
Under review as a conference paper at ICLR 2024

We provide additional details, following the same order as the sections in the paper.

A THEORETICAL DETAILS FOR PART 2

A.1 FUNCTIONAL GRADIENT

The functional loss L is a functional that takes as input a function f ∈ F and outputs a real score:

L : f ∈ F 7→ L(f) = E
(x,y)∼D

[
ℓ(f(x),y)

]
∈ R .

The function space F can typically be chosen to be L2(Rp → Rd), which is a Hilbert space. The
directional derivative (or Gateaux derivative, or Fréchet derivative) of functional L at function f in
direction v is defined as:

DL(f)(v) = lim
ε→0

L(f + εv)− L(f)
ε

if it exists. Here v denotes any function in the Hilbert space F and stands for the direction in which
we would like to update f , following an infinitesimal step (of size ε), resulting in a function f + εv.

If this directional derivative exists in all possible directions v ∈ F and moreover is continuous in v,
then the Riesz representation theorem implies that there exists a unique direction v∗ ∈ F such that:

∀v ∈ F , DL(f)(v) = ⟨v∗, v⟩ .
This direction v∗ is named the gradient of the functional L at function f and is denoted by∇fL(f).
Note that while the inner product ⟨, ⟩ considered is usually the L2 one, it is possible to consider other
ones, such as Sobolev ones (e.g., H1). The gradient ∇fL(F) depends on the chosen inner product
and should consequently rather be denoted by ∇L2

f L(f) for instance.

Note that continuous functions from Rp to Rd, as well as C∞ functions, are dense in L2(Rp → Rd).

Let us now study properties specific to our loss design: L(f) = E(x,y)∼D

[
ℓ(f(x),y)

]
. Assuming

sufficient ℓ-loss differentiability and integrability, we get, for any function update direction v ∈ F
and infinitesimal step size ε ∈ R:

L(f + εv)− L(f) = E
(x,y)∼D

[
ℓ(f(x) + εv(x),y)− ℓ(f(x),y)

]
= E

(x,y)∼D

[
∇uℓ(u,y)

∣∣
u=f(x)

· εv(x) +O(ε2∥v(x)∥2)
]

using the usual gradient of function ℓ at point (u = f(x),y) w.r.t. its first argument u, with the
standard Euclidean dot product · in Rp. Then the directional derivative is:

DL(f)(v) = E
(x,y)∼D

[
∇uℓ(u,y)

∣∣
u=f(x)

· v(x)
]
= E

x∼D

[
E

y∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
· v(x)

]
and thus the functional gradient for the inner product ⟨v, v′⟩E := Ex∼D

[
v(x)·v′(x)

]
is the function:

∇E
f L(f) : x 7→ E

y∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
which simplifies into:

∇E
f L(f) : x 7→ ∇uℓ(u,y(x))

∣∣
u=f(x)

if there is no ambiguity in the dataset, i.e. if for each x there is a unique y(x).

Note that by considering the L2(Rp → Rd) inner product
∫
v · v′ instead, one would respectively

get:
∇L2

f L(f) : x 7→ pD(x) E
y∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
and

∇L2

f L(f) : x 7→ pD(x)∇uℓ(u,y(x))
∣∣
u=f(x)

instead, where pD(x) is the density of the dataset distribution at point x. In practice one estimates
such gradients using a minibatch of samples (x,y), obtained by picking uniformly at random within
a finite dataset, and thus the formulas for the two inner products coincide (up to a constant factor).

13

Under review as a conference paper at ICLR 2024

A.2 DIFFERENTIATION UNDER THE INTEGRAL SIGN

Let X be an open subset of R, and Ω be a measure space. Suppose f : X × Ω −→ R satisfies the
following conditions:

• f(x, ω) is a Lebesgue-integrable function of ω for each x ∈ X .
• For almost all ω ∈ Ω , the partial derivative fx of f according to x exists for all x ∈ X .
• There is an integrable function θ : Ω −→ R such that |fx(x, ω)| ≤ θ(ω) for all x ∈ X and

almost every ω ∈ Ω.

Then, for all x ∈ X ,
d

dx

∫
Ω

f(x, ω) dω =

∫
Ω

fx(x, ω) dω

See proof and details :Flanders (1973).

A.3 GRADIENTS AND PROXIMAL POINT OF VIEW

Gradients with respect to standard variables such as vectors are defined the same way as functional
gradients above: given a sufficiently smooth loss L̃ : θ ∈ ΘA 7→ L̃(θ) = L(fθ) ∈ R, and an inner
product · in the space ΘA of parameters θ, the gradient ∇θL̃(θ) is the unique vector τ ∈ ΘA such
that:

∀δθ ∈ ΘA, τ · δθ = DθL̃(θ)(δθ)

where DθL̃(θ)(δθ) is the directional derivative of L̃ at point θ in the direction δθ, defined as in the
previous section. This gradient depends on the inner product chosen, which can be highlighted by
the following property. The opposite−∇θL̃(θ) of the gradient is the unique solution of the problem:

argmin
δθ∈ΘA

{
DθL̃(θ)(δθ) +

1

2
∥δθ∥2P

}
where ∥ ∥P is the norm associated to the chosen inner product. Changing the inner product ob-
viously changes the way candidate directions δθ are penalized, leading to different gradients. This
proximal formulation can be obtained as follows. For any δθ, its distance to the gradient descent
direction is: ∥∥∥δθ − (

−∇θL̃(θ)
)∥∥∥2 = ∥δθ∥2 + 2 δθ · ∇θL̃(θ) +

∥∥∥∇θL̃(θ)
∥∥∥2

= 2

(
1

2
∥δθ∥2 +DθL̃(θ)(δθ)

)
+K

where K does not depend on δθ. For the above to hold, the inner product used has to be the one
from which the norm is derived. By minimizing this expression with respect to δθ, one obtains the
desired property.

In our case of study, for the norm over the space ΘA of parameter variations, we consider a norm of
in the space of associated functional variations, i.e.:

∥δθ∥P :=

∥∥∥∥∂fθ∂θ
δθ

∥∥∥∥
which makes more sense from a physical point of view, as it is more intrinsic to the task to solve and
depends as little as possible on the parameterization (i.e. on the architecture chosen). This results
in a functional move that is the projection of the functional one to the set of possible moves given
the architecture. On the opposite, the standard gradient (using Euclidean parameter norm ∥δθ∥ in
parameter space) yields a functional move obtained not only by projecting the functional gradient
but also by multiplying it by a matrix ∂fθ

∂θ
∂fθ
∂θ

T
which can be seen as a strong architecture bias over

optimization directions.

We consider here that the loss L to be minimized is the real loss that the user wants to optimize,
possibly including regularizers to avoid overfitting, and since the architecture is evolving during
training, possibly to architectures far from usual manual design and never tested before, one cannot

14

Under review as a conference paper at ICLR 2024

assume architecture bias to be desirable. We aim at getting rid of it in order to follow the functional
gradient descent as closely as possible.

Searching for

v∗ = argmin
v∈TA

∥v − vgoal∥2 = argmin
v∈TA

{
DfL(f)(v) +

1

2
∥v∥2

}
or equivalently for:

δθ∗ = argmin
δθ∈ΘA

∥∥∥∥∂fθ∂θ
δθ − vgoal

∥∥∥∥2 = argmin
δθ∈ΘA

{
DθL(fθ)(δθ) +

1

2

∥∥∥∥∂fθ∂θ
δθ

∥∥∥∥2
}

=: −∇TA
θ L(fθ)

then appears as a natural goal.

