We provide additional details, following the same order as the sections in the paper.

## A THEORETICAL DETAILS FOR PART 2

## A. 1 Functional gradient

The functional loss $\mathcal{L}$ is a functional that takes as input a function $f \in \mathcal{F}$ and outputs a real score:

$$
\mathcal{L}: f \in \mathcal{F} \mapsto \mathcal{L}(f)=\underset{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}}{\mathbb{E}}[\ell(f(\boldsymbol{x}), \boldsymbol{y})] \in \mathbb{R}
$$

The function space $\mathcal{F}$ can typically be chosen to be $L_{2}\left(\mathbb{R}^{p} \rightarrow \mathbb{R}^{d}\right)$, which is a Hilbert space. The directional derivative (or Gateaux derivative, or Fréchet derivative) of functional $\mathcal{L}$ at function $f$ in direction $v$ is defined as:

$$
D \mathcal{L}(f)(v)=\lim _{\varepsilon \rightarrow 0} \frac{\mathcal{L}(f+\varepsilon v)-\mathcal{L}(f)}{\varepsilon}
$$

if it exists. Here $v$ denotes any function in the Hilbert space $\mathcal{F}$ and stands for the direction in which we would like to update $f$, following an infinitesimal step (of size $\varepsilon$ ), resulting in a function $f+\varepsilon v$.
If this directional derivative exists in all possible directions $v \in \mathcal{F}$ and moreover is continuous in $v$, then the Riesz representation theorem implies that there exists a unique direction $v^{*} \in \mathcal{F}$ such that:

$$
\forall v \in \mathcal{F}, \quad D \mathcal{L}(f)(v)=\left\langle v^{*}, v\right\rangle
$$

This direction $v^{*}$ is named the gradient of the functional $\mathcal{L}$ at function $f$ and is denoted by $\nabla_{f} \mathcal{L}(f)$.
Note that while the inner product $\langle$,$\rangle considered is usually the L_{2}$ one, it is possible to consider other ones, such as Sobolev ones (e.g., $H^{1}$ ). The gradient $\nabla_{f} \mathcal{L}(F)$ depends on the chosen inner product and should consequently rather be denoted by $\nabla_{f}^{L_{2}} \mathcal{L}(f)$ for instance.

Note that continuous functions from $\mathbb{R}^{p}$ to $\mathbb{R}^{d}$, as well as $C^{\infty}$ functions, are dense in $L_{2}\left(\mathbb{R}^{p} \rightarrow \mathbb{R}^{d}\right)$.
Let us now study properties specific to our loss design: $\mathcal{L}(f)=\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}}[\ell(f(\boldsymbol{x}), \boldsymbol{y})]$. Assuming sufficient $\ell$-loss differentiability and integrability, we get, for any function update direction $v \in \mathcal{F}$ and infinitesimal step size $\varepsilon \in \mathbb{R}$ :

$$
\begin{aligned}
\mathcal{L}(f & +\varepsilon v)-\mathcal{L}(f)=\underset{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}}{\mathbb{E}}[\ell(f(\boldsymbol{x})+\varepsilon v(\boldsymbol{x}), \boldsymbol{y})-\ell(f(\boldsymbol{x}), \boldsymbol{y})] \\
& =\underset{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}}{\mathbb{E}}\left[\left.\nabla_{\boldsymbol{u}} \ell(\boldsymbol{u}, \boldsymbol{y})\right|_{\boldsymbol{u}=f(\boldsymbol{x})} \cdot \varepsilon v(\boldsymbol{x})+O\left(\varepsilon^{2}\|v(\boldsymbol{x})\|^{2}\right)\right]
\end{aligned}
$$

using the usual gradient of function $\ell$ at point $(\boldsymbol{u}=f(\boldsymbol{x}), \boldsymbol{y})$ w.r.t. its first argument $\boldsymbol{u}$, with the standard Euclidean dot product - in $\mathbb{R}^{p}$. Then the directional derivative is:

$$
D \mathcal{L}(f)(v)=\underset{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}}{\mathbb{E}}\left[\left.\nabla_{\boldsymbol{u}} \ell(\boldsymbol{u}, \boldsymbol{y})\right|_{\boldsymbol{u}=f(\boldsymbol{x})} \cdot v(\boldsymbol{x})\right]=\underset{\boldsymbol{x} \sim \mathcal{D}}{\mathbb{E}}\left[\underset{\boldsymbol{y} \sim \mathcal{D} \mid \boldsymbol{x}}{\mathbb{E}}\left[\left.\nabla_{\boldsymbol{u}} \ell(\boldsymbol{u}, \boldsymbol{y})\right|_{\boldsymbol{u}=f(\boldsymbol{x})}\right] \cdot v(\boldsymbol{x})\right]
$$

and thus the functional gradient for the inner product $\left\langle v, v^{\prime}\right\rangle_{\mathbb{E}}:=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}\left[v(\boldsymbol{x}) \cdot v^{\prime}(\boldsymbol{x})\right]$ is the function:

$$
\nabla_{f}^{\mathbb{E}} \mathcal{L}(f): \boldsymbol{x} \mapsto \underset{\boldsymbol{y} \sim \mathcal{D} \mid \boldsymbol{x}}{\mathbb{E}}\left[\left.\nabla_{\boldsymbol{u}} \ell(\boldsymbol{u}, \boldsymbol{y})\right|_{\boldsymbol{u}=f(\boldsymbol{x})}\right]
$$

which simplifies into:

$$
\nabla_{f}^{\mathbb{E}} \mathcal{L}(f):\left.\boldsymbol{x} \mapsto \nabla_{\boldsymbol{u}} \ell(\boldsymbol{u}, \boldsymbol{y}(\boldsymbol{x}))\right|_{\boldsymbol{u}=f(\boldsymbol{x})}
$$

if there is no ambiguity in the dataset, i.e. if for each $\boldsymbol{x}$ there is a unique $\boldsymbol{y}(\boldsymbol{x})$.
Note that by considering the $L_{2}\left(\mathbb{R}^{p} \rightarrow \mathbb{R}^{d}\right)$ inner product $\int v \cdot v^{\prime}$ instead, one would respectively get:

$$
\nabla_{f}^{L_{2}} \mathcal{L}(f): \boldsymbol{x} \mapsto p_{\mathcal{D}}(\boldsymbol{x}) \underset{\boldsymbol{y} \sim \mathcal{D} \mid \boldsymbol{x}}{\mathbb{E}}\left[\left.\nabla_{\boldsymbol{u}} \ell(\boldsymbol{u}, \boldsymbol{y})\right|_{\boldsymbol{u}=f(\boldsymbol{x})}\right]
$$

and

$$
\nabla_{f}^{L_{2}} \mathcal{L}(f):\left.\boldsymbol{x} \mapsto p_{\mathcal{D}}(\boldsymbol{x}) \nabla_{\boldsymbol{u}} \ell(\boldsymbol{u}, \boldsymbol{y}(\boldsymbol{x}))\right|_{\boldsymbol{u}=f(\boldsymbol{x})}
$$

instead, where $p_{\mathcal{D}}(\boldsymbol{x})$ is the density of the dataset distribution at point $\boldsymbol{x}$. In practice one estimates such gradients using a minibatch of samples $(\boldsymbol{x}, \boldsymbol{y})$, obtained by picking uniformly at random within a finite dataset, and thus the formulas for the two inner products coincide (up to a constant factor).

## A. 2 DIFFERENTIATION UNDER THE INTEGRAL SIGN

Let $X$ be an open subset of $\mathbb{R}$, and $\Omega$ be a measure space. Suppose $f: X \times \Omega \rightarrow \mathbb{R}$ satisfies the following conditions:

- $f(x, \omega)$ is a Lebesgue-integrable function of $\omega$ for each $x \in X$.
- For almost all $\omega \in \Omega$, the partial derivative $f_{x}$ of $f$ according to $x$ exists for all $x \in X$.
- There is an integrable function $\theta: \Omega \rightarrow \mathbb{R}$ such that $\left|f_{x}(x, \omega)\right| \leq \theta(\omega)$ for all $x \in X$ and almost every $\omega \in \Omega$.

Then, for all $x \in X$,

$$
\frac{d}{d x} \int_{\Omega} f(x, \omega) d \omega=\int_{\Omega} f_{x}(x, \omega) d \omega
$$

See proof and details Flanders 1973).

## A. 3 Gradients and proximal point of view

Gradients with respect to standard variables such as vectors are defined the same way as functional gradients above: given a sufficiently smooth loss $\widetilde{\mathcal{L}}: \theta \in \Theta_{\mathcal{A}} \mapsto \widetilde{\mathcal{L}}(\theta)=\mathcal{L}\left(f_{\theta}\right) \in \mathbb{R}$, and an inner product $\cdot$ in the space $\Theta_{\mathcal{A}}$ of parameters $\theta$, the gradient $\nabla_{\theta} \widetilde{\mathcal{L}}(\theta)$ is the unique vector $\tau \in \Theta_{\mathcal{A}}$ such that:

$$
\forall \delta \theta \in \Theta_{\mathcal{A}}, \quad \boldsymbol{\tau} \cdot \delta \theta=D_{\theta} \widetilde{\mathcal{L}}(\theta)(\delta \theta)
$$

where $D_{\theta} \widetilde{\mathcal{L}}(\theta)(\delta \theta)$ is the directional derivative of $\widetilde{\mathcal{L}}$ at point $\theta$ in the direction $\delta \theta$, defined as in the previous section. This gradient depends on the inner product chosen, which can be highlighted by the following property. The opposite $-\nabla_{\theta} \widetilde{\mathcal{L}}(\theta)$ of the gradient is the unique solution of the problem:

$$
\underset{\delta \theta \in \Theta_{\mathcal{A}}}{\arg \min }\left\{D_{\theta} \widetilde{\mathcal{L}}(\theta)(\delta \theta)+\frac{1}{2}\|\delta \theta\|_{P}^{2}\right\}
$$

where $\left\|\|_{P}\right.$ is the norm associated to the chosen inner product. Changing the inner product obviously changes the way candidate directions $\delta \theta$ are penalized, leading to different gradients. This proximal formulation can be obtained as follows. For any $\delta \theta$, its distance to the gradient descent direction is:

$$
\begin{gathered}
\left\|\delta \theta-\left(-\nabla_{\theta} \widetilde{\mathcal{L}}(\theta)\right)\right\|^{2}=\|\delta \theta\|^{2}+2 \delta \theta \cdot \nabla_{\theta} \widetilde{\mathcal{L}}(\theta)+\left\|\nabla_{\theta} \widetilde{\mathcal{L}}(\theta)\right\|^{2} \\
=2\left(\frac{1}{2}\|\delta \theta\|^{2}+D_{\theta} \widetilde{\mathcal{L}}(\theta)(\delta \theta)\right)+K
\end{gathered}
$$

where $K$ does not depend on $\delta \theta$. For the above to hold, the inner product used has to be the one from which the norm is derived. By minimizing this expression with respect to $\delta \theta$, one obtains the desired property.

In our case of study, for the norm over the space $\Theta_{\mathcal{A}}$ of parameter variations, we consider a norm of in the space of associated functional variations, i.e.:

$$
\|\delta \theta\|_{P}:=\left\|\frac{\partial f_{\theta}}{\partial \theta} \delta \theta\right\|
$$

which makes more sense from a physical point of view, as it is more intrinsic to the task to solve and depends as little as possible on the parameterization (i.e. on the architecture chosen). This results in a functional move that is the projection of the functional one to the set of possible moves given the architecture. On the opposite, the standard gradient (using Euclidean parameter norm $\|\delta \theta\|$ in parameter space) yields a functional move obtained not only by projecting the functional gradient but also by multiplying it by a matrix $\frac{\partial f_{\theta}}{\partial \theta} \frac{\partial f_{\theta}}{\partial \theta}$ Thich can be seen as a strong architecture bias over optimization directions.
We consider here that the loss $\mathcal{L}$ to be minimized is the real loss that the user wants to optimize, possibly including regularizers to avoid overfitting, and since the architecture is evolving during training, possibly to architectures far from usual manual design and never tested before, one cannot
assume architecture bias to be desirable. We aim at getting rid of it in order to follow the functional gradient descent as closely as possible.

Searching for

$$
\boldsymbol{v}^{*}=\underset{\boldsymbol{v} \in \mathcal{T}_{\mathcal{A}}}{\arg \min }\left\|\boldsymbol{v}-\boldsymbol{v}_{\text {goal }}\right\|^{2}=\underset{\boldsymbol{v} \in \mathcal{T}_{\mathcal{A}}}{\arg \min }\left\{D_{f} \mathcal{L}(f)(\boldsymbol{v})+\frac{1}{2}\|\boldsymbol{v}\|^{2}\right\}
$$

or equivalently for:
$\delta \theta^{*}=\underset{\delta \theta \in \Theta_{\mathcal{A}}}{\arg \min }\left\|\frac{\partial f_{\theta}}{\partial \theta} \delta \theta-v_{\text {goal }}\right\|^{2}=\underset{\delta \theta \in \Theta_{\mathcal{A}}}{\arg \min }\left\{D_{\theta} \mathcal{L}\left(f_{\theta}\right)(\delta \theta)+\frac{1}{2}\left\|\frac{\partial f_{\theta}}{\partial \theta} \delta \theta\right\|^{2}\right\}=:-\nabla^{\mathcal{T}_{\mathcal{A}}} \mathcal{L}\left(f_{\theta}\right)$
then appears as a natural goal.

