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Figure 1: The process of self-supervised methods.
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Figure 2: Qualitative comparison on real-world data.

1 IMPLEMENTATION DETAILS OF
SELF-SUPERVISED METHODS

As shown in Fig. 1, in the GS time reference system, each row in
GS image I, has the same exposure time while each row in RS
image Ij, has different time as shown below. By normalizing the
b= ghi= (0, H=1).

After transformed to RS time reference system, I, becomes "GS"
with same exposure time for each row, and I, becomes "RS", tf;i =
1- ﬁ, i =(0,...,H — 1). To maintain the consistency of the RS
time information in both system and reduce the training burden,
we further flip the y-axis of the image and event and have a flipped
bi

=lgs = Fo 77> and

time dimension, we have t,

. . a,i
RS time reference system. After the flip, ¢ f
_ 1 _a
=11
After the flip operation, Eq. 11 and Eq. 12 were simplified, and
can be rewritten as follows:

the GS time information changes, tfs

Io1 = frsc(as e, tgs, trs), loz = fRSC(fliP(Iol)sfliP(e/)s 1—tgs, trs)

where t,s = ﬁ represents the timestamp of input RS image, and
tgs represents the timestamp of output GS image.

2 DISCUSSION ON SELF-SUPERVISION

As shown in Fig. 2, we present results from unsupervised training
at different numbers of iteration. It is evident that even with just
a few hundred iterations of unsupervised training, significant im-
provements can be achieved in removing artifacts and improving
image quality.

SelfDRSC [1] also introduced a self-supervised training strat-
egy. They adopt two dual RS images as input, as mentioned in
Section.2 in our paper. In their method, the resulting GS output
are warped back to RS using a bidirectional warping module that
only employed duaring training, and the warped RS and input
RS are used for self-supervised loss function based on temporal
consistency, which shares certain similarity with our method in
cyclic supervision. However, their method requires additional op-
tical flow estimation module to conduct bidirectional warping for
imposing self-supervision, whose accuracy and robustness would
be critical to ther RSC performance and multiple warping steps
would cause error accumulation. In contrast, the self-supervision
in our approach is achieved by transforming time reference system
and does not involve any additional module. During training, our
method involves just one additional forward pass. Some examples
are illustrated in Fig. 3.
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Figure 3: Comparison with SOTAs methods. The image-based methods often leads to distortion and artifacts when facing
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high-speed or non-linear motion due to the lack of temporal information.
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