A.4 EXAMPLE OF EXPRESSIVITY BOTTLENECK

Example. Suppose one tries to estimate the function y =
ftrue(x) = 2 sin(x) + x with a linear model fpredict(x) = ax + b.
Consider (a, b) = (1, 0) and the square loss L . For the dataset
of inputs (x0, x1, x2, x3) = (0, π

2 , π,
3π
2), there exists no param-

eter update (δa, δb) that would improve prediction at x0, x1, x2

and x3 simultaneously, as the space of linear functions {f : x →
ax+b | a, b ∈ R} is not expressive enough. To improve the pre-
diction at x0, x1, x2 and x3, one should look for another, more ex-
pressive functional space such that for i = 0, 1, 2, 3 the functional
update ∆f(xi) := f t+1(xi)−f t(xi) goes into the same direction
as the functional gradient vgoal(xi) := −∇f(xi)L(f(xi), yi) =
−2(f(xi)− yi) where yi = ftrue(xi).

0 2 4 6
x

0

1

2

3

4

5

6

y

target
prediction

Figure 7: Linear interpolation

A.5 PROBLEM FORMULATION AND CHOICE OF PRE-ACTIVITIES

There are several ways to design the problem of adding neurons, which we discuss now, in order to
explain our choice of the pre-activities to express expressivity bottlenecks.

Suppose one wishes to add K neurons θK↔ := (αk,ωk)
K
k=1 to layer l − 1, which impacts the

activities al at the next layer, in order to improve its expressivity. These neurons could be chosen
to have only nul weights, or nul input weights αk and non-nul output weights ωk, or the opposite,
or both non-nul weights. Searching for the best neurons to add for each of these cases will produce
different optimization problems.

Let us remind first that adding such K neurons with weights θK↔ := (αk,ωk)
K
k=1 changes the

activities al of the (next) layer by

δal =

K∑
k=1

ωk σ(bl−2(x)
Tαk) (8)

Small weights approximation Under the hypothesis of small input weights αk, the activity vari-
ation 8 can be approximated by:

σ′(0)

K∑
k=1

ωkbl−2(x)
Tαk

at first order in ∥αk∥. We will drop the constant σ′(0) in the sequel.

15

Under review as a conference paper at ICLR 2024

This quantity is linear both in αk and ωk, therefore the first-order parameter-induced activity varia-
tions are easy to compute:

vl(x, (αk)
K
k=1) =

∂al(x)

∂((αk)Kk=1) |(αk)Kk=1=0

(αk)
K
k=1 =

K∑
k=1

ωkbl−2(x)
Tαk

vl(x, (ωk)
K
k=1) =

∂al(x)

∂((ωk)Kk=1) |(ωk)Kk=1=0

(ωk)
K
k=1 =

K∑
k=1

ωkbl−2(x)
Tαk

so with a slight abuse of notation we have:

vl(x, θK↔) =

K∑
k=1

ωkbl−2(x)
Tαk

Note also that technically the quantity above is first-order in αk and in ωk but second-order in the
joint variable θK↔ = (αk,ωk).

Adding neurons with 0 weights (both input and output weights). In that case, one increases
the number of neurons in the layer, but without changing the function (since only nul quantities are
added) and also without changing the gradient with respect to the parameters, thus not improving
expressivity. Indeed, the added quantity (Eq. 8) involves 0×0 multiplications, and consequently the
derivative ∂al(x)

∂θK
↔

∣∣∣
θK
↔=0

w.r.t. these new parameters, that is, bl−2(x)
Tαk w.r.t. ωk and ωk bl−2(x)

T

w.r.t. ak is 0, as both ak and ωk are 0.

Adding neurons with non-0 input weights and 0 output weights or the opposite. In these cases,
the addition of neurons will not change the function (because of multiplications by 0), but just the
gradient. One of the 2 gradients (w.r.t. ak or w.r.t ωk) will be non-0, as the variable that is 0 has
non-0 derivatives.

The question is then how to pick the best non-0 variable, (ak or ωk) such that the added gradient
will be the most useful. The problem can then be formulated similarly as what is done in the paper.

Adding neurons with small yet non-0 weights. In this case, both the function and its gradient
will change when adding the neurons. Fortunately, Proposition 3.2 states that the best neurons to add
in terms of expressivity (to get the gradient closer to the variation desired by the backpropagation)
are also the best neurons to add to decrease the loss, i.e. the function change they will imply goes
into the right direction.

For each family (ωk)
K
k=1, the tangent space in al restricted to the family (αk)

K
k=1, ie T al

A :=

{ ∂al

∂(αk)Kk=1 |(αk)Kk=1=0
(.)(αk)

K
k=1|(αk)

K
k=1 ∈

(
R|bl−2(x)|

)K} varies with the family (ωk)
K
k=1, ie

T al

A := T al

A ((ωk)
K
k=1). Optimizing w.r.t. the ωk is equivalent to search for the best tangent space

for the αk, while symmetrically optimizing w.r.t. the αk is equivalent to find the best projection on
the tangent space defined by the ωk.

Pre-activities vs. post-activities. The space of pre-activities al is a natural space for this frame-
work, as they are formed with linear operations and we compute first-order variation quantities.
Considering the space of post-activities bl = σ(al) is also possible, though computing variations
will be more complex. Indeed, without first-order approximation, the obtained problem is not man-
ageable, because of the non-linear activation function σ added in front of all quantities (while in the
case of pre-activations, quantity 8 is linear in ωk and thus does not require approximation in ωk,
which allow considering large ωk), and, with first-order approximation, it would add the derivative
of the activation function, taken at various locations σ′(al) (while in the previous case the derivatives
of the activation function were always taken at 0).

A.6 ADDING CONVOLUTIONAL NEURONS

To add a convolutional neuron at layer l − 1, one should add a kernel at layer l − 1 and expand one
dimension to all the kernels in layer l to match the new dimension of the post-activity.

16

Under review as a conference paper at ICLR 2024

Figure 8: Changing the tangent space with different values of (ωk)
K
k=1.

Figure 9: Adding one convolutional neuron at layer one for a input with tree channels.

B THEORETICAL COMPARISON WITH OTHER APPROACHES

B.1 GRADMAX METHOD

Using the notation of the paper Evci et al. (2022) : zl(x) := al(x) and hl(x) := bl(x). We have
that ∂L

∂zl
(x) := vgoal

l(x). When adding K neurons at layer l, fan-in weights {αl}kj=1 are initialized
to zeros and fan-out weights are initialized as the solution of the following optimization problem :

(ω∗
1 , ...,ω

∗
K) := Ω∗ = argmax

Ω
||
∑
i

bl−2(xi)v
l+1
goal

T
(xi)Ω||2F s.t. ||Ω||2F < c

:= argmax
Ω

||Bl−2V
l+1

goal
T
Ω||2F s.t. ||Ω||2F < c

:= argmax
Ω

Tr
(
ΩT ÑT ÑΩ

)
s.t. ||Ω||2F < c

17

Under review as a conference paper at ICLR 2024

While our method is equivalent to the following optimisation problem :

(ω∗
1 , ...,ω

∗
K) = Ω∗ = argmax

Ω
||
∑
i

bl−2(xi)vgoal
l+1 T
proj

(xi)Ω||2F s.t. ||Bl−1Ω||2F < c

= argmax
Ω

||Bl−2Vgoal
l T
proj

Ω||2F s.t. ||Bl−1Ω||2F < c

= argmax
Ω̂

Tr
(
Ω̃TS− 1

2NTNS− 1
2 Ω̃

)
s.t. ||Ω̃||2F < c, Ω̃ := S

1
2Ω

= argmax
Ω

Tr
(
ΩS−1NTNS−1Ω

)
s.t. ||Ω||2F < c̃

One can note three differences between those optimization problems:

• First, the matrix Ñ is not defined using the projection of the desired update Vgoal
l+1
proj

. As
a consequence, GradMax does not take into account redundancy, and on the opposite will
actually try to add new neurons that are as redundant as possible with the part of the goal
update that is already feasible with already-existing neurons.