## A. 4 EXAMPLE OF EXPRESSIVITY BOTTLENECK

Example. Suppose one tries to estimate the function $y=$ $f_{\text {true }}(x)=2 \sin (x)+x$ with a linear model $f_{\text {predict }}(x)=a x+b$. Consider $(a, b)=(1,0)$ and the square loss $\mathcal{L}$. For the dataset of inputs $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right)$, there exists no parameter update $(\delta a, \delta b)$ that would improve prediction at $x_{0}, x_{1}, x_{2}$ and $x_{3}$ simultaneously, as the space of linear functions $\{f: x \rightarrow$ $a x+b \quad \mid a, b \in \mathbb{R}\}$ is not expressive enough. To improve the prediction at $x_{0}, x_{1}, x_{2}$ and $x_{3}$, one should look for another, more expressive functional space such that for $i=0,1,2,3$ the functional update $\Delta f\left(x_{i}\right):=f^{t+1}\left(x_{i}\right)-f^{t}\left(x_{i}\right)$ goes into the same direction as the functional gradient $v_{\text {goal }}\left(x_{i}\right):=-\nabla_{f\left(x_{i}\right)} \mathcal{L}\left(f\left(x_{i}\right), y_{i}\right)=$ $-2\left(f\left(x_{i}\right)-y_{i}\right)$ where $y_{i}=f_{\text {true }}\left(x_{i}\right)$.


Figure 7: Linear interpolation

## A. 5 PROBLEM FORMULATION AND CHOICE OF PRE-ACTIVITIES

There are several ways to design the problem of adding neurons, which we discuss now, in order to explain our choice of the pre-activities to express expressivity bottlenecks.
Suppose one wishes to add $K$ neurons $\theta_{\leftrightarrow}^{K}:=\left(\boldsymbol{\alpha}_{k}, \boldsymbol{\omega}_{k}\right)_{k=1}^{K}$ to layer $l-1$, which impacts the activities $\boldsymbol{a}_{l}$ at the next layer, in order to improve its expressivity. These neurons could be chosen to have only nul weights, or nul input weights $\boldsymbol{\alpha}_{k}$ and non-nul output weights $\boldsymbol{\omega}_{k}$, or the opposite, or both non-nul weights. Searching for the best neurons to add for each of these cases will produce different optimization problems.

Let us remind first that adding such $K$ neurons with weights $\theta_{\leftrightarrow}^{K}:=\left(\boldsymbol{\alpha}_{k}, \boldsymbol{\omega}_{k}\right)_{k=1}^{K}$ changes the activities $\boldsymbol{a}_{l}$ of the (next) layer by

$$
\begin{equation*}
\delta \boldsymbol{a}_{l}=\sum_{k=1}^{K} \boldsymbol{\omega}_{k} \sigma\left(\boldsymbol{b}_{l-2}(\boldsymbol{x})^{T} \boldsymbol{\alpha}_{k}\right) \tag{8}
\end{equation*}
$$

Small weights approximation Under the hypothesis of small input weights $\alpha_{k}$, the activity variation 8 can be approximated by:

$$
\sigma^{\prime}(0) \sum_{k=1}^{K} \boldsymbol{\omega}_{k} \boldsymbol{b}_{l-2}(\boldsymbol{x})^{T} \boldsymbol{\alpha}_{k}
$$

at first order in $\left\|\boldsymbol{\alpha}_{k}\right\|$. We will drop the constant $\sigma^{\prime}(0)$ in the sequel.

This quantity is linear both in $\alpha_{k}$ and $\boldsymbol{\omega}_{k}$, therefore the first-order parameter-induced activity variations are easy to compute:

$$
\left.\begin{array}{rl}
\boldsymbol{v}^{l}\left(\boldsymbol{x},\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{K}\right) & =\left.\frac{\partial \boldsymbol{a}_{l}(\boldsymbol{x})}{\partial\left(\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{K}\right)}\right|_{\left.\mid \boldsymbol{\alpha}_{k}\right)_{k=1}^{K}=0}\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{K}
\end{array}=\sum_{k=1}^{K} \boldsymbol{\omega}_{k} \boldsymbol{b}_{l-2}(\boldsymbol{x})^{T} \boldsymbol{\alpha}_{k}\right)
$$

so with a slight abuse of notation we have:

$$
\boldsymbol{v}^{l}\left(\boldsymbol{x}, \theta_{\leftrightarrow}^{K}\right)=\sum_{k=1}^{K} \boldsymbol{\omega}_{k} \boldsymbol{b}_{l-2}(\boldsymbol{x})^{T} \boldsymbol{\alpha}_{k}
$$

Note also that technically the quantity above is first-order in $\boldsymbol{\alpha}_{k}$ and in $\boldsymbol{\omega}_{k}$ but second-order in the joint variable $\theta_{\leftrightarrow}^{K}=\left(\boldsymbol{\alpha}_{k}, \boldsymbol{\omega}_{k}\right)$.

Adding neurons with 0 weights (both input and output weights). In that case, one increases the number of neurons in the layer, but without changing the function (since only nul quantities are added) and also without changing the gradient with respect to the parameters, thus not improving expressivity. Indeed, the added quantity (Eq. 8) involves $0 \times 0$ multiplications, and consequently the derivative $\left.\frac{\partial \boldsymbol{a}_{l}(\boldsymbol{x})}{\partial \theta_{\leftrightarrow}^{K}}\right|_{\theta K=0}$ w.r.t. these new parameters, that is, $\boldsymbol{b}_{l-2}(\boldsymbol{x})^{T} \boldsymbol{\alpha}_{k}$ w.r.t. $\boldsymbol{\omega}_{k}$ and $\boldsymbol{\omega}_{k} \boldsymbol{b}_{l-2}(\boldsymbol{x})^{T}$ w.r.t. $\boldsymbol{a}_{k}$ is 0 , as both $\boldsymbol{a}_{k}$ and $\boldsymbol{\omega}_{k}$ are 0 .

Adding neurons with non- 0 input weights and 0 output weights or the opposite. In these cases, the addition of neurons will not change the function (because of multiplications by 0 ), but just the gradient. One of the 2 gradients (w.r.t. $\boldsymbol{a}_{k}$ or w.r.t $\boldsymbol{\omega}_{k}$ ) will be non-0, as the variable that is 0 has non-0 derivatives.

The question is then how to pick the best non- 0 variable, $\left(\boldsymbol{a}_{k}\right.$ or $\left.\boldsymbol{\omega}_{k}\right)$ such that the added gradient will be the most useful. The problem can then be formulated similarly as what is done in the paper.

Adding neurons with small yet non-0 weights. In this case, both the function and its gradient will change when adding the neurons. Fortunately, Proposition 3.2 states that the best neurons to add in terms of expressivity (to get the gradient closer to the variation desired by the backpropagation) are also the best neurons to add to decrease the loss, i.e. the function change they will imply goes into the right direction.
For each family $\left(\boldsymbol{\omega}_{k}\right)_{k=1}^{K}$, the tangent space in $\boldsymbol{a}_{l}$ restricted to the family $\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{K}$, ie $\mathcal{T}_{\mathcal{A}}^{\boldsymbol{a}_{l}}:=$ $\left\{\left.\frac{\partial \boldsymbol{a}_{l}}{\partial\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{K} \mid\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{K}=0}(.)\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{K} \right\rvert\,\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{K} \in\left(\mathbb{R}^{\left|\boldsymbol{b}_{l-2}(\boldsymbol{x})\right|}\right)^{K}\right\}$ varies with the family $\left(\boldsymbol{\omega}_{k}\right)_{k=1}^{K}$, ie $\mathcal{T}_{\mathcal{A}}^{a_{l}}:=\mathcal{T}_{\mathcal{A}}^{a_{l}}\left(\left(\boldsymbol{\omega}_{k}\right)_{k=1}^{K}\right)$. Optimizing w.r.t. the $\boldsymbol{\omega}_{k}$ is equivalent to search for the best tangent space for the $\boldsymbol{\alpha}_{k}$, while symmetrically optimizing w.r.t. the $\boldsymbol{\alpha}_{k}$ is equivalent to find the best projection on the tangent space defined by the $\boldsymbol{\omega}_{k}$.

Pre-activities vs. post-activities. The space of pre-activities $\boldsymbol{a}_{l}$ is a natural space for this framework, as they are formed with linear operations and we compute first-order variation quantities. Considering the space of post-activities $\boldsymbol{b}_{l}=\sigma\left(\boldsymbol{a}_{l}\right)$ is also possible, though computing variations will be more complex. Indeed, without first-order approximation, the obtained problem is not manageable, because of the non-linear activation function $\sigma$ added in front of all quantities (while in the case of pre-activations, quantity 8 is linear in $\boldsymbol{\omega}_{k}$ and thus does not require approximation in $\boldsymbol{\omega}_{k}$, which allow considering large $\boldsymbol{\omega}_{k}$ ), and, with first-order approximation, it would add the derivative of the activation function, taken at various locations $\sigma^{\prime}\left(\boldsymbol{a}_{l}\right)$ (while in the previous case the derivatives of the activation function were always taken at 0 ).

## A. 6 Adding convolutional neurons

To add a convolutional neuron at layer $l-1$, one should add a kernel at layer $l-1$ and expand one dimension to all the kernels in layer $l$ to match the new dimension of the post-activity.


Figure 8: Changing the tangent space with different values of $\left(\boldsymbol{\omega}_{k}\right)_{k=1}^{K}$.


Figure 9: Adding one convolutional neuron at layer one for a input with tree channels.

## B THEORETICAL COMPARISON WITH OTHER APPROACHES

## B. 1 GradMax method

Using the notation of the paper Evci et al. (2022) : $\boldsymbol{z}_{l}(x):=\boldsymbol{a}_{l}(x)$ and $\boldsymbol{h}_{l}(x):=\boldsymbol{b}_{l}(x)$. We have that $\frac{\partial \mathcal{L}}{\partial \boldsymbol{z}_{l}}(x):=\boldsymbol{v}_{\text {goal }}{ }^{l}(x)$. When adding $K$ neurons at layer $l$, fan-in weights $\left\{\boldsymbol{\alpha}_{l}\right\}_{j=1}^{k}$ are initialized to zeros and fan-out weights are initialized as the solution of the following optimization problem :

$$
\begin{aligned}
\left(\boldsymbol{\omega}_{1}^{*}, \ldots, \boldsymbol{\omega}_{K}^{*}\right):=\Omega^{*} & =\underset{\Omega}{\arg \max }\left\|\sum_{i} \boldsymbol{b}_{l-2}\left(\boldsymbol{x}_{i}\right) \boldsymbol{v}_{\text {goal }}^{l+1^{T}}\left(x_{i}\right) \Omega\right\|_{F}^{2} & \text { s.t. }\|\Omega\|_{F}^{2}<c \\
& :=\underset{\Omega}{\arg \max }\left\|\boldsymbol{B}_{l-2} \boldsymbol{V}_{\text {goal }}^{l+1^{T}} \Omega\right\|_{F}^{2} & \text { s.t. }\|\Omega\|_{F}^{2}<c \\
& :=\underset{\Omega}{\arg \max \operatorname{Tr}\left(\Omega^{T} \tilde{\boldsymbol{N}}^{T} \tilde{\boldsymbol{N}} \Omega\right)} & \text { s.t. }\|\Omega\|_{F}^{2}<c
\end{aligned}
$$

While our method is equivalent to the following optimisation problem :

$$
\begin{array}{rlrl}
\left(\boldsymbol{\omega}_{1}^{*}, \ldots, \boldsymbol{\omega}_{K}^{*}\right)=\Omega^{*} & =\underset{\Omega}{\arg \max } \| \sum_{i} \boldsymbol{b}_{l-2}\left(x_{i}\right) \boldsymbol{v}_{\text {goal }}^{\text {proj }} \\
& =\underset{\Omega}{\arg \max }\left\|\boldsymbol{B}_{l-2} \boldsymbol{V}_{\text {goal }{ }_{\text {proj }}^{l T} \Omega \|_{F}^{2}}\right\|_{F}^{2} & \text { s.t. }\left\|\boldsymbol{B}_{l-1} \Omega\right\|_{F}^{2}<c \\
& =\underset{\hat{\Omega}}{\arg \max } \operatorname{Tr}\left(\tilde{\Omega}^{T} \boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N}^{T} \boldsymbol{N} \boldsymbol{S}^{-\frac{1}{2}} \tilde{\Omega}\right) & \text { s.t. }\left\|\boldsymbol{B}_{l-1} \Omega\right\|_{F}^{2}<c \\
& =\underset{\Omega}{\arg \max } \operatorname{Tr}\left(\Omega \boldsymbol{S}^{-1} \boldsymbol{N}^{T} \boldsymbol{N} \boldsymbol{S}^{-1} \Omega\right) & \text { s.t. }\left\|\|_{F}^{2}<c, \tilde{\Omega}:=\boldsymbol{S}^{\frac{1}{2}} \Omega\right. \\
& \text { s.t. }\|\Omega\|_{F}^{2}<\tilde{c}
\end{array}
$$

One can note three differences between those optimization problems:

- First, the matrix $\tilde{\boldsymbol{N}}$ is not defined using the projection of the desired update $\boldsymbol{V}_{\text {goal }}{ }_{\text {proj }}^{l+1}$. As a consequence, GradMax does not take into account redundancy, and on the opposite will actually try to add new neurons that are as redundant as possible with the part of the goal update that is already feasible with already-existing neurons.
- Second, the constraint lies in the weight space for GradMax method while it lies in the preactivation space in our case. The difference is that GradMax relies on the Euclidean metric in the space of parameters, which arguably offers less meaning that the Euclidean metric in the space of activities. Essentially this is the same difference as between the standard L2 gradient w.r.t. parameters and the natural gradient, which takes care of parameter redundancy and measures all quantities in the output space in order to be independent from the parameterization. In practice we do observe that the "natural" gradient direction improves the loss better than the usual L2 gradient.
- Third, our fan-in weights are not set to 0 but directly to their optimal values (at first order).


