∥x− P j∥22,with j = argmin
k

∥x− P k∥22
(4)

where ∥ · ∥2 denotes the L2-norm. This loss function ensures that each point in the ground truth set48

Pgt is close to some point in the reconstructed set Prec and vice versa.49

Unmasked Token Denoising: In this pre-training objective, we learn to predict noise for each50

unmasked image patch and voxel. For the unmasked image patches, we employ L1 loss between the51

predicted noise and the actual noise added as follows:52

Ldenoise image =
1

Nup

Nup∑
i=1

|n̂i − ni| (5)

where n̂i is the predicted noise and ni is the actual noise added to the i-th unmasked pixel, and Nup53

is the total number of unmasked pixels.54

For the voxel denoising, let Na,i = {n1, n2, · · · , nN} be the noise added to the i-th unmasked voxel55

and Np,i = {ñ1, ñ2, · · · , ñN} be the corresponding noise prediction.56

Ldenoise voxel(Na,i, Np,i) =
1

|Na,i|
∑

n∈Np,i

min
ñ∈Np,i

∥n− ñ∥22 +
1

|Np,i|
∑

ñ∈Nn,i

min
x∈Na,i

∥ñ− n∥22. (6)

Masked Token Cross-Modal Attribute Prediction: In this pre-training objective, we predict pixel57

intensities for points in masked voxels and depth values for masked image patches. To predict pixel58

intensities for points in masked voxels, we do this jointly with the masked voxel reconstruction.59

Hence, while predicting the points in the masked voxel, we also predict the corresponding pixel60

intensities. For pixel intensity prediction, we add a loss term to the Chamfer distance loss of masked61

token reconstruction, by replacing f in Eq. (4) with f̃ :62

f̃(x, P ) = ∥x− P j∥22 + λ|xI − P j
I |,with j = argmin

k
∥x− P k∥22 (7)

where λ is the loss balancing term, xI is the ground truth pixel intensity, and P j
I is the predicted pixel63

intensity.64
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Following, for depth prediction for masked image patches, let d and d̂ denote the ground-truth and65

the predicted depth, respectively. Our loss function for depth estimation is then defined by66

Ldepth(d, d̂) =
1

Nmp

Nmp∑
i

(
log di − log d̂i

)2

− 1

N2
mp

Nmp∑
i

(
log di − log d̂i

)2

+

 1

Nmp

Nmp∑
i

di − d̂i
di

2

.

(8)

This loss term is a combination of the scale-invariant logarithmic error and the relative squared error.67

3 Strategy for Subset Selection in Data Efficiency Experiments68

In Sec. 4.2 of our main manuscript, we perform a data efficiency experiment that utilizes subsets of69

20%, 40%, 60%, and 80% from the 100% training annotated data of nuScenes. To select scenes for70

each subset of the training dataset, we sorted the dataset based on scene timestamps and then used71

a systematic sampling method. Specifically, we divided the scenes into five groups based on their72

indices and selected scenes according to these groups:73

• For a 20% subset, we included all scenes from one group (i.e., those with indices where i74

mod 5 = 0).75

• For a 40% subset, we included scenes from two groups (i.e., those with indices where i76

mod 5 ∈ {0, 2}).77

• For a 60% subset, we included scenes from three groups (i.e., those with indices where i78

mod 5 ∈ {0, 2, 4}).79

• For an 80% subset, we included scenes from four groups (i.e., those with indices where i80

mod 5 ∈ {0, 1, 2, 4}).81

This systematic sampling method helps to minimize temporal dependencies between frames and82

ensures that the reduced datasets retain a similar level of diversity as the complete dataset.83

4 Visualization84

In Fig. 1, we provide additional qualitative results of our proposed ProFusion3D on the nuScenes85

dataset. The dataset encompasses urban road scenes with objects ranging from cars, trucks, bicycles,86

motorbikes, people, barriers, and cones in a very cluttered environment with occlusions. Despite87

these challenging conditions, our ProFusion3D consistently and accurately detects all these objects.88
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Figure 1: Visualization of 3D object detection prediction of our proposed ProFusion3D on the validation set of
nuScenes. Classes are color-coded as follows: car, barrier, truck, cone, bicycle, person.
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