• Second, the constraint lies in the weight space for GradMax method while it lies in the pre-
activation space in our case. The difference is that GradMax relies on the Euclidean metric
in the space of parameters, which arguably offers less meaning that the Euclidean metric in
the space of activities. Essentially this is the same difference as between the standard L2
gradient w.r.t. parameters and the natural gradient, which takes care of parameter redun-
dancy and measures all quantities in the output space in order to be independent from the
parameterization. In practice we do observe that the ”natural” gradient direction improves
the loss better than the usual L2 gradient.

• Third, our fan-in weights are not set to 0 but directly to their optimal values (at first order).

B.2 NORTH PREACTIVATION

In paper Maile et al. (2022), fan-out weights are initialized to 0 while fan-in weights are initialized
as αi = S−1Bl−1V

T
Zl
ri where ri is a random vector and VZl

∈ M(|Ker(BT
l−1)|, |bl−1(x)|)

is a matrix consisting of the orthogonal vectors of the kernel of pre-activations Bl, i.e
{z | BT

l z = 0}. In our paper fan-in weights are initialized as αi = S−1Bl−1Vgoal
T
proj

vi =

S−1Bl−1Vgoal
TVZl

VT
Zl
vi, where the vi are right eigenvectors of the matrix S− 1

2N .

The main difference is thus that we use the backpropagation to find the best vi or ri directly, while
the NORTH approach tries random directions ri to explore the space of possible neuron additions.

C PROOFS OF PART 3 AND 4

C.1 PROPOSITION 3.1

Denoting by δWl
+ the generalized (pseudo-)inverse of δWl, we have:

δW ∗
l =

1

n
Vgoal

lBT
l−1

(1
n
Bl−1B

T
l−1

)+
and V l

0 =
1

n
Vgoal

lBT
l−1

(1
n
Bl−1B

T
l−1

)+
Bl−1

Proof
Consider the function

g(δWl) = ||Vgoal
l − δWlBl−1||2Tr (9)

18

Under review as a conference paper at ICLR 2024

then:

g(δWl +H) = ||Vgoal
l − δWlBl−1 −HBl−1||2Tr

= g(δWl)− 2⟨Vgoal
l − δWlBl−1,HBl−1⟩Tr + o(||H||)

= g(δWl)− 2Tr
((
Vgoal

l − δWlBl−1

)T
HBl−1

)
+ o(||H||)

= g(δWl)− 2Tr
(
Bl−1

(
Vgoal

l − δWlBl−1

)T
H

)
+ o(||H||)

= g(δWl)− 2⟨
(
Vgoal

l − δWlBl−1

)
BT

l−1,H⟩Tr + o(||H||)

By identification∇δWl
g(δWl) = 2

(
Vgoal

l − δWlBl−1

)
BT

l−1, and thus:

∇δWl
g(δWl) = 0 =⇒ Vgoal

lBT
l−1 = δWlBl−1B

T
l−1

Using the definition of the generalized inverse of M+, we get:

δW ∗
l =

1

n
Vgoal

lBT
l−1

(1
n
Bl−1B

T
l−1

)+
as one solution. For convolutional layers, considering 2D images of size p, using index i = 1, ..., n
for the samples, and index k = 1, ..., ch for the out-channels, and considering the convolutional
kernel size to be (2, 2), then :

bki =

b1,ki b2,ki . bp,ki

bp+1,k
i bp+2,k

i . b2p,ki
. . . .

b
p(p−1)+1,k
i . . bp

2,k
i

 (10)

Bc
i =

b1,1i b2,1i bp+1,1
i bp+2,1

i b1,2i b2,2i bp+1,2
i bp+2,2

i b1,3i .

b2,1i b3,1i bp+2,1
i bp+3,1

i b2,2i b3,2i bp+2,2
i bp+3,2

i b2,3i .
.

Then the function to minimize is

g(δWl) = ||Vgoal
l −BcδWl||2Tr

where Bc := (Bc
1 ... Bc

n).

C.2 PROPOSITION 3.2

We define the matrices N := 1
nBl−2

(
Vgoal

l
proj

)T
and S := 1

nBl−2B
T
l−2. Let us denote its SVD

by S = UΣUT , and note S− 1
2 := U

√
Σ

−1
UT and consider the SVD of the matrix S− 1

2N =∑R
k=1 λkukv

T
k with λ1 ≥ ... ≥ λR ≥ 0, where R is the rank of the matrix N . Then:

Proposition C.1 (3.2). The solution of (5) can be written as:

• optimal number of neurons: K∗ = R

• their optimal weights: (α∗
k,ω

∗
k) = (sign(λk)

√
λkS

− 1
2uk,

√
λkvk) for k = 1, ..., R.

Moreover for any number of neurons K ⩽ R, and associated scaled weights θK,∗
↔ , the expressivity

gain and the first order in η of the loss improvement due to the addition of these K neurons are
equal and can be quantified very simply as a function of the eigenvalues λk:

Ψl
θ⊕θK,∗

↔
= Ψl

θ −
K∑

k=1

λ2
k

L(fθ⊕θK,∗
↔

) = L(fθ) +
σ′
l(0)

η

K∑
k=1

λ2
k + o(||θK,∗

↔ ||2)

19

Under review as a conference paper at ICLR 2024

Proof

We first compute the proof for a linear layer.
The optimal neurons n1, ..., nK are defined by ni := (αi,ωi) and are the solution of the optimiza-
tion problem :

argmin
δWl,δθK

l−1↔l

∣∣∣∣
V l

goalproj︷ ︸︸ ︷
V l

goal − δWlBl−1−ΩATBl−2

∣∣∣∣2
Tr

where Ω := (ω1 ... ωK) and A := (α1 ... αK)

This is equivalent to :

argmin
C=ΩAT

∣∣∣∣
V l

goalproj︷ ︸︸ ︷
V l

goal − δWlBl−1−CBl−2

∣∣∣∣2
Tr

(11)

Then C∗ = S+N . Taking K = rank(S+N) and a family (αk,ωk)1,...,R such that ΩAT =∑
k ωkα

T
k = S+N is a optimal solution. But what if we decide to only add K < R neurons ?

argmin
θK
↔

{ 1

n
||Vgoal

l
proj
− V l(θK↔)||2Tr

}
= argmin

θK
↔

{
− 2

n

〈
Vgoal

l
proj

,V l(θK↔)
〉
Tr

+
1

n
||V l(θK↔)||2Tr

}
= argmin

θK
↔

1

n
g(θK↔)

We note

1

n
g(θK↔) = − 2

n

n∑
i

∑
k

vgoal
l
proj

(xi)
T
(
αT

k bl−2(xi)
)
ωk

+
1

n

K∑
k,j

n∑
i

(
αT

k bl−2(xi)
)
ωT

k ωj

(
αT

j bl−2(xi)
)

= −2
K∑
k

αT
k

(1

n

n∑
i

bl−2(xi)vgoal
l
proj

(xi)
T
)
ωk

+

K∑
k,j

ωT
k ωjα

T
k

(1

n

n∑
i

bl−2(xi)bl−2(xi)
T
)
αj

= −2
K∑
k

αT
kNωk +

K∑
k,j

ωT
k ωjα

T
kSαj

with N := 1
nBl−2

(
Vgoal

l
proj

)T
and S := 1

nBl−2B
T
l−2.

Consider the SVD of S = UΣUT . Define S
1
2 := U

√
ΣU and S− 1

2 := U
√
Σ

−1
UT .

Consider also the SVD of S− 1
2N =

∑R
r=1 λrvre

T
r .