## B. 2 NORTH Preactivation

In paper Maile et al. (2022), fan-out weights are initialized to 0 while fan-in weights are initialized as $\boldsymbol{\alpha}_{i}=\boldsymbol{S}^{-1} \boldsymbol{B}_{l-1} \mathbf{V}_{\mathbf{Z}_{l}}^{T} r_{i}$ where $r_{i}$ is a random vector and $\mathbf{V}_{\mathbf{Z}_{l}} \in \mathcal{M}\left(\left|\operatorname{Ker}\left(\boldsymbol{B}_{l-1}^{T}\right)\right|,\left|\boldsymbol{b}_{l-1}(\boldsymbol{x})\right|\right)$ is a matrix consisting of the orthogonal vectors of the kernel of pre-activations $\boldsymbol{B}_{l}$, i.e $\left\{z \mid \boldsymbol{B}_{l}^{T} z=0\right\}$. In our paper fan-in weights are initialized as $\boldsymbol{\alpha}_{i}=\boldsymbol{S}^{-1} \boldsymbol{B}_{l-1} \boldsymbol{V}_{\text {goal }{ }_{p r o j}}^{T} \boldsymbol{v}_{i}=$ $\boldsymbol{S}^{-1} \boldsymbol{B}_{l-1} \boldsymbol{V}_{\text {goal }}{ }^{T} \mathbf{V}_{\mathbf{Z}_{l}} \mathbf{V}_{\mathbf{Z}_{l}}^{T} \boldsymbol{v}_{i}$, where the $\boldsymbol{v}_{i}$ are right eigenvectors of the matrix $\boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N}$.
The main difference is thus that we use the backpropagation to find the best $\boldsymbol{v}_{i}$ or $r_{i}$ directly, while the NORTH approach tries random directions $r_{i}$ to explore the space of possible neuron additions.

## C Proofs of Part 3 and 4

## C. 1 Proposition 3.1

Denoting by $\delta \mathbf{W}_{l}{ }^{+}$the generalized (pseudo-)inverse of $\delta \mathbf{W}_{l}$, we have:

$$
\delta \boldsymbol{W}_{l}^{*}=\frac{1}{n} \boldsymbol{V}_{\mathrm{goal}}^{l} \boldsymbol{B}_{l-1}^{T}\left(\frac{1}{n} \boldsymbol{B}_{l-1} \boldsymbol{B}_{l-1}^{T}\right)^{+} \text {and } \boldsymbol{V}_{0}^{l}=\frac{1}{n} \boldsymbol{V}_{\mathrm{goal}}^{l} \boldsymbol{B}_{l-1}^{T}\left(\frac{1}{n} \boldsymbol{B}_{l-1} \boldsymbol{B}_{l-1}^{T}\right)^{+} \boldsymbol{B}_{l-1}
$$

## Proof

Consider the function

$$
\begin{equation*}
g\left(\delta \mathbf{W}_{l}\right)=\left\|\boldsymbol{V}_{\text {goal }}^{l}-\delta \mathbf{W}_{l} \boldsymbol{B}_{l-1}\right\|_{\operatorname{Tr}}^{2} \tag{9}
\end{equation*}
$$

then:

$$
\begin{aligned}
g\left(\delta \mathbf{W}_{l}+\boldsymbol{H}\right) & =\left\|\boldsymbol{V}_{\text {goal }}^{l}-\delta \mathbf{W}_{l} \boldsymbol{B}_{l-1}-\boldsymbol{H} \boldsymbol{B}_{l-1}\right\|_{\operatorname{Tr}}^{2} \\
& =g\left(\delta \mathbf{W}_{l}\right)-2\left\langle\boldsymbol{V}_{\text {goal }}^{l}-\delta \mathbf{W}_{l} \boldsymbol{B}_{l-1}, \boldsymbol{H} \boldsymbol{B}_{l-1}\right\rangle_{\operatorname{Tr}}+o(\|\boldsymbol{H}\|) \\
& =g\left(\delta \mathbf{W}_{l}\right)-2 \operatorname{Tr}\left(\left(\boldsymbol{V}_{\text {goal }}^{l}-\delta \mathbf{W}_{l} \boldsymbol{B}_{l-1}\right)^{T} \boldsymbol{H} \boldsymbol{B}_{l-1}\right)+o(\|\boldsymbol{H}\|) \\
& =g\left(\delta \mathbf{W}_{l}\right)-2 \operatorname{Tr}\left(\boldsymbol{B}_{l-1}\left(\boldsymbol{V}_{\text {goal }}^{l}-\delta \mathbf{W}_{l} \boldsymbol{B}_{l-1}\right)^{T} \boldsymbol{H}\right)+o(\|\boldsymbol{H}\|) \\
& =g\left(\delta \mathbf{W}_{l}\right)-2\left\langle\left(\boldsymbol{V}_{\text {goal }}^{l}-\delta \mathbf{W}_{l} \boldsymbol{B}_{l-1}\right) \boldsymbol{B}_{l-1}^{T}, \boldsymbol{H}\right\rangle_{\operatorname{Tr}}+o(\|\boldsymbol{H}\|)
\end{aligned}
$$

By identification $\nabla_{\delta \mathbf{W}_{l}} g\left(\delta \mathbf{W}_{l}\right)=2\left(\boldsymbol{V}_{\text {goal }}^{l}-\delta \mathbf{W}_{l} \boldsymbol{B}_{l-1}\right) \boldsymbol{B}_{l-1}^{T}$, and thus:

$$
\nabla_{\delta \mathbf{W}_{l}} g\left(\delta \mathbf{W}_{l}\right)=0 \Longrightarrow \boldsymbol{V}_{\text {goal }}^{l} \boldsymbol{B}_{l-1}^{T}=\delta \mathbf{W}_{l} \boldsymbol{B}_{l-1} \boldsymbol{B}_{l-1}^{T}
$$

Using the definition of the generalized inverse of $M^{+}$, we get:

$$
\delta \boldsymbol{W}_{l}^{*}=\frac{1}{n} \boldsymbol{V}_{\text {goal }}^{l} \boldsymbol{B}_{l-1}^{T}\left(\frac{1}{n} \boldsymbol{B}_{l-1} \boldsymbol{B}_{l-1}^{T}\right)^{+}
$$

as one solution. For convolutional layers, considering 2D images of size $p$, using index $i=1, \ldots, n$ for the samples, and index $k=1, \ldots$, ch for the out-channels, and considering the convolutional kernel size to be $(2,2)$, then :

$$
\begin{gather*}
\boldsymbol{b}_{i}^{k}=\left(\begin{array}{cccccc}
b_{i}^{1, k} & b_{i}^{2, k} & . & b_{i}^{p, k} \\
b_{i}^{p+1, k} & b_{i}^{p+2, k} & \cdot & b_{i}^{2 p, k} \\
\cdot & \cdot & \cdot & \dot{c} \\
b_{i}^{p(p-1)+1, k} & \cdot & \cdot & b_{i}^{p^{2}, k}
\end{array}\right)  \tag{10}\\
\boldsymbol{B}_{i}^{c}=\left(\begin{array}{ccccccccc}
b_{i}^{1,1} & b_{i}^{2,1} & b_{i}^{p+1,1} & b_{i}^{p+2,1} & b_{i}^{1,2} & b_{i}^{2,2} & b_{i}^{p+1,2} & b_{i}^{p+2,2} & b_{i}^{1,3} \\
b_{i}^{2,1} & b_{i}^{3,1} & b_{i}^{p+2,1} & b_{i}^{p+3,1} & b_{i}^{2,2} & b_{i}^{3,2} & b_{i}^{p+2,2} & b_{i}^{p+3,2} & b_{i}^{2,3} \\
\cdot & \cdot & . & . & \cdot & \cdot & . & . \\
\cdot & . & . & . & \cdot & .
\end{array}\right)
\end{gather*}
$$

Then the function to minimize is

$$
g\left(\delta \mathbf{W}_{l}\right)=\left\|\boldsymbol{V}_{\text {goal }}^{l}-\boldsymbol{B}^{c} \delta \mathbf{W}_{l}\right\|_{\operatorname{Tr}}^{2}
$$

where $\boldsymbol{B}^{c}:=\left(\begin{array}{lll}\boldsymbol{B}_{1}^{c} & \ldots & \boldsymbol{B}_{n}^{c}\end{array}\right)$.

## C. 2 Proposition 3.2

We define the matrices $\boldsymbol{N}:=\frac{1}{n} \boldsymbol{B}_{l-2}\left(\boldsymbol{V}_{\text {goal proj }}^{l}\right)^{T}$ and $\boldsymbol{S}:=\frac{1}{n} \boldsymbol{B}_{l-2} \boldsymbol{B}_{l-2}^{T}$. Let us denote its SVD by $\boldsymbol{S}=\boldsymbol{U} \Sigma \boldsymbol{U}^{T}$, and note $S^{-\frac{1}{2}}:=\boldsymbol{U} \sqrt{\Sigma}^{-1} \boldsymbol{U}^{T}$ and consider the SVD of the matrix $S^{-\frac{1}{2}} \boldsymbol{N}=$ $\sum_{k=1}^{R} \lambda_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{T}$ with $\lambda_{1} \geq \ldots \geq \lambda_{R} \geq 0$, where $R$ is the rank of the matrix $N$. Then:

Proposition C. 1 (3.2). The solution of (5) can be written as:

- optimal number of neurons: $K^{*}=R$
- their optimal weights: $\left(\boldsymbol{\alpha}_{k}^{*}, \boldsymbol{\omega}_{k}^{*}\right)=\left(\operatorname{sign}\left(\lambda_{k}\right) \sqrt{\lambda_{k}} S^{-\frac{1}{2}} \boldsymbol{u}_{k}, \sqrt{\lambda_{k}} \boldsymbol{v}_{k}\right)$ for $k=1, \ldots, R$.

Moreover for any number of neurons $K \leqslant R$, and associated scaled weights $\theta_{\leftrightarrow}^{K, *}$, the expressivity gain and the first order in $\eta$ of the loss improvement due to the addition of these $K$ neurons are equal and can be quantified very simply as a function of the eigenvalues $\lambda_{k}$ :

$$
\begin{aligned}
& \Psi_{\theta \oplus \theta \leftrightarrow}^{l} \\
& \mathcal{L}\left(f_{\theta \oplus \theta_{\leftrightarrow}^{K, *}}^{K}\right)=\Psi_{\theta}^{l}-\sum_{k=1}^{K} \lambda_{k}^{2} \\
& \stackrel{L}{ }\left(f_{\theta}\right)+\frac{\sigma_{l}^{\prime}(0)}{\eta} \sum_{k=1}^{K} \lambda_{k}^{2}+o\left(\left\|\theta_{\leftrightarrow}^{K, *}\right\|^{2}\right)
\end{aligned}
$$

## Proof

We first compute the proof for a linear layer.
The optimal neurons $n_{1}, \ldots, n_{K}$ are defined by $n_{i}:=\left(\boldsymbol{\alpha}_{i}, \boldsymbol{\omega}_{i}\right)$ and are the solution of the optimization problem :

$$
\underset{\delta \boldsymbol{W}_{l}, \delta \theta_{l-1 \leftrightarrow l}^{K}}{\arg \min }\|\overbrace{\boldsymbol{V}_{\text {goal }}^{l}-\delta \boldsymbol{W}_{l} \boldsymbol{B}_{l-1}}^{\boldsymbol{V}_{\text {goal }}^{\text {proj }}} \boldsymbol{l}-\boldsymbol{\Omega} \boldsymbol{A}^{T} \boldsymbol{B}_{l-2}\|_{\mathrm{Tr}}^{2}
$$

$$
\text { where } \boldsymbol{\Omega}:=\left(\begin{array}{lll}
\boldsymbol{\omega}_{1} & \ldots & \boldsymbol{\omega}_{K}
\end{array}\right) \text { and } \boldsymbol{A}:=\left(\begin{array}{lll}
\boldsymbol{\alpha}_{1} & \ldots & \boldsymbol{\alpha}_{K}
\end{array}\right)
$$

This is equivalent to :

$$
\begin{equation*}
\underset{\boldsymbol{C}=\boldsymbol{\Omega} \boldsymbol{A}^{T}}{\arg \min }\|\overbrace{\boldsymbol{V}_{\text {goal }}^{l}-\delta \boldsymbol{W}_{l} \boldsymbol{B}_{l-1}}^{\boldsymbol{V}_{\text {goal }}^{l} \text { proj }^{l}}-\boldsymbol{C} \boldsymbol{B}_{l-2}\|_{\mathrm{Tr}}^{2} \tag{11}
\end{equation*}
$$

Then $\boldsymbol{C}^{*}=\boldsymbol{S}^{+} \boldsymbol{N}$. Taking $K=\operatorname{rank}\left(\boldsymbol{S}^{+} \boldsymbol{N}\right)$ and a family $\left(\boldsymbol{\alpha}_{k}, \boldsymbol{\omega}_{k}\right)_{1, \ldots, R}$ such that $\boldsymbol{\Omega} \boldsymbol{A}^{T}=$ $\sum_{k} \boldsymbol{\omega}_{k} \alpha_{k}^{T}=\boldsymbol{S}^{+} \boldsymbol{N}$ is a optimal solution. But what if we decide to only add $K<R$ neurons ?

$$
\begin{aligned}
& \underset{\theta \leftrightarrow}{\arg \min }\left\{\frac{1}{n}\left\|\boldsymbol{V}_{\text {goal }}{ }_{p r o j}^{l}-\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)\right\|_{\operatorname{Tr}}^{2}\right\}=\underset{\theta \leftrightarrow}{\arg \min }\left\{-\frac{2}{n}\left\langle\boldsymbol{V}_{\text {goal }_{p r o j}}^{l}, \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)\right\rangle_{\operatorname{Tr}}+\frac{1}{n}\left\|\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)\right\|_{\operatorname{Tr}}^{2}\right\} \\
& =\underset{\theta_{\leftrightarrow}^{K}}{\arg \min } \frac{1}{n} g\left(\theta_{\leftrightarrow}^{K}\right)
\end{aligned}
$$

We note

$$
\begin{aligned}
& \frac{1}{n} g\left(\theta_{\leftrightarrow}^{K}\right)=- \frac{2}{n} \sum_{i}^{n} \sum_{k} \boldsymbol{v}_{\text {goal }_{p r o j}}^{l}\left(\boldsymbol{x}_{i}\right)^{T}\left(\boldsymbol{\alpha}_{k}^{T} \boldsymbol{b}_{l-2}\left(\boldsymbol{x}_{i}\right)\right) \boldsymbol{\omega}_{k} \\
&+\frac{1}{n} \sum_{k, j}^{K} \sum_{i}^{n}\left(\boldsymbol{\alpha}_{k}^{T} \boldsymbol{b}_{l-2}\left(\boldsymbol{x}_{i}\right)\right) \boldsymbol{\omega}_{k}^{T} \boldsymbol{\omega}_{j}\left(\boldsymbol{\alpha}_{j}^{T} \boldsymbol{b}_{l-2}\left(\boldsymbol{x}_{i}\right)\right) \\
&=-2 \sum_{k}^{K} \boldsymbol{\alpha}_{k}^{T}\left(\frac{1}{n} \sum_{i}^{n} \boldsymbol{b}_{l-2}\left(\boldsymbol{x}_{i}\right) \boldsymbol{v}_{\text {goal }_{p r o j}}^{l}\left(\boldsymbol{x}_{i}\right)^{T}\right) \boldsymbol{\omega}_{k} \\
&+\sum_{k, j}^{K} \boldsymbol{\omega}_{k}^{T} \boldsymbol{\omega}_{j} \boldsymbol{\alpha}_{k}^{T}\left(\frac{1}{n} \sum_{i}^{n} \boldsymbol{b}_{l-2}\left(\boldsymbol{x}_{i}\right) \boldsymbol{b}_{l-2}\left(\boldsymbol{x}_{i}\right)^{T}\right) \boldsymbol{\alpha}_{j} \\
&=- 2 \sum_{k}^{K} \boldsymbol{\alpha}_{k}^{T} \boldsymbol{N} \boldsymbol{\omega}_{k}+\sum_{k, j}^{K} \boldsymbol{\omega}_{k}^{T} \boldsymbol{\omega}_{j} \boldsymbol{\alpha}_{k}^{T} \boldsymbol{S} \boldsymbol{\alpha}_{j}
\end{aligned}
$$

with $\boldsymbol{N}:=\frac{1}{n} \boldsymbol{B}_{l-2}\left(\boldsymbol{V}_{\text {goal }_{p r o j}}^{l}\right)^{T}$ and $\boldsymbol{S}:=\frac{1}{n} \boldsymbol{B}_{l-2} \boldsymbol{B}_{l-2}^{T}$.
Consider the SVD of $\boldsymbol{S}=\boldsymbol{U} \Sigma \boldsymbol{U}^{T}$. Define $\boldsymbol{S}^{\frac{1}{2}}:=\boldsymbol{U} \sqrt{\Sigma} \boldsymbol{U}$ and $\boldsymbol{S}^{-\frac{1}{2}}:=\boldsymbol{U} \sqrt{\Sigma}^{-1} \boldsymbol{U}^{T}$.
Consider also the SVD of $\boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N}=\sum_{r=1}^{R} \lambda_{r} \boldsymbol{v}_{r} \boldsymbol{e}_{r}^{T}$.
Note also $\gamma_{k}:=\boldsymbol{S}^{\frac{1}{2}}{ }^{T} \boldsymbol{\alpha}_{k}$. Then :

$$
\begin{aligned}
-\sum_{k=1}^{K} \boldsymbol{\alpha}_{k}^{T} N \boldsymbol{\omega}_{k} & =-\sum_{k} \gamma_{k}^{T} \boldsymbol{S}^{-\frac{1}{2}} N \boldsymbol{\omega}_{k} \\
& =-\operatorname{Tr}\left(\sum_{k} \sum_{r} \lambda_{r}\left(\gamma_{k}^{T} \boldsymbol{v}_{r} \boldsymbol{e}_{r}^{T}\right) \boldsymbol{\omega}_{k}\right)
\end{aligned}
$$

Using the linearity of the Trace and that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$, we have :

$$
\begin{aligned}
-\sum_{k=1}^{K} \boldsymbol{\alpha}_{k}^{T} N \boldsymbol{\omega}_{k} & =-\operatorname{Tr}\left(\sum_{k} \sum_{r} \lambda_{r} \boldsymbol{\omega}_{k} \boldsymbol{\gamma}_{k}^{T} \boldsymbol{v}_{r} \boldsymbol{e}_{r}^{T}\right) \\
& =-\operatorname{Tr}\left(\sum_{k} \boldsymbol{\omega}_{k} \boldsymbol{\gamma}_{k}^{T} \sum_{r} \lambda_{r} \boldsymbol{v}_{r} \boldsymbol{e}_{r}^{T}\right) \\
& =-\left\langle\sum_{k} \gamma_{k} \boldsymbol{\omega}_{k}^{T}, \sum_{r} \lambda_{r} \boldsymbol{v}_{r} \boldsymbol{e}_{r}^{T}\right\rangle_{\operatorname{Tr}} \text { with }\langle\boldsymbol{A}, \boldsymbol{B}\rangle_{\operatorname{Tr}}=\operatorname{Tr}\left(\boldsymbol{A}^{T} \boldsymbol{B}\right)
\end{aligned}
$$

For the second sum :

$$
\begin{aligned}
\sum_{k, j}^{K} \boldsymbol{\omega}_{k}^{T} \boldsymbol{\omega}_{j} \boldsymbol{\alpha}_{k}^{T} S \boldsymbol{\alpha}_{j} & =\sum_{k, j}\left(\boldsymbol{\omega}_{k}^{T} \boldsymbol{\omega}_{j}\right)\left(\gamma_{j}^{T} \gamma_{k}\right) \\
& \left.=\operatorname{Tr}\left(\sum_{k, j}\left(\left(\boldsymbol{\omega}_{k}^{T} \boldsymbol{\omega}_{j}\right) \gamma_{j}^{T}\right) \boldsymbol{\gamma}_{k}\right)\right) \\
& =\operatorname{Tr}\left(\left(\sum_{k, j} \gamma_{k} \boldsymbol{\omega}_{k}^{T} \boldsymbol{\omega}_{j} \gamma_{j}^{T}\right)\right. \\
& =\left\|\sum_{k} \boldsymbol{\omega}_{k} \boldsymbol{\gamma}_{k}^{T}\right\|_{\operatorname{Tr}}^{2} \text { with }\|\boldsymbol{A}\|_{\operatorname{Tr}}=\sqrt{\operatorname{Tr}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)} \\
& =\left\|\sum_{k} \gamma_{k} \boldsymbol{\omega}_{k}^{T}\right\|_{\operatorname{Tr}}^{2}
\end{aligned}
$$

Then we have :

$$
\underset{K, \theta_{\leftrightarrow}}{\arg \min } \frac{1}{n} g(\boldsymbol{\alpha}, \boldsymbol{\omega})=\underset{K, \boldsymbol{\alpha}=\boldsymbol{S}^{-1 / 2^{T}} \boldsymbol{\gamma}, \boldsymbol{\omega}}{\arg \min }\left\|\boldsymbol{S}^{-1 / 2} \boldsymbol{N}-\sum_{k=1}^{K} \boldsymbol{\gamma}_{k} \boldsymbol{\omega}_{k}^{T}\right\|_{\mathrm{Tr}}^{2}
$$

The solution of such problems is given by the paper Eckart \& Young (1936), by choosing $K=$ $\operatorname{rank}\left(\boldsymbol{S}^{-1 / 2} \boldsymbol{N}\right)$ and $\sum_{k=1}^{K} \gamma_{k} \boldsymbol{\omega}_{k}^{T}=\sum_{r=1}^{K} \lambda_{r} \boldsymbol{v}_{r} \boldsymbol{e}_{r}^{T}$. Choosing $K=R$ is thus the best option.
Thus we have that $\sum_{k}^{R} \boldsymbol{\omega}_{k} \boldsymbol{\alpha}_{k}^{T}=\boldsymbol{S}^{-1 / 2} \sum_{k}^{R} \lambda_{k} \gamma_{k} \boldsymbol{\omega}_{k}^{T}=\boldsymbol{S}^{-1} \boldsymbol{N}$.
We now consider the matrix $\boldsymbol{S}^{-1 / 2} \boldsymbol{N}$. The minimization also yields the following properties at the optimum:

$$
\begin{aligned}
& \text { for } k \neq j, \quad\left\langle\gamma_{k} \boldsymbol{\omega}_{k}^{T}, \boldsymbol{\gamma}_{j} \boldsymbol{\omega}_{j}^{T}\right\rangle_{\mathrm{Tr}}=0 \\
&\left\|\boldsymbol{S}^{-1 / 2} \boldsymbol{N}-\sum_{k=1}^{K} \gamma_{k} \boldsymbol{\omega}_{k}^{T}\right\|_{\mathrm{Tr}}^{2}=\sum_{r=K+1}^{R} \lambda_{r}^{2} \\
&=\left\|\boldsymbol{S}^{-1 / 2} \boldsymbol{N}\right\|_{\mathrm{Tr}}^{2}-\left\|\sum_{k=1}^{K} \gamma_{k} \boldsymbol{\omega}_{k}^{T}\right\|_{\mathrm{Tr}}^{2}
\end{aligned}
$$

Furthermore :

$$
\begin{aligned}
& \frac{1}{n}\left\|\boldsymbol{V}_{\text {goal } p_{\text {proj }}}^{l}-\boldsymbol{V}\left(\theta_{\leftrightarrow}^{K, *}\right)\right\|_{\operatorname{Tr}}^{2}=\frac{1}{n} \| \boldsymbol{V}_{\text {goal } \text { proj }^{l}\left\|_{\operatorname{Tr}}^{2}+\right\| \boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N}-\sum_{k} \gamma_{k} \boldsymbol{\omega}_{k}^{T}\left\|^{2}-\right\| \boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N} \|_{\operatorname{Tr}}^{2}} \\
&=\sum_{r=K+1}^{R} \lambda_{r}^{2}+\frac{1}{n} \| \boldsymbol{V}_{\text {goal } \text { proj }^{l}\left\|_{\operatorname{Tr}}^{2}-\right\| \boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N} \|_{\operatorname{Tr}}^{2}} \\
&=-\sum_{r=1}^{K} \lambda_{r}^{2}+\frac{1}{n} \| \boldsymbol{V}_{\text {goal }}^{\text {proj }} \\
& l
\end{aligned} \|_{\operatorname{Tr}}^{2} .
$$

 scalar product, then when adding the new neurons, the impact on the global loss is :

$$
\mathcal{L}\left(f_{\theta \oplus \theta \underset{\leftrightarrow}{K}}\right)=\frac{1}{n} \sum_{i=1}^{n} L\left(f_{\theta}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)-\frac{\gamma}{\eta} \frac{1}{n} \sigma_{l}^{\prime}(0)\left\langle\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K, *}\right), \boldsymbol{V}_{\text {goal }}^{\text {proj }}{ }_{\mathrm{Tr}}^{l}\right\rangle_{\mathrm{Tr}}+o(1)
$$