Note also γk := S
1
2
T
αk. Then :

−
K∑

k=1

αT
kNωk = −

∑
k

γT
k S

− 1
2Nωk

= −Tr
(∑

k

∑
r

λr

(
γT
k vre

T
r

)
ωk

)

20

Under review as a conference paper at ICLR 2024

Using the linearity of the Trace and that Tr(AB) = Tr(BA), we have :

−
K∑

k=1

αT
kNωk = −Tr

(∑
k

∑
r

λrωkγ
T
k vre

T
r

)
= −Tr

(∑
k

ωkγ
T
k

∑
r

λrvre
T
r

)
= −

〈∑
k

γkω
T
k ,

∑
r

λrvre
T
r

〉
Tr

with ⟨A,B⟩Tr = Tr(ATB)

For the second sum :
K∑
k,j

ωT
k ωjα

T
k Sαj =

∑
k,j

(
ωT

k ωj

)(
γT
j γk

)
= Tr

(∑
k,j

(
(ωT

k ωj)γ
T
j

)
γk

))
= Tr(

(∑
k,j

γkω
T
k ωjγ

T
j

)
= ||

∑
k

ωkγ
T
k ||2Tr with ||A||Tr =

√
Tr(ATA)

= ||
∑
k

γkω
T
k ||2Tr

Then we have :

argmin
K,θ↔

1

n
g(α,ω) = argmin

K,α=S−1/2Tγ,ω

∥∥∥∥∥S−1/2N −
K∑

k=1

γkω
T
k

∥∥∥∥∥
2

Tr

The solution of such problems is given by the paper Eckart & Young (1936), by choosing K =

rank(S−1/2N) and
∑K

k=1 γkω
T
k =

∑K
r=1 λrvre

T
r . Choosing K = R is thus the best option.

Thus we have that
∑R

k ωkα
T
k = S−1/2

∑R
k λkγkω

T
k = S−1N .

We now consider the matrix S−1/2N . The minimization also yields the following properties at the
optimum:

for k ̸= j, ⟨γkω
T
k ,γjω

T
j ⟩Tr = 0

||S−1/2N −
K∑

k=1

γkω
T
k ||2Tr =

R∑
r=K+1

λ2
r

= ||S−1/2N ||2Tr − ||
K∑

k=1

γkω
T
k ||2Tr

Furthermore :
1

n
||Vgoal

l
proj
− V (θK,∗

↔)||2Tr =
1

n
||Vgoal

l
proj
||2Tr + ||S− 1

2N −
∑
k

γkω
T
k ||2 − ||S− 1

2N ||2Tr

=

R∑
r=K+1

λ2
r +

1

n
||Vgoal

l
proj
||2Tr − ||S− 1

2N ||2Tr

= −
K∑
r=1

λ2
r +

1

n
||Vgoal

l
proj
||2Tr

21

Under review as a conference paper at ICLR 2024

We note Vgoal
l
proj

(δW ∗
l) := Vgoal

l
proj

. Suppose that Bl−1 and Bl−2 are orthogonal for the trace
scalar product, then when adding the new neurons, the impact on the global loss is :

L(fθ⊕θK
↔
) =

1

n

n∑
i=1

L(fθ(xi),yi)−
γ

η

1

n
σ′
l(0)

〈
V l(θK,∗

↔),Vgoal
l
proj

〉
Tr

+ o(1)

We also have the following property :

argmin
θK
↔

{ 1

n
||Vgoal

l
proj
− V l(θK↔)||2Tr

}
= argmin

H≥0
argmin

θK
↔,||V l(θK

↔)||Tr=H

{ 1

n
||Vgoal

l
proj
− V l(θK↔)||2Tr

}
= argmin

H≥0
argmin

θK
↔,||V l(θK

↔)||Tr=H

{
− 2

n

〈
Vgoal

l
proj

(,V l+1(θK↔)
〉
Tr

+
1

n
||VK(θK↔)||2Tr

}
= argmin

H≥0
argmin

θK
↔,||V l(θK

↔)||Tr=H

{
− 2

n

〈
Vgoal

l
proj

,V l+1(θK↔)
〉
Tr

+
1

n
H2

}
= argmin

H≥0
argmin

θK
↔,||V l(θK

l↔)∗||Tr=1

{
−H

〈
Vgoal

l
proj

,V l+1(θKl↔) ∗
〉
Tr

+
1

2
H2

}

with V l(θK↔)∗ the solution of the second argmin (ie for H = 1).
Then the norm minimizing the first argmin is given by :

H∗ =
〈
Vgoal

l
proj

,V l(θK↔)∗
〉
Tr

Furthermore

min
θK
l↔l

{ 1

n
||Vgoal

l
proj
− V l+1(θKl↔l)||2Tr

}
= −

K∑
r=1

λ2
r +

1

n
||Vgoal

l
proj
||2Tr

min
θK
↔

{ 1

n
||Vgoal

l
proj
− V l(θKl↔l)||2Tr

}
= − 1

n
H∗2

+
1

n
||Vgoal

l
proj
||2Tr

=⇒ H∗ =
〈
Vgoal

l
proj

,V l(θK↔)∗
〉
Tr

=

√√√√ K∑
r=1

λ2
r ×
√
n

V l(θK,∗
↔) = H∗V l(θK↔)∗〈

V l(θK,∗
↔),Vgoal

l
proj

〉
Tr

= H∗ ×
〈
Vgoal

l
proj

,V l(θK↔)∗
〉
Tr

= H∗2

where the last equality is given by the optimisation of ||S− 1
2N −

∑K
k=1 ukω

T
k ||2Tr. So minimiz-

ing the scalar product −
〈
Vgoal

l
proj

(δW ∗
l),V

l(θK↔)∗
〉
Tr

for fixed norm of V l(θK↔) is equivalent to

minimizing the norm ||Vgoal
l
proj

(δW ∗
l)− V l(θK↔)||2Tr.

L(fθ⊕θK
↔
) =

1

n

n∑
i=1

L(fθ(xi),yi)−
1

η
σ′
l(0)

K∑
r=1

λ2
k + o(1)

For convolutional layers, the same reasoning can be applied. Consider one adds one convolution
layer, ie K = 1. Use Bc

i defined in the first proof and Tj the linear application selecting the

22

Under review as a conference paper at ICLR 2024

activities for the j−pixel , then one has to minimize the expression :

g(θ1↔) =

out channels∑
m

examples∑
i

preactivity size∑
j=1

(ωT
mTjB

cα− Vgoal
i
j,m

)2

=
∑
m

∑
i

∑
j=1

(ωT
mTjB

c
iα)2 − 2ωT

mTjB
c
iαVgoal

i
j,m

+ C

=
∑
m

∑
i

∑
j=1

Tr(ωT
mTjB

c
iα)2 − 2ωT

mTjB
c
iαVgoal

i
j,m

+ C

=
∑
m

∑
i

∑
j=1

Tr(TjB
c
iαωT

m)2 − 2ωT
mTjB

c
iαVgoal

i
j,m

+ C

for some constant C. We have the property that ⟨T T
j ,Bc

iαωT
m⟩2Tr = Tr(TjB

c
iαωT

m)2 =

||TjB
c
iαωT

m||2Tr. Ignoring the constant C:

g(θ1↔) =
∑
m

Tr(ωmαT
(∑

i

Bc
i
T
∑
j

T T
j TjB

c
i

)
αωT

m)− 2ωT
m

∑
i,j

TjB
c
iVgoal

i
j,m

α

=
∑
m

αT
(∑

i

Bc
i
T
∑
j

TjT
T
j Bc

i

)
αωT

mωm − 2ωT
m

∑
i,j

TjB
c
iVgoal

i
j,m

α

= αT
(∑

i

Bc
i
T
∑
j

TjT
T
j Bc

i

)
αωTω − 2

∑
m

ωT
m

∑
i,j

Tj1
T
fullVgoal

i1j,mBc
iα

= αTSωTω − 2
∑
m

ωT
m

∑
i

Fm
i Bc

iα

= αTSωTω − 2ωNα

with Tj =

j−1+⌊j/(p−1)⌋︷ ︸︸ ︷
0 . 0 1 0

j−1+⌊j/(p−1)⌋︷ ︸︸ ︷
0 . 0 0 1

j−1+⌊j/(p−1)⌋︷ ︸︸ ︷
0 . 0

31︷ ︸︸ ︷
0 . 0 1 0 . . .

j−1+⌊j/(p−1)⌋︷ ︸︸ ︷
0 . 0

31︷ ︸︸ ︷
0 . 0 0 1 0 . .

for a kernel size equal to (2, 2).