We also have the following property :

$$
\begin{aligned}
& \underset{\theta K}{\arg \min }\left\{\frac{1}{n}\left\|\boldsymbol{V}_{\text {goal }}^{\text {proj }} \quad l \mid \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)\right\|_{\operatorname{Tr}}^{2}\right\} \\
& =\underset{H \geq 0}{\arg \min } \underset{\theta_{\leftrightarrow}^{K},\left\|\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)\right\|_{\mathrm{Tr}}=H}{\arg \min }\left\{\frac{1}{n}\left\|\boldsymbol{V}_{\text {goal }_{\text {proj }}}^{l}-\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)\right\|_{\operatorname{Tr}}^{2}\right\} \\
& =\underset{H \geq 0}{\arg \min } \underset{\theta_{\leftrightarrow}^{K}, \| \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)}{\arg \min } \|_{\mathrm{Tr}}=H \mathrm{n}\left\{-\frac{2}{n}\left\langle\boldsymbol{V}_{\text {goal }}^{\text {proj }}{ }^{l}\left(, \boldsymbol{V}^{l+1}\left(\theta_{\leftrightarrow}^{K}\right)\right\rangle_{\operatorname{Tr}}+\frac{1}{n}\left\|\boldsymbol{V}_{K}\left(\theta_{\leftrightarrow}^{K}\right)\right\|_{\operatorname{Tr}}^{2}\right\}\right. \\
& =\underset{H \geq 0}{\arg \min } \underset{\theta_{\leftrightarrow}^{K},\left\|\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)\right\|_{\mathrm{Tr}}=H}{\arg \min }\left\{-\frac{2}{n}\left\langle\boldsymbol{V}_{\text {goal }}^{\text {proj }}, \boldsymbol{V}^{l+1}\left(\theta_{\leftrightarrow}^{K}\right)\right\rangle_{\mathrm{Tr}}+\frac{1}{n} H^{2}\right\} \\
& =\underset{H \geq 0}{\arg \min } \underset{\theta_{\leftrightarrow}^{K},\left\|\mid \boldsymbol{V}^{l}\left(\theta_{l \leftrightarrow}^{K}\right)^{*}\right\|_{\mathrm{Tr}}=1}{\arg \min }\left\{-H\left\langle\boldsymbol{V}_{\text {goal }_{p r o j}}^{l}, \boldsymbol{V}^{l+1}\left(\theta_{l \leftrightarrow}^{K}\right) *\right\rangle_{\mathrm{Tr}}+\frac{1}{2} H^{2}\right\}
\end{aligned}
$$

with $\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)^{*}$ the solution of the second $\arg \min$ (ie for $H=1$ ).
Then the norm minimizing the first argmin is given by :

$$
H^{*}=\left\langle\boldsymbol{V}_{\text {goal }_{\text {proj }}}^{l}, \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)^{*}\right\rangle_{\mathrm{Tr}}
$$

Furthermore

$$
\begin{aligned}
& \min _{\theta_{l \leftrightarrow l}^{K}}\left\{\frac{1}{n}\left\|\boldsymbol{V}_{\text {goal }_{p r o j}}^{l}-\boldsymbol{V}^{l+1}\left(\theta_{l \leftrightarrow l}^{K}\right)\right\|_{\operatorname{Tr}}^{2}\right\}=-\sum_{r=1}^{K} \lambda_{r}^{2}+\frac{1}{n}\left\|\boldsymbol{V}_{\text {goal }_{p r o j}}^{l}\right\|_{\mathrm{Tr}}^{2} \\
& \min _{\theta \leftrightarrow}^{K}\left\{\frac{1}{n}\left\|\boldsymbol{V}_{\text {goal }_{p r o j}}^{l}-\boldsymbol{V}^{l}\left(\theta_{l \leftrightarrow l}^{K}\right)\right\|_{\mathrm{Tr}}^{2}\right\}=-\frac{1}{n} H^{*^{2}}+\frac{1}{n} \| \boldsymbol{V}_{\text {goal }}^{p r o j} \\
& l
\end{aligned} \|_{\mathrm{Tr}}^{2}{ }^{\Longrightarrow} H^{*}=\left\langle\boldsymbol{V}_{\text {goal }_{p r o j}}^{l}, \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)^{*}\right\rangle_{\mathrm{Tr}}=\sqrt{\sum_{r=1}^{K} \lambda_{r}^{2} \times \sqrt{n}} \begin{aligned}
& \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K, *}\right)=H^{*} \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)^{*} \\
& \left\langle\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K, *}\right), \boldsymbol{V}_{\text {goal }_{p r o j}^{l}}^{l}\right\rangle_{\mathrm{Tr}}=H^{*} \times\left\langle\boldsymbol{V}_{\text {goal }_{p r o j}^{l}}^{l}, \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)^{*}\right\rangle_{\mathrm{Tr}}=H^{* 2}
\end{aligned}
$$

where the last equality is given by the optimisation of $\left\|\boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N}-\sum_{k=1}^{K} \boldsymbol{u}_{k} \boldsymbol{\omega}_{k}^{T}\right\|_{T r}^{2}$. So minimizing the scalar product $-\left\langle\boldsymbol{V}_{\text {goal }}{ }_{p r o j}^{l}\left(\delta \boldsymbol{W}_{l}^{*}\right), \boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)^{*}\right\rangle_{\mathrm{Tr}}$ for fixed norm of $\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)$ is equivalent to minimizing the norm $\left\|\boldsymbol{V}_{\text {goal }}^{p r o j}{ }_{l}^{l}\left(\delta \boldsymbol{W}_{l}^{*}\right)-\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)\right\|_{\mathrm{Tr}}^{2}$.

$$
\mathcal{L}\left(f_{\theta \oplus \theta}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(f_{\theta}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)-\frac{1}{\eta} \sigma_{l}^{\prime}(0) \sum_{r=1}^{K} \lambda_{k}^{2}+o(1)
$$

For convolutional layers, the same reasoning can be applied. Consider one adds one convolution layer, ie $K=1$. Use $\boldsymbol{B}_{i}^{c}$ defined in the first proof and $\boldsymbol{T}_{j}$ the linear application selecting the
activities for the $j$-pixel, then one has to minimize the expression :

$$
\begin{aligned}
& g\left(\theta_{\leftrightarrow}^{1}\right)=\sum_{m}^{\text {out channels }} \sum_{i} \sum_{j=1}^{\text {examples preactivity size }}\left(\boldsymbol{\omega}_{m}^{T} \boldsymbol{T}_{j} \boldsymbol{B}^{c} \boldsymbol{\alpha}-\boldsymbol{V}_{\text {goal }}^{j, m}\right)^{i} \\
& =\sum_{m} \sum_{i} \sum_{j=1}\left(\boldsymbol{\omega}_{m}^{T} \boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha}\right)^{2}-2 \boldsymbol{\omega}_{m}^{T} \boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \boldsymbol{V}_{\text {goal }}{ }_{j, m}^{i}+C \\
& =\sum_{m} \sum_{i} \sum_{j=1} \operatorname{Tr}\left(\boldsymbol{\omega}_{m}^{T} \boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha}\right)^{2}-2 \boldsymbol{\omega}_{m}^{T} \boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \boldsymbol{V}_{\text {goal }}{ }_{j, m}^{i}+C \\
& =\sum_{m} \sum_{i} \sum_{j=1} \operatorname{Tr}\left(\boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \boldsymbol{\omega}_{m}^{T}\right)^{2}-2 \boldsymbol{\omega}_{m}^{T} \boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \boldsymbol{V}_{\text {goal }}^{j, m}{ }_{i}^{i}+C
\end{aligned}
$$

for some constant $C$. We have the property that $\left\langle\boldsymbol{T}_{j}^{T}, \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \boldsymbol{\omega}_{m}^{T}\right\rangle_{\operatorname{Tr}}^{2}=\operatorname{Tr}\left(\boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \boldsymbol{\omega}_{m}^{T}\right)^{2}=$ $\left\|\boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \boldsymbol{\omega}_{m}^{T}\right\|_{\mathrm{Tr}}^{2}$. Ignoring the constant $C$ :

$$
\begin{aligned}
g\left(\theta_{\leftrightarrow}^{1}\right) & =\sum_{m} \operatorname{Tr}\left(\boldsymbol{\omega}_{m} \boldsymbol{\alpha}^{T}\left(\sum_{i} \boldsymbol{B}_{i}^{c T} \sum_{j} \boldsymbol{T}_{j}^{T} \boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c}\right) \boldsymbol{\alpha} \boldsymbol{\omega}_{m}^{T}\right)-2 \boldsymbol{\omega}_{m}^{T} \sum_{i, j} \boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{V}_{\text {goal }}^{j, m}{ }_{j}^{i} \boldsymbol{\alpha} \\
& =\sum_{m} \boldsymbol{\alpha}^{T}\left(\sum_{i} \boldsymbol{B}_{i}^{c T} \sum_{j} \boldsymbol{T}_{j} \boldsymbol{T}_{j}^{T} \boldsymbol{B}_{i}^{c}\right) \boldsymbol{\alpha} \boldsymbol{\omega}_{m}^{T} \boldsymbol{\omega}_{m}-2 \boldsymbol{\omega}_{m}^{T} \sum_{i, j} \boldsymbol{T}_{j} \boldsymbol{B}_{i}^{c} \boldsymbol{V}_{\text {goal }}^{j, m}{ }_{j, m} \boldsymbol{\alpha} \\
& =\boldsymbol{\alpha}^{T}\left(\sum_{i} \boldsymbol{B}_{i}^{c T} \sum_{j} \boldsymbol{T}_{j} \boldsymbol{T}_{j}^{T} \boldsymbol{B}_{i}^{c}\right) \boldsymbol{\alpha} \boldsymbol{\omega}^{T} \boldsymbol{\omega}-2 \sum_{m} \boldsymbol{\omega}_{m}^{T} \sum_{i, j} \boldsymbol{T}_{j} 1_{f u l l}^{T} \boldsymbol{V}_{\text {goal }}^{i} 1_{j, m} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \\
& =\boldsymbol{\alpha}^{T} \boldsymbol{S} \boldsymbol{\omega}^{T} \boldsymbol{\omega}-2 \sum_{m} \boldsymbol{\omega}_{m}^{T} \sum_{i} \boldsymbol{F}_{i}^{m} \boldsymbol{B}_{i}^{c} \boldsymbol{\alpha} \\
& =\boldsymbol{\alpha}^{T} \boldsymbol{S} \boldsymbol{\omega}^{T} \boldsymbol{\omega}-2 \boldsymbol{\omega} \boldsymbol{N} \boldsymbol{\alpha}
\end{aligned}
$$



## C. 3 Proposition and remark 3.3

Suppose $\boldsymbol{S}$ is semi definite, we note $\boldsymbol{S}=\boldsymbol{S}^{\frac{1}{2}} \boldsymbol{S}^{\frac{1}{2}}$. Solving (7) is equivalent to find the K first eigenvectors $\boldsymbol{\alpha}_{k}$ associated to the K largest eigenvalues $\lambda$ of the generalized eigenvalue problem :

$$
\boldsymbol{N} \boldsymbol{N}^{T} \boldsymbol{\alpha}_{k}=\lambda \boldsymbol{S} \boldsymbol{\alpha}_{k}
$$

## Proof

This is equivalent to maximizing the following generalized Rayleigh quotient (which is solvable by the LOBPCG technique):

$$
\begin{aligned}
\boldsymbol{\alpha}^{*} & =\max _{x} \frac{\boldsymbol{\alpha}^{T} \boldsymbol{N} \boldsymbol{N}^{T} \boldsymbol{\alpha}}{\boldsymbol{\alpha}^{T} \boldsymbol{S} \boldsymbol{\alpha}} \\
\boldsymbol{p}^{*} & =\max _{\boldsymbol{p}=\boldsymbol{S}^{1 / 2}} \frac{\boldsymbol{p}^{T} \boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N} \boldsymbol{N}^{T} \boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{p}}{\boldsymbol{p}^{T} \boldsymbol{p}} \\
\boldsymbol{p}^{*} & =\max _{\|\boldsymbol{p}\|=1}\left\|\boldsymbol{N}^{T} \boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{p}\right\| \\
\boldsymbol{\alpha}^{*} & =\boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{p}^{*}
\end{aligned}
$$

Considering the SVD of $\boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N}=\sum_{r=1}^{R} \lambda_{r} \boldsymbol{e}_{r} \boldsymbol{f}_{r}^{T}$, then $\boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N} \boldsymbol{N}^{T} \boldsymbol{S}^{-\frac{1}{2}}=\sum_{r=1}^{R} \lambda_{r}^{2} \boldsymbol{f}_{r} \boldsymbol{f}_{r}^{T}$, because $j \neq i \Longrightarrow \boldsymbol{e}_{i}^{T} \boldsymbol{e}_{j}=0$ and $\boldsymbol{f}_{i}^{T} \boldsymbol{f}_{j}=0$. Hence maximizing the first quantity is equivalent to $\boldsymbol{p}_{k}^{*}=\boldsymbol{f}_{k}$, then $\boldsymbol{\alpha}_{k}=\boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{e}_{k}$. The same reasoning is used to find $\boldsymbol{\omega}_{k}$.

We prove second corollary 3.2 by induction. For $m=m^{\prime}=1$ :

$$
\begin{aligned}
\boldsymbol{a}_{l}(\boldsymbol{x})^{t+1} & =\boldsymbol{a}_{l}(\boldsymbol{x})^{t}+\boldsymbol{V}\left(\theta_{\leftrightarrow}^{1, *}, \boldsymbol{x}\right) \gamma+o(\gamma) \\
\boldsymbol{v}_{\text {goal }}{ }^{l, t+1}(\boldsymbol{x}) & =\boldsymbol{v}_{\text {goal }}{ }^{l, t}(\boldsymbol{x})+\nabla_{a_{l}(\boldsymbol{x})} \mathcal{L}\left(f_{\theta}(\boldsymbol{x}), \boldsymbol{y}\right)^{T} \boldsymbol{v}\left(\theta_{\leftrightarrow}^{1, *}, \boldsymbol{x}\right) \gamma+o(\gamma)
\end{aligned}
$$

Adding the second neuron we obtain the minimization problem:

$$
\underset{\boldsymbol{\alpha}_{2}, \boldsymbol{\omega}_{2}}{\arg \min }\left\|\boldsymbol{V}_{\text {goal }} l, t-\boldsymbol{V}^{l}\left(\boldsymbol{\alpha}_{2}, \boldsymbol{\omega}_{2}\right)\right\|_{\operatorname{Tr}}+o(1)
$$

## C. 4 About equivalence of quadratic problems

Problems 6 and 5 are generally not equivalent, but might be very close, depending on layer sizes and number of samples. The difference between the two problems is that in one case one minimizes the quadratic quantity:

$$
\left\|\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)+\boldsymbol{V}^{l}\left(\delta \mathbf{W}_{l}\right)-\boldsymbol{V}_{\text {goal }}{ }^{l}\right\|_{\operatorname{Tr}}^{2}
$$

w.r.t. $\delta \mathbf{W}_{l}$ and $\theta_{\leftrightarrow}^{K}$ jointly, while in the other case the problem is first minimized w.r.t. $\delta \mathbf{W}_{l}$ and then w.r.t. $\theta_{\leftrightarrow}^{K}$. The latter process, being greedy, might thus provide a solution that is not as optimal as the joint optimization.

We chose this two-step process as it intuitively relates to the spirit of improving upon a standard gradient descent: we aim at adding neurons that complement what the other ones have already done. This choice is debatable and one could solve the joint problem instead, with the same techniques.

The topic of this section is to check how close the two problems are. To study this further, note that $\boldsymbol{V}^{l}\left(\delta \mathbf{W}_{l}\right)=\delta \boldsymbol{W}_{l} \boldsymbol{B}_{l-1}$ while $\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)=\sum_{k=1}^{K} \boldsymbol{\omega}_{k} \boldsymbol{B}_{l-2}^{T} \boldsymbol{\alpha}_{k}$. The rank of $\boldsymbol{B}_{l-1}$ is $\min \left(n_{S}, n_{l-1}\right)$ where $n_{S}$ is the number of samples and $n_{l-1}$ the number of neurons (post-activities) in layer $l-1$, while the rank of $\boldsymbol{B}_{l-2}$ is $\min \left(n_{S}, n_{l-2}\right)$ where $n_{l-2}$ is the number of neurons (post-activities) in layer $l-2$. Note also that the number of degrees of freedom in the optimization variables $\delta \boldsymbol{W}_{l}$ and $\theta_{\leftrightarrow}^{K}=\left(\boldsymbol{\omega}_{k}, \boldsymbol{\alpha}_{k}\right)$ is much larger than these ranks.

Small sample case. If the number $n_{S}$ of samples is lower than the number of neurons $n_{l-1}$ and $n_{l-2}$ (which is potentially problematic, see Section D.1), then it is possible to find suitable variables $\delta \boldsymbol{W}_{l}$ and $\theta_{\leftrightarrow}^{K}$ to form any desired $\boldsymbol{V}^{l}\left(\delta \mathbf{W}_{l}\right)$ and $\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)$. In particular, if $n_{S} \leqslant n_{l-1} \leqslant n_{l-2}$, one can choose $\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)$ to be $\boldsymbol{V}_{\text {goal }}{ }^{l}-\boldsymbol{V}^{l}\left(\delta \mathbf{W}_{l}\right)$ and thus cancel any effect due to the greedy process in two steps. The two problems are then equivalent.

Large sample case. On the opposite, if the number of samples is very large (compared to the number of neurons $n_{l-1}$ and $n_{l-2}$ ), then the lines of matrices $\boldsymbol{B}_{l-1}$ and $\boldsymbol{B}_{l-2}$ become asymptotically uncorrelated, under the assumption of their independence (which is debatable, depending on the type of layers and activation functions). Thus the optimization directions available to $\boldsymbol{V}^{l}\left(\delta \mathbf{W}_{l}\right)$ and $\boldsymbol{V}^{l}\left(\theta_{\leftrightarrow}^{K}\right)$ become orthogonal, and proceeding greedily does not affect the result, the two problems are asymptotically equivalent.

In the general case, matrices $\boldsymbol{B}_{l-1}$ and $\boldsymbol{B}_{l-2}$ are not independent, though not fully correlated, and the number of samples (in the minibatch) is typically larger than the number of neurons; the problems are then different.

Note that technically the ranks could be lower, in the improbable case where some neurons are perfectly redundant, or, e.g., if some samples yield exactly the same activities.

## C. 5 SECTION Theory behind Greedy Growth WITH PROOFS

One might wonder whether a greedy approach on layer growth might get stuck in a non-optimal state. We derive the following series of propositions in this regard. Since in this work we add neurons layer per layer independently, we study here the case of a single hidden layer network, to spot potential layer growth issues. For the sake of simplicity, we consider the task of least square regression towards an explicit continuous target $f^{*}$, defined on a compact set. That is, we aim at minimizing the loss:

$$
\inf _{f} \sum_{x \in \mathcal{D}}\left\|f(x)-f^{*}(x)\right\|^{2}
$$

where $f(x)$ is the output of the neural network and $\mathcal{D}$ is the training set.
Proposition C. 2 (Greedy completion of an existing network). If $f$ is not $f^{*}$ yet, there exists a set of neurons to add to the hidden layer such that the new function $f^{\prime}$ will have a lower loss than $f$.

One can even choose the added neurons such that the loss is arbitrarily well minimized.

Proof. The classic universal approximation theorem about neural networks with one hidden layer Pinkus (1999) states that for any continuous function $g$ defined on a compact set $\boldsymbol{\omega}$, for any desired precision $\gamma$, and for any activation function $\sigma$ provided it is not a polynomial, then there exists a neural network $\widehat{g}$ with one hidden layer (possibly quite large when $\gamma$ is small) and with this activation function $\sigma$, such that

$$
\forall x,\left\|g(x)-g^{*}(x)\right\| \leqslant \gamma
$$

We apply this theorem to the case where $g^{*}=f^{*}-f$, which is continuous as $f^{*}$ is continuous, and $f$ is a shallow neural network and as such is a composition of linear functions and of the function $\sigma$, that we will suppose to be continuous for the sake of simplicity. We will suppose that $f$ is real-valued for the sake of simplicity as well, but the result is trivially extendable to vector-valued functions (just concatenate the networks obtained for each output independently). We choose $\gamma=\frac{1}{10}\left\|f^{*}-f\right\|_{L 2}$, where $\langle a \mid b\rangle_{L 2}=\frac{1}{|\boldsymbol{\omega}|} \int_{x \in \omega} a(x) b(x) d x$. This way we obtain a one-hidden-layer neural network $g$ with activation function $\sigma$ such that:

$$
\begin{gathered}
\forall x \in \boldsymbol{\omega}, \quad-\gamma \leqslant g(x)-g^{*}(x) \leqslant \gamma \\
\forall x \in \boldsymbol{\omega}, \quad g(x)=f^{*}(x)-f(x)+a(x)
\end{gathered}
$$

with $\forall x \in \boldsymbol{\omega},|a(x)| \leqslant \gamma$.
Then:

$$
\begin{gather*}
\forall x \in \boldsymbol{\omega}, \quad f^{*}(x)-(f(x)+g(x))=-a(x) \\
\forall x \in \boldsymbol{\omega}, \quad\left(f^{*}(x)-h(x)\right)^{2}=a^{2}(x) \tag{12}
\end{gather*}
$$

with $h$ being the function corresponding to a neural network consisting in concatenating the hidden layer neurons of $f$ and $g$, and consequently summing their outputs.

$$
\begin{gathered}
\left\|f^{*}-h\right\|_{L 2}^{2}=\|a\|_{L 2}^{2} \\
\left\|f^{*}-h\right\|_{L 2}^{2} \leqslant \gamma^{2}=\frac{1}{100}\left\|f^{*}-f\right\|_{L 2}^{2}
\end{gathered}
$$

and consequently the loss is reduced indeed (by a factor of 100 in this construction).
The same holds in expectation or sum over a training set, by choosing $\gamma=$ $\frac{1}{10} \sqrt{\frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}}\left\|f(x)-f^{*}(x)\right\|^{2}}$, as Equation 12 then yields:

$$
\sum_{x \in \mathcal{D}}\left(f^{*}(x)-h(x)\right)^{2}=\sum_{x \in \mathcal{D}} a^{2}(x) \leqslant \frac{1}{100} \sum_{x \in \mathcal{D}}\left(f^{*}(x)-f(x)\right)^{2}
$$

which proves the proposition as stated.
For more general losses, one can consider order-1 (linear) developpment of the loss and ask for a network $g$ that is close to (the opposite of) the gradient of the loss.

Proof of the additional remark. The proof in Pinkus (1999) relies on the existence of real values $c_{n}$ such that the $n$-th order derivatives $\sigma^{(n)}\left(c_{n}\right)$ are not 0 . Then, by considering appropriate values arbitrarily close to $c_{n}$, one can approximate the $n$-th derivative of $\sigma$ at $c_{n}$ and consequently the polynomial $c^{n}$ of order $n$. This standard proof then concludes by density of polynomials in continuous functions.

Provided the activation function $\sigma$ is not a polynomial, these values $c_{n}$ can actually be chosen arbitrarily, in particular arbitrarily close to 0 . This corresponds to choosing neuron input weights arbitrarily close to 0 .
Proposition C. 3 (Greedy completion by one single neuron). If $f$ is not $f^{*}$ yet, there exists a neuron to add to the hidden layer such that the new function $f^{\prime}$ will have a lower loss than $f$.

Proof. From the previous proposition, there exists a finite set of neurons to add such that the loss will be decreased. In this particular setting of $L 2$ regression, or for more general losses if considering small function moves, this means that the function represented by this set of neurons has a strictly negative component over the gradient $g$ of the loss $\left(g=2\left(f^{*}-f\right)\right.$ in the case of the $L 2$ regression). That is, denoting by $a_{i} \sigma\left(\boldsymbol{W}_{i} \cdot \boldsymbol{x}\right)$ these $N$ neurons:

$$
\left\langle\sum_{i=1}^{N} a_{i} \sigma\left(\boldsymbol{w}_{i} \cdot \boldsymbol{x}\right) \mid g\right\rangle_{L 2}=K<0
$$

i.e.

$$
\sum_{i=1}^{N}\left\langle a_{i} \sigma\left(\boldsymbol{w}_{i} \cdot \boldsymbol{x}\right) \mid g\right\rangle_{L 2}=K<0
$$

Now, by contradiction, if there existed no neuron $i$ among these ones such that

$$
\left\langle a_{i} \sigma\left(\boldsymbol{w}_{i} \cdot \boldsymbol{x}\right) \mid g\right\rangle_{L 2} \leqslant \frac{1}{N} K
$$

then we would have:

$$
\begin{gathered}
\forall i \in[1, N], \quad\left\langle a_{i} \sigma\left(\boldsymbol{w}_{i} \cdot \boldsymbol{x}\right) \mid g\right\rangle_{L 2}>\frac{1}{N} K \\
\sum_{i=1}^{N}\left\langle a_{i} \sigma\left(\boldsymbol{w}_{i} \cdot \boldsymbol{x}\right) \mid g\right\rangle_{L 2}>K
\end{gathered}
$$

hence a contradiction. Then necessarily at least one of the $N$ neurons satisfies

$$
\left\langle a_{i} \sigma\left(\boldsymbol{w}_{i} \cdot \boldsymbol{x}\right) \mid g\right\rangle_{L 2} \leqslant \frac{1}{N} K<0
$$

and thus decreases the loss when added to the hidden layer of the neural network representing $f$. Moreover this decrease is at least $\frac{1}{N}$ of the loss decrease resulting from the addition of all neurons.