C.3 PROPOSITION AND REMARK 3.3

Suppose S is semi definite, we note S = S
1
2S

1
2 . Solving (7) is equivalent to find the K first

eigenvectors αk associated to the K largest eigenvalues λ of the generalized eigenvalue problem :

NNTαk = λSαk

Proof

This is equivalent to maximizing the following generalized Rayleigh quotient (which is solvable by
the LOBPCG technique):

α∗ = max
x

αTNNTα

αTSα

p∗ = max
p=S1/2α

pTS− 1
2NNTS− 1

2p

pTp

p∗ = max
||p||=1

||NTS− 1
2p||

α∗ = S− 1
2p∗

23

Under review as a conference paper at ICLR 2024

Considering the SVD of S− 1
2N =

∑R
r=1 λrerf

T
r , then S− 1

2NNTS− 1
2 =

∑R
r=1 λ

2
rfrf

T
r ,

because j ̸= i =⇒ eTi ej = 0 and fT
i fj = 0. Hence maximizing the first quantity is equivalent

to p∗
k = fk, then αk = S− 1

2 ek. The same reasoning is used to find ωk.

We prove second corollary 3.2 by induction. For m = m′ = 1 :

al(x)
t+1 = al(x)

t + V (θ1,∗↔ ,x)γ + o(γ)

vgoal
l,t+1(x) = vgoal

l,t(x) +∇al(x)L(fθ(x),y)
Tv(θ1,∗↔ ,x)γ + o(γ)

Adding the second neuron we obtain the minimization problem:

argmin
α2,ω2

||Vgoal
l,t − V l(α2,ω2)||Tr + o(1)

C.4 ABOUT EQUIVALENCE OF QUADRATIC PROBLEMS

Problems 6 and 5 are generally not equivalent, but might be very close, depending on layer sizes and
number of samples. The difference between the two problems is that in one case one minimizes the
quadratic quantity: ∥∥∥V l(θK↔) + V l(δWl)− Vgoal

l
∥∥∥2
Tr

w.r.t. δWl and θK↔ jointly, while in the other case the problem is first minimized w.r.t. δWl and
then w.r.t. θK↔. The latter process, being greedy, might thus provide a solution that is not as optimal
as the joint optimization.

We chose this two-step process as it intuitively relates to the spirit of improving upon a standard
gradient descent: we aim at adding neurons that complement what the other ones have already done.
This choice is debatable and one could solve the joint problem instead, with the same techniques.

The topic of this section is to check how close the two problems are. To study this further, note that
V l(δWl) = δWl Bl−1 while V l(θK↔) =

∑K
k=1 ωkB

T
l−2αk. The rank of Bl−1 is min(nS , nl−1)

where nS is the number of samples and nl−1 the number of neurons (post-activities) in layer l − 1,
while the rank of Bl−2 is min(nS , nl−2) where nl−2 is the number of neurons (post-activities) in
layer l − 2. Note also that the number of degrees of freedom in the optimization variables δWl and
θK↔ = (ωk,αk) is much larger than these ranks.

Small sample case. If the number nS of samples is lower than the number of neurons nl−1 and
nl−2 (which is potentially problematic, see Section D.1), then it is possible to find suitable variables
δWl and θK↔ to form any desired V l(δWl) and V l(θK↔). In particular, if nS ⩽ nl−1 ⩽ nl−2, one
can choose V l(θK↔) to be Vgoal

l − V l(δWl) and thus cancel any effect due to the greedy process in
two steps. The two problems are then equivalent.

Large sample case. On the opposite, if the number of samples is very large (compared to the
number of neurons nl−1 and nl−2), then the lines of matrices Bl−1 and Bl−2 become asymptotically
uncorrelated, under the assumption of their independence (which is debatable, depending on the
type of layers and activation functions). Thus the optimization directions available to V l(δWl) and
V l(θK↔) become orthogonal, and proceeding greedily does not affect the result, the two problems
are asymptotically equivalent.

In the general case, matrices Bl−1 and Bl−2 are not independent, though not fully correlated, and
the number of samples (in the minibatch) is typically larger than the number of neurons; the prob-
lems are then different.

Note that technically the ranks could be lower, in the improbable case where some neurons are
perfectly redundant, or, e.g., if some samples yield exactly the same activities.

24

Under review as a conference paper at ICLR 2024

C.5 SECTION Theory behind Greedy Growth WITH PROOFS

One might wonder whether a greedy approach on layer growth might get stuck in a non-optimal
state. We derive the following series of propositions in this regard. Since in this work we add
neurons layer per layer independently, we study here the case of a single hidden layer network, to
spot potential layer growth issues. For the sake of simplicity, we consider the task of least square
regression towards an explicit continuous target f∗, defined on a compact set. That is, we aim at
minimizing the loss:

inf
f

∑
x∈D
∥f(x)− f∗(x)∥2

where f(x) is the output of the neural network and D is the training set.
Proposition C.2 (Greedy completion of an existing network). If f is not f∗ yet, there exists a set of
neurons to add to the hidden layer such that the new function f ′ will have a lower loss than f .

One can even choose the added neurons such that the loss is arbitrarily well minimized.

Proof. The classic universal approximation theorem about neural networks with one hidden layer
Pinkus (1999) states that for any continuous function g defined on a compact set ω, for any desired
precision γ, and for any activation function σ provided it is not a polynomial, then there exists a
neural network ĝ with one hidden layer (possibly quite large when γ is small) and with this activation
function σ, such that

∀x, ∥g(x)− g∗(x)∥ ⩽ γ

We apply this theorem to the case where g∗ = f∗ − f , which is continuous as f∗ is continuous, and
f is a shallow neural network and as such is a composition of linear functions and of the function σ,
that we will suppose to be continuous for the sake of simplicity. We will suppose that f is real-valued
for the sake of simplicity as well, but the result is trivially extendable to vector-valued functions (just
concatenate the networks obtained for each output independently). We choose γ = 1

10∥f
∗ − f∥L2,

where ⟨a| b⟩L2 = 1
|ω|

∫
x∈ω

a(x) b(x) dx. This way we obtain a one-hidden-layer neural network g

with activation function σ such that:

∀x ∈ ω, −γ ⩽ g(x)− g∗(x) ⩽ γ

∀x ∈ ω, g(x) = f∗(x)− f(x) + a(x)

with ∀x ∈ ω, |a(x)| ⩽ γ.

Then:
∀x ∈ ω, f∗(x)− (f(x) + g(x)) = −a(x)
∀x ∈ ω, (f∗(x)− h(x))

2
= a2(x) (12)

with h being the function corresponding to a neural network consisting in concatenating the hidden
layer neurons of f and g, and consequently summing their outputs.

∥f∗ − h∥2L2 = ∥a∥2L2

∥f∗ − h∥2L2 ⩽ γ2 =
1

100
∥f∗ − f∥2L2

and consequently the loss is reduced indeed (by a factor of 100 in this construction).

The same holds in expectation or sum over a training set, by choosing γ =
1
10

√
1

|D|
∑

x∈D ∥f(x)− f∗(x)∥2, as Equation (12) then yields:∑
x∈D

(f∗(x)− h(x))
2
=

∑
x∈D

a2(x) ⩽
1

100

∑
x∈D

(f∗(x)− f(x))
2

which proves the proposition as stated.

For more general losses, one can consider order-1 (linear) developpment of the loss and ask for a
network g that is close to (the opposite of) the gradient of the loss.

25

Under review as a conference paper at ICLR 2024

Proof of the additional remark. The proof in Pinkus (1999) relies on the existence of real values cn
such that the n-th order derivatives σ(n)(cn) are not 0. Then, by considering appropriate values
arbitrarily close to cn, one can approximate the n-th derivative of σ at cn and consequently the poly-
nomial cn of order n. This standard proof then concludes by density of polynomials in continuous
functions.

Provided the activation function σ is not a polynomial, these values cn can actually be chosen ar-
bitrarily, in particular arbitrarily close to 0. This corresponds to choosing neuron input weights
arbitrarily close to 0.

Proposition C.3 (Greedy completion by one single neuron). If f is not f∗ yet, there exists a neuron
to add to the hidden layer such that the new function f ′ will have a lower loss than f .

Proof. From the previous proposition, there exists a finite set of neurons to add such that the loss will
be decreased. In this particular setting of L2 regression, or for more general losses if considering
small function moves, this means that the function represented by this set of neurons has a strictly
negative component over the gradient g of the loss (g = 2(f∗− f) in the case of the L2 regression).
That is, denoting by aiσ(Wi · x) these N neurons:〈 N∑

i=1

aiσ(wi · x)
∣∣ g〉

L2
= K < 0

i.e.
N∑
i=1

⟨aiσ(wi · x)| g⟩L2 = K < 0

Now, by contradiction, if there existed no neuron i among these ones such that

⟨aiσ(wi · x) | g⟩L2 ⩽
1

N
K

then we would have:
∀i ∈ [1, N], ⟨aiσ(wi · x)| g⟩L2 >

1

N
K

N∑
i=1

⟨aiσ(wi · x)| g⟩L2 > K

hence a contradiction. Then necessarily at least one of the N neurons satisfies

⟨aiσ(wi · x)| g⟩L2 ⩽
1

N
K < 0

and thus decreases the loss when added to the hidden layer of the neural network representing f .
Moreover this decrease is at least 1

N of the loss decrease resulting from the addition of all neurons.

As a consequence, our greedy approach will not get stuck in a situation where one would need to
add many neurons simultaneously to decrease the loss: it is always feasible by a single neuron. On
can express a lower bound on how much the loss has improved (for the best such neuron), but it not
a very good one without further assumptions on f .
Proposition C.4 (Greedy completion by one infinitesimal neuron). The neuron in the previous
proposition can be chosen to have arbitrarily small input weights.

Proof. This is straightforward, as, following a previous remark, the neurons found to collectively
decrease the loss can be supposed to all have arbitrarily small input weights.

This detail is important in that our approach is based on the tangent space of the function f and con-
sequently manipulates infinitesimal quantities. Though we perform line search in a second step and
consequently add non-infinitesimal neurons, our first optimization problem relies on the lineariza-
tion of the activation function by requiring the added neuron to have infinitely small input weights,
without which it would be much harder to solve. This proposition confirms that such neuron does
exist indeed.

26

Under review as a conference paper at ICLR 2024

D TECHNICAL DETAILS

D.1 VARIANCE OF THE ESTIMATOR AND BATCHSIZE FOR ESTIMATION

In this section we study the variance of the matrices δWl
∗and S−1/2N computed using a minibatch

of n samples, seeing the samples as random variables, and the matrices computed as estimators of the
true matrices one would obtain by considering the full distribution of samples. Those two matrices
are the solutions of the multiple linear regression problems defined in (9) and in (11), as we are
trying to regress the desired update noted Y onto the span of the activities noted X . We suppose we
have the following setting :

Y ∼ AX + ε, ε ∼ N (0, σ2), E[ε|X] = 0

where the (Xi, Yi) are i.i.d. and A is the oracle for δWl
∗ or matrix S−1/2N . If Y is multidimen-

sional, the the total variance of our estimator can be seen as the sum of the variances of the estimator
on each dimension of Y .

We now suppose that Y ∈ R . The estimator Â := (XXT)−1XYT has variance var(Â) =
σ2(XXT)−1. If n is large, and if matrix 1

nXXT → Q, with Q non singular, then, asymptotically,

we have Â ∼ N (A, σ2Q−1

n), which is equivalent to (Â − A)
√

n
σQ

1/2 ∼ N (0, I). Then ||(Â −
A)

√
n
σQ

1/2||2 ∼ χ2(k) where k is the dimension of X . It follows that E
[
||(Â−A)Q1/2||2

]
= kσ

n

and as Q1/2Q1/2T is positive definite, we conclude that var(Â) ⩽ kσ
nλmin(Q) .

In practice and to keep the variance of our estimators stable during architecture growth, for the
estimation of the best neuron to add we use batch size

n ∝ (SW)2

P
,

with the notations defined in Figure 10, since the matrices we estimate have side size SW and that
each input sample contains P values, i.e. P quantities that each play the role of X here.

D.2 BATCH SIZE FOR LEARNING

Batchsize, learning rate and number of neurons are known to be related. As our architecture grows
with time, we need to adapt the training batchsize as well.

The batch size is set to bt=0 = 500 at the beginning of each experiment, and it is scheduled to
increase as the square root of the complexity of the model (ie number of additions in a test). If at
time t the network has complexity Ct parameters, then at time t+ 1 the training batch size is equal

to bt+1 = bt ×
√

Ct+1

Ct
.

D.3 SIGNIFICANCE OF THE EIGENVALUES.

Using the SVD on matrix B = UDQT , we have: S− 1
2N = UId

rk(D)QTVgoal. Thus the λk

are the square roots of the eigenvalues of the matrix NTS−1N = Vgoal
TQId

rk(D)QTVgoal, which
is similar to the covariance matrix of the desired update. To avoid adding neurons that are non
significant, we evaluate which amplitude those eigenvalues would have under the hypothesis (H0)
that Vgoal ∼ N (0,Σ) is uncorrelated with the projection matrix QId

rk(D)QT (i.e. what values are
obtained when estimating eigenvalues that are actually 0).

Remark that under the hypothesis H0, the eigenvalues of covariance matrix Vgoal
TVgoal follow the

Marchenko-Pastur distribution, which is known in closed form. This enables to set a threshold on
eigenvalues based on statistical significance.

Unfortunately regarding the distribution of the eigenvalues of Vgoal
TQId

rk(D)QTVgoal, getting
closed-form expression is trickier, so we numerically estimate a threshold λ2

− by generating
vgauss(X) ∼ N (0,Σ) and considering λ2

− := λmax

(
V T
gaussQId

rk(D)QTVgauss

)
. Conversely, if

the sample size required for reasonably estimating an eigenvalue λk exceeds the dataset size, as-
sociated neurons necessarily overfit, and could be chosen not to be added. The overfit risk in this

27

Under review as a conference paper at ICLR 2024

addition step is thus controlled. However, standard gradient descent performed afterwards cancels
such guarantees.

D.4 AMPLITUDE FACTOR

Once the neurons defined in Proposition 3.2 have been computed, they are added with an amplitude
factor to the current architecture, i.e. α ←− ε1α and ω ←− ε2ω, with εi real factors. Those factors
have to be chosen such that the optimization process stays smooth, in the sense that the gradient of
each parameter keeps being smooth. Otherwise the current learning rates defined by the optimizer
are no longer correct and the system can get unstable. In the work of Maile et al. (2022); Evci et al.
(2022) the amplitude of the new neurons are set to an arbitrary constant 10−4. In our paper we
normalize α, ω, such that ||vl(

√
εα,
√
εω,X)|| = ε||al(X)|| then a line search is performed in ε.

We processed with this pseudo code :

Algorithm 2: AmplitudeFactor
Data: (αk, ωk)

m
k=1

Result: amplitude factor ε to be applied to α and ω
Take a minibatch X of size 500;
ε∗ = argminε=2−k, k∈N

∑
x∈X ℓ(fθ⊕(

√
εα∗

k,
√
εω∗

k)k
(x),y(x))

Note that it is also possible to perform line searches to estimate the best amplitude factors at each
neuron addition. This improves the loss much faster, however it also yields later training instabilities
(due to the need of different learning rates), that yet have to be solved, which is why we do not
present this approach variation here. Interestingly this allows training a neural network without
gradient descent (i.e. no parameter update, using just backpropagation).