As a consequence, our greedy approach will not get stuck in a situation where one would need to add many neurons simultaneously to decrease the loss: it is always feasible by a single neuron. On can express a lower bound on how much the loss has improved (for the best such neuron), but it not a very good one without further assumptions on $f$.
Proposition C. 4 (Greedy completion by one infinitesimal neuron). The neuron in the previous proposition can be chosen to have arbitrarily small input weights.

Proof. This is straightforward, as, following a previous remark, the neurons found to collectively decrease the loss can be supposed to all have arbitrarily small input weights.

This detail is important in that our approach is based on the tangent space of the function $f$ and consequently manipulates infinitesimal quantities. Though we perform line search in a second step and consequently add non-infinitesimal neurons, our first optimization problem relies on the linearization of the activation function by requiring the added neuron to have infinitely small input weights, without which it would be much harder to solve. This proposition confirms that such neuron does exist indeed.

## D TEChnical details

## D. 1 VARIANCE OF THE ESTIMATOR AND BATCHSIZE FOR ESTIMATION

In this section we study the variance of the matrices $\delta \mathbf{W}_{l}{ }^{*}$ and $\boldsymbol{S}^{-1 / 2} \boldsymbol{N}$ computed using a minibatch of $n$ samples, seeing the samples as random variables, and the matrices computed as estimators of the true matrices one would obtain by considering the full distribution of samples. Those two matrices are the solutions of the multiple linear regression problems defined in (9) and in (11), as we are trying to regress the desired update noted $Y$ onto the span of the activities noted $X$. We suppose we have the following setting :

$$
Y \sim A X+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right), \quad \mathbb{E}[\varepsilon \mid X]=0
$$

where the $\left(X_{i}, Y_{i}\right)$ are i.i.d. and $A$ is the oracle for $\delta \mathbf{W}_{l}{ }^{*}$ or matrix $\boldsymbol{S}^{-1 / 2} \boldsymbol{N}$. If $Y$ is multidimensional, the the total variance of our estimator can be seen as the sum of the variances of the estimator on each dimension of $Y$.
We now suppose that $Y \in \mathbb{R}$. The estimator $\hat{A}:=\left(\mathbf{X X}^{T}\right)^{-1} \mathbf{X} \mathbf{Y}^{T}$ has variance $\operatorname{var}(\hat{A})=$ $\sigma^{2}\left(\mathbf{X X}^{T}\right)^{-1}$. If $n$ is large, and if matrix $\frac{1}{n} \mathbf{X} \mathbf{X}^{T} \rightarrow Q$, with $Q$ non singular, then, asymptotically, we have $\hat{A} \sim \mathcal{N}\left(A, \sigma^{2} \frac{Q^{-1}}{n}\right)$, which is equivalent to $(\hat{A}-A) \sqrt{\frac{n}{\sigma}} Q^{1 / 2} \sim \mathcal{N}(0, I)$. Then $\|(\hat{A}-$ A) $\sqrt{\frac{n}{\sigma}} Q^{1 / 2} \|^{2} \sim \chi^{2}(k)$ where $k$ is the dimension of $X$. It follows that $\mathbb{E}\left[\left\|(\hat{A}-A) Q^{1 / 2}\right\|^{2}\right]=\frac{k \sigma}{n}$ and as $Q^{1 / 2} Q^{1 / 2^{T}}$ is positive definite, we conclude that $\operatorname{var}(\hat{A}) \leqslant \frac{k \sigma}{n \lambda_{\min }(Q)}$.
In practice and to keep the variance of our estimators stable during architecture growth, for the estimation of the best neuron to add we use batch size

$$
n \propto \frac{(S W)^{2}}{P}
$$

with the notations defined in Figure 10. since the matrices we estimate have side size $S W$ and that each input sample contains $P$ values, i.e. $P$ quantities that each play the role of $X$ here.

## D. 2 BATCH SIZE FOR LEARNING

Batchsize, learning rate and number of neurons are known to be related. As our architecture grows with time, we need to adapt the training batchsize as well.
The batch size is set to $b_{t=0}=500$ at the beginning of each experiment, and it is scheduled to increase as the square root of the complexity of the model (ie number of additions in a test). If at time $t$ the network has complexity $C_{t}$ parameters, then at time $t+1$ the training batch size is equal to $b_{t+1}=b_{t} \times \sqrt{\frac{C_{t+1}}{C_{t}}}$.

## D. 3 Significance of the eigenvalues.

Using the SVD on matrix $\boldsymbol{B}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{Q}^{T}$, we have: $\boldsymbol{S}^{-\frac{1}{2}} \boldsymbol{N}=\boldsymbol{U} I_{d}{ }^{r k(D)} \boldsymbol{Q}^{T} \boldsymbol{V}_{\text {goal }}$. Thus the $\lambda_{k}$ are the square roots of the eigenvalues of the matrix $\boldsymbol{N}^{T} \boldsymbol{S}^{-1} \boldsymbol{N}=\boldsymbol{V}_{\text {goal }}{ }^{T} \boldsymbol{Q} I_{d}{ }^{r k(D)} \boldsymbol{Q}^{T} \boldsymbol{V}_{\text {goal }}$, which is similar to the covariance matrix of the desired update. To avoid adding neurons that are non significant, we evaluate which amplitude those eigenvalues would have under the hypothesis $\left(\mathcal{H}_{0}\right)$ that $\boldsymbol{V}_{\text {goal }} \sim \mathcal{N}(0, \Sigma)$ is uncorrelated with the projection matrix $\boldsymbol{Q} I_{d}{ }^{r k(D)} \boldsymbol{Q}^{T}$ (i.e. what values are obtained when estimating eigenvalues that are actually 0 ).
Remark that under the hypothesis $\mathcal{H}_{0}$, the eigenvalues of covariance matrix $\boldsymbol{V}_{\text {goal }}{ }^{T} \boldsymbol{V}_{\text {goal }}$ follow the Marchenko-Pastur distribution, which is known in closed form. This enables to set a threshold on eigenvalues based on statistical significance.
Unfortunately regarding the distribution of the eigenvalues of $\boldsymbol{V}_{\text {goal }}{ }^{T} \boldsymbol{Q} I_{d}{ }^{r k(D)} \boldsymbol{Q}^{T} \boldsymbol{V}_{\text {goal }}$, getting closed-form expression is trickier, so we numerically estimate a threshold $\lambda_{-}^{2}$ by generating $v_{\text {gauss }}(X) \sim \mathcal{N}(0, \Sigma)$ and considering $\lambda_{-}^{2}:=\lambda_{\max }\left(\boldsymbol{V}_{\text {gauss }}^{T} \boldsymbol{Q} I_{d}{ }^{r k(D)} \boldsymbol{Q}^{T} \boldsymbol{V}_{\text {gauss }}\right)$. Conversely, if the sample size required for reasonably estimating an eigenvalue $\lambda_{k}$ exceeds the dataset size, associated neurons necessarily overfit, and could be chosen not to be added. The overfit risk in this
addition step is thus controlled. However, standard gradient descent performed afterwards cancels such guarantees.

## D. 4 Amplitude factor

Once the neurons defined in Proposition 3.2 have been computed, they are added with an amplitude factor to the current architecture, i.e. $\boldsymbol{\alpha} \leftarrow \varepsilon_{1} \boldsymbol{\alpha}$ and $\boldsymbol{\omega} \leftarrow \varepsilon_{2} \boldsymbol{\omega}$, with $\varepsilon_{i}$ real factors. Those factors have to be chosen such that the optimization process stays smooth, in the sense that the gradient of each parameter keeps being smooth. Otherwise the current learning rates defined by the optimizer are no longer correct and the system can get unstable. In the work of Maile et al. (2022); Evci et al. (2022) the amplitude of the new neurons are set to an arbitrary constant $10^{-4}$. In our paper we normalize $\alpha, \omega$, such that $\left\|\boldsymbol{v}^{l}(\sqrt{\varepsilon} \alpha, \sqrt{\varepsilon} \omega, \boldsymbol{X})\right\|=\varepsilon\left\|\boldsymbol{a}^{l}(X)\right\|$ then a line search is performed in $\varepsilon$. We processed with this pseudo code :

```
Algorithm 2: AmplitudeFactor
Data: \(\left(\alpha_{k}, \omega_{k}\right)_{k=1}^{m}\)
Result: amplitude factor \(\varepsilon\) to be applied to \(\alpha\) and \(\omega\)
Take a minibatch \(\mathbf{X}\) of size 500;
\(\varepsilon^{*}=\arg \min _{\varepsilon=2^{-k}, k \in \mathbb{N}} \sum_{\boldsymbol{x} \in \boldsymbol{X}} \ell\left(f_{\theta \oplus\left(\sqrt{\varepsilon} \boldsymbol{\alpha}_{k}^{*}, \sqrt{\varepsilon} \boldsymbol{\omega}_{k}^{*}\right)_{k}}(\boldsymbol{x}), \boldsymbol{y}(\boldsymbol{x})\right)\)
```

Note that it is also possible to perform line searches to estimate the best amplitude factors at each neuron addition. This improves the loss much faster, however it also yields later training instabilities (due to the need of different learning rates), that yet have to be solved, which is why we do not present this approach variation here. Interestingly this allows training a neural network without gradient descent (i.e. no parameter update, using just backpropagation).

## D. 5 FULL ALGORITHM

In this section we decribe in detail the pseudo code of the main paper (Algorithm 11. In its copy below (Algorithm 3), we have replaced the references by the name of the functions used to compute each non-trivial step.
The function NewNeurons $(l, \mathrm{Sp})$, in Algorithm 4, computes the new neurons defined at Proposition 3.2 for layer $l$. The argument $\mathrm{Sp}=$ True, for Spurious, changes the desired update into a random variable (useful to estimate statistical relevance). The function call NewNeurons $\left(l, \mathrm{Sp}=\right.$ True) computes a sample of neurons and eigenvalues $\left(\left\{\lambda_{k}^{\mathcal{N}}\right\}_{k}\right)$ that one would have obtained if neuron were not to add. The maximum eigenvalues $\max \left(\lambda_{k}^{\mathcal{N}}\right)$
is the threshold on the eigenvalues from the function call NewNeurons $(l, \mathrm{Sp}=$ False $)$.

```
Algorithm 3: Algorithm to plot Figure 5
for each method [Ours, GradMax] do
    Start from a given small neural network \(N N\);
    for \(j\) in \(n b_{\text {pass }}\) do
        for each layer \(l\) do
                        \(A, \Lambda, \Omega=\) NewNeurons(layer, method \(=\) method);
                            // with our method the above also yields \(\delta \boldsymbol{W}_{l}^{*}\) as a by-product;
            \({ }_{-}, \Lambda^{\mathcal{N}},{ }_{-}=\)NewNeurons(layer, method = method, \(\mathrm{Sp}=\) True );
            \(\lambda_{-}=\max \left(\operatorname{diag}\left(\Lambda^{\mathcal{N}}\right)\right)\);
            \(A, \Lambda, \Omega \leftarrow A\left[:,: \lambda_{-}\right], \Lambda\left[: \lambda_{-},: \lambda_{-}\right], \Omega[: \lambda-,:] ;\)
            if \(\operatorname{len}(A)>0\) then
                \(\gamma=\) AmplitudeFactor \((A, \Omega)\);
                if \(\gamma>0\) then
                \(A, \Omega \leftarrow \sqrt{\gamma} A, \sqrt{\gamma} \Omega ;\)
                    Add the neurons \(A, \Omega\);
                end
            end
            if method \(==\) Our then
                    Update the architecture with the best update \(\delta \boldsymbol{W}_{l}^{*}\) at \(l+1\)
            end
        end
    end
    Get accuracy \(a c c_{0}\) of \(N N\);
    Train \(N N\) for 15 epochs with Adam( \(1 \mathrm{r}=1 \mathrm{e}-4\) ) ;
    Get final accuracy \(a c c_{\infty}\) of \(N N\);
end
```



## D. 6 COMPUTATIONAL COMPLEXITY

We estimate here the computational complexity of the above algorithm for architecture growth.
Theoretical estimate. We use the following notations:

- number of layers: $L$
- layer width, or number of kernels if convolutions: $W$ (assuming for simplicity that all layers have same width or kernels)
- number of pixels in the image: $P(P=1$ for fully-connected $)$
- kernel filter size: $S(S=1$ if fully-connected)
- minibatch size used for standard gradient descent: $M$
- minibatch size used for new neuron estimation: $M^{\prime}$
- minibatch size used in the line-search to estimate amplitude factor: $M^{\prime \prime}$
- number of classical gradients steps performed between 2 addition tentatives: $T$


Figure 10: Notation and size for convolutional and linear layers
Complexity, estimated as the number of basic operations, cumulated over all calls of the functions:

- of the standard training part: $T M L W^{2} S P$
- of the computation of matrices of interest (function MatrixSN): $L M^{\prime}(S W)^{2} P$
- of SVD computations (function NewNeurons): $L(S W)^{3}$
- of line-searches (function AmplitudeFactor): $L^{2} M^{\prime \prime} W^{2} S P$
- of weight updates (function BestUpdate): $L S W$

The relative added complexity w.r.t. the standard training part is thus:

$$
M^{\prime} S / T M+S^{2} W / T M P+M^{\prime \prime} L / T M+1 / W T M P
$$

SVD cost is negligible. The relative cost of the SVD w.r.t. the standard training part is $S^{2} W / T M P$. In the fully-connected network case, $S=1, P=1$, and the relative cost of the SVD is then $W / T M$. It is then negligible, as layer width $W$ is usually much smaller than $T M$, which is typically $10 \times 100$ for instance. In the convolutional case, $S=9$ for $3 \times 3$ kernels, and $P \approx 1000$ for CIFAR, $P \approx 100000$ for ImageNet, so the SVD cost is negligible as long as layer width $W \ll 10000$ or 1000000 respectively. So one needs no worrying about SVD cost.