D.5 FULL ALGORITHM

In this section we decribe in detail the pseudo code of the main paper (Algorithm 1). In its copy
below (Algorithm 3), we have replaced the references by the name of the functions used to compute
each non-trivial step.
The function NewNeurons(l,Sp), in Algorithm 4, computes the new neurons defined at Propo-
sition 3.2 for layer l. The argument Sp = True, for Spurious, changes the desired up-
date into a random variable (useful to estimate statistical relevance). The function call
NewNeurons(l,Sp = True) computes a sample of neurons and eigenvalues ({λN

k }k) that
one would have obtained if neuron were not to add. The maximum eigenvalues max(λN

k)

28

Under review as a conference paper at ICLR 2024

is the threshold on the eigenvalues from the function call NewNeurons(l,Sp = False).

Algorithm 3: Algorithm to plot Figure 5.
for each method [Ours, GradMax] do

Start from a given small neural network NN ;
for j in nbpass do

for each layer l do
A,Λ,Ω = NewNeurons(layer, method = method);

// with our method the above also yields δW ∗
l as a by-product;

,ΛN , = NewNeurons(layer, method = method, Sp = True);
λ− = max(diag(ΛN));
A,Λ,Ω←− A[:, : λ−],Λ[: λ−, : λ−],Ω[: λ−, :];
if len(A) > 0 then

γ =AmplitudeFactor(A,Ω);
if γ > 0 then

A,Ω←− √γA,
√
γΩ;

Add the neurons A,Ω;
end

end
if method == Our then

Update the architecture with the best update δW ∗
l at l+1

end
end

end
Get accuracy acc0 of NN ;
Train NN for 15 epochs with Adam(lr = 1e-4) ;
Get final accuracy acc∞ of NN ;

end

Algorithm 4: NewNeurons
Data: l,method = Our,Sp = False
Result: Best neurons at l
if method = Our then

δWl = BestUpdate(l + 1);
else

δWl = None
end
S,N = MatrixSN(l − 1, l + 1, δWl =
δWl,Sp = Sp);

Compute the SVD of S := UΣUT ;
Compute the SVD of
U
√
Σ

−1
UN := AΛΩ;

Use the columns of A, the ligns of Ω
and the diagonal of Λ to construct the
new neurons of Prop. 3.2;

Algorithm 5: MatrixSN
Data: p1, p2 (layer indexes), δWl =

None, Sp = False
Result: Construct matrices S and N
if not(Sp) then

Take a minibatch X of size ∝ (SW)2

P ;
Propagate and backpropagate X;
Compute Vgoal at p2, ie − ∂Ltot

∂Ap2
;

if δWl ̸= None then
Vgoal− = δWlBp1

end
else

Vgoal = E, E ∼ N (0, I)
end
S,N−2 = Bp1

Bp1

T ,Bp1
Vgoal

T ;

Algorithm 6: BestUpdate
Data: l, index of a layer
Result: Best update at l
Take a minibatch X of size ∝ (SW)2

P ;
Compute (S,N) with the function

S N(l, l);
δWl = NTS−1;

29

Under review as a conference paper at ICLR 2024

D.6 COMPUTATIONAL COMPLEXITY

We estimate here the computational complexity of the above algorithm for architecture growth.

Theoretical estimate. We use the following notations:

• number of layers: L

• layer width, or number of kernels if convolutions: W (assuming for simplicity that all
layers have same width or kernels)

• number of pixels in the image: P (P = 1 for fully-connected)

• kernel filter size: S (S = 1 if fully-connected)

• minibatch size used for standard gradient descent: M

• minibatch size used for new neuron estimation: M ′

• minibatch size used in the line-search to estimate amplitude factor: M ′′

• number of classical gradients steps performed between 2 addition tentatives: T

Figure 10: Notation and size for convolutional and linear layers

Complexity, estimated as the number of basic operations, cumulated over all calls of the functions:

• of the standard training part: TMLW 2SP

• of the computation of matrices of interest (function MatrixSN): LM ′(SW)2P

• of SVD computations (function NewNeurons): L(SW)3

• of line-searches (function AmplitudeFactor): L2M ′′W 2SP

• of weight updates (function BestUpdate): LSW

The relative added complexity w.r.t. the standard training part is thus:

M ′S /TM + S2W /TMP + M ′′L / TM + 1 /WTMP.

SVD cost is negligible. The relative cost of the SVD w.r.t. the standard training part is
S2W /TMP . In the fully-connected network case, S = 1, P = 1, and the relative cost of the
SVD is then W/TM . It is then negligible, as layer width W is usually much smaller than TM ,
which is typically 10 × 100 for instance. In the convolutional case, S = 9 for 3 × 3 kernels, and
P ≈ 1000 for CIFAR, P ≈ 100000 for ImageNet, so the SVD cost is negligible as long as layer
width W << 10000 or 1 000 000 respectively. So one needs no worrying about SVD cost.

Likewise, the update of existing weights using the “optimal move” (already computed as a by-
product) is computationally negligible, and the relative cost of the line searches is limited as long as
the network is not extremely deep (L < TM/M”).

On the opposite, the estimation of the matrices (to which SVD is applied) can be more ressource
demanding. The factor M ′S/TM can be large if the minibatch size M ′ needs to be large for
statistical significance reasons. One can show that an upper bound to the value required for M ′ to
ensure estimator precision (see Appendix D.1) is (SW)2/P . In that case, if W >

√
TMP/S3,

these matrix estimations will get costly. In the fully-connected network case, this means W >

30

Under review as a conference paper at ICLR 2024

√
TM ≈ 30 for T = 10 and M = 100. In the convolutional case, this means W >

√
TMP/S3 ≈

30 for CIFAR and ≈ 300 for ImageNet. We are working on finer variance estimation and on other
types of estimators to decrease M ′ and consequently this cost. Actually (SW)2/P is just an upper
bound on the value required for M ′, which might be much lower, depending on the rank of computed
matrices.

In practice. In practice the cost of a full training with our architecture growth approach is similar
(sometimes a bit faster, sometimes a bit slower) than a standard gradient descent training using
the final architecture from scratch. This is great as the right comparison should take into account
the number of different architectures to try in the classical neural architecture search approach.
Therefore we get layer width hyper-optimization for free.

E ADDITIONAL EXPERIMENTAL RESULTS AND REMARKS

E.1 MNIST

In this section we work with feed forward networks with two hidden layers. We note by [a, b] such
network with a neurons on the first hidden layer and b neurons on the second one. The experiments
of this section are performed on 7 CPU. We use the optimizer SGD(lr = 1e − 4) and a constant
batch of size 100 (we do not apply method in D.2). The training criterion is the cross-entropy loss.

E.1.1 RANDOM VS OPTIMIZATION

When performing the quadratic optimization (6), we obtain the optimal direction for (α∗
k,ω

∗
k)

R
k=1.

It is also possible to generate randomly the new neurons and compute the amplitude factors. This
second option have the benefit of being less time consuming, but it would project the desired di-
rection on those random vectors and would affect the accuracy score compared to optimal solution
defined in 3.1.

0 100 200 300 400 500 600 700
minibatch

0.2

0.4

0.6

0.8

ac
c_

te
st

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (sec)

0.84

0.86

0.88

0.90

0.92

0.94

ac
c_

te
st

0 100 200 300 400 500 600 700
minibatch

2000

4000

6000

8000

lo
ss

_t
es

t

0 5 10 15 20
time (sec)

2000

4000

6000

8000

lo
ss

_t
es

t our method
init model
alea neurons

Figure 11: Experiment performed 5 times on the MNIST dataset : a starting model in black [1, 1]
is initialized according to normal Kaiming, then is duplicated to give the red and the green model.
The structure of the red model is modified by our method to reach the structure [110, 51] while the
green model is extended with random neurons. Then all models are trained for 30 seconds. The
white space for the red model corresponds to the quadratic optimisation and the computation of the
amplitude factor while for the green model it corresponds only to the computation of the amplitude
factor.

31

Under review as a conference paper at ICLR 2024

E.1.2 COMPARISON WITH BIG MODEL

On figure 12, we plot mean and standard deviation for the same experiement repeated 5 times. We
start with a network of size [1, 1] and we increase its architecture by applying our method six times.
Each increase of architecture is followed by a training period of 0.5 seconds. Once the network has
reached its final structure of [110, 51] it is trained for a limited time of 25 seconds. We compared
our performance with a huge network of size [1000, 1000] which is trained with all its neurons
from scratch. Compared to the big model our TINY network converge faster in time because its
architecture is smaller, converge slower in epochs because it is less expressive.

Figure 12: All graphics represent the values for accuracy on test of the same experiment but from a
different perspective. Left : after partitioning computational time on intervals of size 0.1 seconds, we
compute a linear interpolation for the accuracy value. Middle : the accuracy value against number of
epochs, where the time needed to compute the optimal neurons is not noticeable. Right : accuracy
against computational time, where durations due to Cholesky decompositions and their happening
instants are averaged over experiments, for better visualisation purposes.

E.1.3 COMPARISON WITH THE SAME STRUCTURE RETRAINED FROM SCRATCH

In figure 13 we compare our method with a neural network retrained from scratch with the same
architecture. The protocol is the same as defined in section E.1.2.

Figure 13: Same description as 12 but for different architecture and that the architecture of the
classical training matches the architecture of our method.

E.2 CIFAR-10

In this section we work with convolutional network forward networks with an architecture of two
blocks consisting of 2 convolutions and 1 MaxPooling each, followed by two fully-connected layers,
using the selu activation function. The training criterion is the cross-entropy loss. We increase the
size of the network on the fly (during training), with a batch size of 500 for training using D.2 on 1
GPU.

32

Under review as a conference paper at ICLR 2024

E.2.1 ABOUT NUMBER OF NEURONS AND OVERFITTING

In Figure 14, 100% accuracy is achieved on training dataset, thus fully overfitting the data, which
proves that TINY can effectively bypass any expressivity bottleneck. Interestingly, this is done
with fewer parameters than the theorem in Zhang et al. (2017), which mentions 2n + d parameters
to overfit a classification problem with n samples of dimension d. This TINY architecture has
about twice fewer parameters, due to generalization across samples, the labels in the CIFAR-10
classification task being not random. It should also be noted that the TINY architecture tends to
overfit less than the same final model retrained with all neurons from the beginning (FS), or at
least, never more, which suggests that optimization and generalization abilities are not necessarily
functions of neural network width anymore if one leaves the standard fixed-architecture training
paradigm.

Figure 14: Experiment on CIFAR-10 dataset : Evolution of the train/test accuracy wrt gradient steps
for TINY and FS

E.3 RESNET18 ON CIFAR-100

In this section we compare TINY to GradMax, on CIFAR-100 with the ResNet-18 architecure. For
this particular architecture, the size of a convolutional layer l may be increase if no skip connection
feeds the output of the layer l + 1, see Figure 17.
For both methods we start with the architecture shown in Table 1, initialized with Kaiming Normal.
Every 0.1 epoch of standard training with Adam(batchsize = 100, lr = 1e − 3), we add neurons
where it is the most needed by:

1. computing the 5 best new neurons (αk, ωk)
5
k=1 and their amplitude factor γ for each layer

2. evaluating the gain of loss associated to each potential addition
3. adding the neurons where the decrease of loss is the largest.

The performances of the models are registered at each gradient step during standard training and
after each attempt of architecture increase, while the complexity of the model (as number of basic
operation performed at test time) is only evaluated after each addition trial. Figure 15 plots the per-
formance of both methods and the computational cost of models at step t, averaged over three runs.
After 2300 steps the performance of TINY is higher than GradMax’ one (+2%) but its complexity
is much lower (a third less). This dramatic difference can be explained by the fact that TINY avoids
redundancy when adding neurons, while GradMax does not.

The accuracies reached in this experiment are far from the state of the art on this dataset, but one
has to keep in mind that we performed no optimization hyper-parameter tuning and that we did

33

Under review as a conference paper at ICLR 2024

Figure 15: Accuracy and time complexity of ResNet-18 model for TINY and GradMax methods.

Figure 16: Accuracy and time complexity of ResNet-18 model for one run with TINY method.

not use techniques such as batch-norm, drop-out or data augmentation, which are necessary for
convolutional models to go beyond 30-40% accuracy. Additional Figure 16 with twice more training
steps shows that with our approach the network keeps learning afterwards (reaching 32% accuracy
on test). Note that the number of parameters is very low compared to traditional architectures, for
example the model of Figure 16 has 119 866 parameters at step = 4025. The final architecture
obtained is shown in Table 1. We see that neurons were mostly added to first layers.

34

Under review as a conference paper at ICLR 2024

Figure 17: ResNet blocks: in green, the convolutions of the current structure; in cyan, the added
convolutions.

35

Under review as a conference paper at ICLR 2024

Table 1: Initial architecture in the experiments of Figure 15 and 16, and final architecture at the end
of training in Figure 16. Numbers in color indicate where TINY was allowed to add neurons (middle
of ResNet blocks).

ResNet18

Layer name Output size Initial layers (kernel=(3,3), padd.=1) Final layers (end of Fig 16)

Conv 1 32× 32× 8
[
3× 3, 8

] [
3× 3, 8

]
Conv 2 32× 32

[
3× 3, 8

3× 3, 1

][
3× 3, 1

3× 3, 8

] [
3× 3, 8

3× 3, 91

][
3× 3, 91

3× 3, 8

]

Conv 3 16× 16× 8

[
3× 3, 8

3× 3, 1

][
3× 3, 1

3× 3, 8

] [
3× 3, 8

3× 3, 76

][
3× 3, 76

3× 3, 8

]
Conv 4 16× 16× 8

[
3× 3, 16

] [
3× 3, 16

]
Conv 5 16× 16× 16

[
3× 3, 16

3× 3, 1

][
3× 3, 1

3× 3, 16

] [
3× 3, 16

3× 3, 41

][
3× 3, 41

3× 3, 16

]

Conv 6 8× 8× 16

[
3× 3, 16

3× 3, 1

][
3× 3, 1

3× 3, 16

] [
3× 3, 16

3× 3, 11

][
3× 3, 11

3× 3, 16

]
Conv 7 8× 8× 32

[
3× 3, 32

] [
3× 3, 32

]
Conv 8 8× 8× 32

[
3× 3, 32

3× 3, 1

][
3× 3, 1

3× 3, 32

] [
3× 3, 32

3× 3, 6

][
3× 3, 6

3× 3, 32

]

Conv 9 4× 4× 32

[
3× 3, 32

3× 3, 1

][
3× 3, 1

3× 3, 32

] [
3× 3, 32

3× 3, 3

][
3× 3, 3

3× 3, 32

]
Conv 10 4× 4× 64

[
3× 3, 64

] [
3× 3, 64

]
Conv 11 4× 4× 64

[
3× 3, 64

3× 3, 1

][
3× 3, 1

3× 3, 64

] [
3× 3, 64

3× 3, 1

][
3× 3, 1

3× 3, 64

]

Conv 12 2× 2× 64

[
3× 3, 64

3× 3, 1

][
3× 3, 1

3× 3, 64

] [
3× 3, 64

3× 3, 1

][
3× 3, 1

3× 3, 64

]
FC 1 100 256× 100 256× 100

FC 2 100 100× 100 256× 100

FC 3 100 100× 100 100× 100

SoftMax 100

36