Likewise, the update of existing weights using the "optimal move" (already computed as a byproduct) is computationally negligible, and the relative cost of the line searches is limited as long as the network is not extremely deep ( $L<T M / M$ ").

On the opposite, the estimation of the matrices (to which SVD is applied) can be more ressource demanding. The factor $M^{\prime} S / T M$ can be large if the minibatch size $M^{\prime}$ needs to be large for statistical significance reasons. One can show that an upper bound to the value required for $M^{\prime}$ to ensure estimator precision (see Appendix D.1 is $(S W)^{2} / P$. In that case, if $W>\sqrt{T M P / S^{3}}$, these matrix estimations will get costly. In the fully-connected network case, this means $W>$
$\sqrt{T M} \approx 30$ for $T=10$ and $M=100$. In the convolutional case, this means $W>\sqrt{T M P / S^{3}} \approx$ 30 for CIFAR and $\approx 300$ for ImageNet. We are working on finer variance estimation and on other types of estimators to decrease $M^{\prime}$ and consequently this cost. Actually $(S W)^{2} / P$ is just an upper bound on the value required for $M^{\prime}$, which might be much lower, depending on the rank of computed matrices.

In practice. In practice the cost of a full training with our architecture growth approach is similar (sometimes a bit faster, sometimes a bit slower) than a standard gradient descent training using the final architecture from scratch. This is great as the right comparison should take into account the number of different architectures to try in the classical neural architecture search approach. Therefore we get layer width hyper-optimization for free.

## E ADDITIONAL EXPERIMENTAL RESULTS AND REMARKS

## E. 1 MNIST

In this section we work with feed forward networks with two hidden layers. We note by $[a, b]$ such network with $a$ neurons on the first hidden layer and $b$ neurons on the second one. The experiments of this section are performed on 7 CPU . We use the optimizer $S G D(l r=1 e-4)$ and a constant batch of size 100 (we do not apply method in D.2). The training criterion is the cross-entropy loss.

## E.1.1 Random VS Optimization

When performing the quadratic optimization (6), we obtain the optimal direction for $\left(\boldsymbol{\alpha}_{k}^{*}, \boldsymbol{\omega}_{k}^{*}\right)_{k=1}^{R}$. It is also possible to generate randomly the new neurons and compute the amplitude factors. This second option have the benefit of being less time consuming, but it would project the desired direction on those random vectors and would affect the accuracy score compared to optimal solution defined in 3.1 .


Figure 11: Experiment performed 5 times on the MNIST dataset : a starting model in black $[1,1]$ is initialized according to normal Kaiming, then is duplicated to give the red and the green model. The structure of the red model is modified by our method to reach the structure $[110,51]$ while the green model is extended with random neurons. Then all models are trained for 30 seconds. The white space for the red model corresponds to the quadratic optimisation and the computation of the amplitude factor while for the green model it corresponds only to the computation of the amplitude factor.

## E.1.2 COMPARISON WITH BIG MODEL

On figure 12, we plot mean and standard deviation for the same experiement repeated 5 times. We start with a network of size $[1,1]$ and we increase its architecture by applying our method six times. Each increase of architecture is followed by a training period of 0.5 seconds. Once the network has reached its final structure of $[110,51]$ it is trained for a limited time of 25 seconds. We compared our performance with a huge network of size $[1000,1000]$ which is trained with all its neurons from scratch. Compared to the big model our TINY network converge faster in time because its architecture is smaller, converge slower in epochs because it is less expressive.


Figure 12: All graphics represent the values for accuracy on test of the same experiment but from a different perspective. Left : after partitioning computational time on intervals of size 0.1 seconds, we compute a linear interpolation for the accuracy value. Middle : the accuracy value against number of epochs, where the time needed to compute the optimal neurons is not noticeable. Right : accuracy against computational time, where durations due to Cholesky decompositions and their happening instants are averaged over experiments, for better visualisation purposes.

## E.1.3 COMPARISON WITH THE SAME STRUCTURE RETRAINED FROM SCRATCH

In figure 13 we compare our method with a neural network retrained from scratch with the same architecture. The protocol is the same as defined in section E.1.2


Figure 13: Same description as 12 but for different architecture and that the architecture of the classical training matches the architecture of our method.

## E. 2 CIFAR-10

In this section we work with convolutional network forward networks with an architecture of two blocks consisting of 2 convolutions and 1 MaxPooling each, followed by two fully-connected layers, using the selu activation function. The training criterion is the cross-entropy loss. We increase the size of the network on the fly (during training), with a batch size of 500 for training using D. 2 on 1 GPU.

## E.2.1 About number of neurons and overfitting

In Figure 14, $100 \%$ accuracy is achieved on training dataset, thus fully overfitting the data, which proves that TINY can effectively bypass any expressivity bottleneck. Interestingly, this is done with fewer parameters than the theorem in Zhang et al. (2017), which mentions $2 n+d$ parameters to overfit a classification problem with $n$ samples of dimension $d$. This TINY architecture has about twice fewer parameters, due to generalization across samples, the labels in the CIFAR-10 classification task being not random. It should also be noted that the TINY architecture tends to overfit less than the same final model retrained with all neurons from the beginning (FS), or at least, never more, which suggests that optimization and generalization abilities are not necessarily functions of neural network width anymore if one leaves the standard fixed-architecture training paradigm.


Figure 14: Experiment on CIFAR-10 dataset : Evolution of the train/test accuracy wrt gradient steps for TINY and FS

## E. 3 ResNet 18 on CIFAR-100

In this section we compare TINY to GradMax, on CIFAR-100 with the ResNet-18 architecure. For this particular architecture, the size of a convolutional layer $l$ may be increase if no skip connection feeds the output of the layer $l+1$, see Figure 17 .
For both methods we start with the architecture shown in Table 1, initialized with Kaiming Normal. Every 0.1 epoch of standard training with $\operatorname{Adam}$ (batchsize $=100$, $l r=1 e-3$ ), we add neurons where it is the most needed by:

1. computing the 5 best new neurons $\left(\alpha_{k}, \omega_{k}\right)_{k=1}^{5}$ and their amplitude factor $\gamma$ for each layer
2. evaluating the gain of loss associated to each potential addition
3. adding the neurons where the decrease of loss is the largest.

The performances of the models are registered at each gradient step during standard training and after each attempt of architecture increase, while the complexity of the model (as number of basic operation performed at test time) is only evaluated after each addition trial. Figure 15 plots the performance of both methods and the computational cost of models at step $t$, averaged over three runs. After 2300 steps the performance of TINY is higher than GradMax’ one ( $+2 \%$ ) but its complexity is much lower (a third less). This dramatic difference can be explained by the fact that TINY avoids redundancy when adding neurons, while GradMax does not.

The accuracies reached in this experiment are far from the state of the art on this dataset, but one has to keep in mind that we performed no optimization hyper-parameter tuning and that we did


Figure 15: Accuracy and time complexity of ResNet-18 model for TINY and GradMax methods.


Figure 16: Accuracy and time complexity of ResNet-18 model for one run with TINY method.
not use techniques such as batch-norm, drop-out or data augmentation, which are necessary for convolutional models to go beyond $30-40 \%$ accuracy. Additional Figure 16 with twice more training steps shows that with our approach the network keeps learning afterwards (reaching $32 \%$ accuracy on test). Note that the number of parameters is very low compared to traditional architectures, for example the model of Figure 16 has 119866 parameters at $s t e p=4025$. The final architecture obtained is shown in Table 1 . We see that neurons were mostly added to first layers.


Figure 17: ResNet blocks: in green, the convolutions of the current structure; in cyan, the added convolutions.

Table 1: Initial architecture in the experiments of Figure 15 and 16 and final architecture at the end of training in Figure 16 Numbers in color indicate where TINY was allowed to add neurons (middle of ResNet blocks).

| ResNet18 |  |  |  |
| :---: | :---: | :---: | :---: |
| Layer name | Output size | Initial layers (kernel=(3,3), padd. $=1$ ) | Final layers (end of Fig 16 |
| Conv 1 | $32 \times 32 \times 8$ | [3×3, 8] | [3×3,8] |
| Conv 2 | $32 \times 32$ | $\left[\begin{array}{l}3 \times 3,8 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{l}3 \times 3,1 \\ 3 \times 3,8\end{array}\right]$ | $\left[\begin{array}{c}3 \times 3,8 \\ 3 \times 3,91\end{array}\right]\left[\begin{array}{c}3 \times 3,91 \\ 3 \times 3,8\end{array}\right]$ |
| Conv 3 | $16 \times 16 \times 8$ | $\left[\begin{array}{l}3 \times 3,8 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{l}3 \times 3,1 \\ 3 \times 3,8\end{array}\right]$ | $\left[\begin{array}{c}3 \times 3,8 \\ 3 \times 3,76\end{array}\right]\left[\begin{array}{c}3 \times 3,76 \\ 3 \times 3,8\end{array}\right]$ |
| Conv 4 | $16 \times 16 \times 8$ | $3 \times 3,16]$ | $3 \times 3,16]$ |
| Conv 5 | $16 \times 16 \times 16$ | $\left[\begin{array}{c}3 \times 3,16 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{c}3 \times 3,1 \\ 3 \times 3,16\end{array}\right]$ | $\left[\begin{array}{l}3 \times 3,16 \\ 3 \times 3,41\end{array}\right]\left[\begin{array}{l}3 \times 3,41 \\ 3 \times 3,16\end{array}\right]$ |
| Conv 6 | $8 \times 8 \times 16$ | $\left[\begin{array}{c}3 \times 3,16 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{c}3 \times 3,1 \\ 3 \times 3,16\end{array}\right]$ | $\left[\begin{array}{l}3 \times 3,16 \\ 3 \times 3,11\end{array}\right]\left[\begin{array}{l}3 \times 3,11 \\ 3 \times 3,16\end{array}\right]$ |
| Conv 7 | $8 \times 8 \times 32$ | 3 $\times 3,32$ ] | $3 \times 3,32]$ |
| Conv 8 | $8 \times 8 \times 32$ | $\left[\begin{array}{c}3 \times 3,32 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{c}3 \times 3,1 \\ 3 \times 3,32\end{array}\right]$ | $\left[\begin{array}{c}3 \times 3,32 \\ 3 \times 3,6\end{array}\right]\left[\begin{array}{c}3 \times 3,6 \\ 3 \times 3,32\end{array}\right]$ |
| Conv 9 | $4 \times 4 \times 32$ | $\left[\begin{array}{c}3 \times 3,32 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{c}3 \times 3,1 \\ 3 \times 3,32\end{array}\right]$ | $\left[\begin{array}{c}3 \times 3,32 \\ 3 \times 3,3\end{array}\right]\left[\begin{array}{c}3 \times 3,3 \\ 3 \times 3,32\end{array}\right]$ |
| Conv 10 | $4 \times 4 \times 64$ | 3×3, 64 | $3 \times 3,64]$ |
| Conv 11 | $4 \times 4 \times 64$ | $\left[\begin{array}{c}3 \times 3,64 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{c}3 \times 3,1 \\ 3 \times 3,64\end{array}\right]$ | $\left[\begin{array}{c}3 \times 3,64 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{c}3 \times 3,1 \\ 3 \times 3,64\end{array}\right]$ |
| Conv 12 | $2 \times 2 \times 64$ | $\left[\begin{array}{c}3 \times 3,64 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{c}3 \times 3,1 \\ 3 \times 3,64\end{array}\right]$ | $\left[\begin{array}{c}3 \times 3,64 \\ 3 \times 3,1\end{array}\right]\left[\begin{array}{c}3 \times 3,1 \\ 3 \times 3,64\end{array}\right]$ |
| FC 1 | 100 | $256 \times 100$ | $256 \times 100$ |
| FC 2 | 100 | $100 \times 100$ | $256 \times 100$ |
| FC 3 | 100 | $100 \times 100$ | $100 \times 100$ |
| SoftMax | 100 |  |  |

