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ABSTRACT

Tabular data plays a crucial role in various domains but often suffers from miss-
ing values, thereby curtailing its potential utility. Traditional imputation tech-
niques frequently yield suboptimal results and impose substantial computational
burdens, leading to inaccuracies in subsequent modeling tasks. To address these
challenges, we propose DiffImpute, a novel Denoising Diffusion Probabilis-
tic Model (DDPM). Specifically, DiffImpute is trained on complete tabu-
lar datasets, ensuring that it can produce credible imputations for missing en-
tries without undermining the authenticity of the existing data. Innovatively, it
can be applied to various settings of Missing Completely At Random (MCAR)
and Missing At Random (MAR). To effectively handle the tabular features in
DDPM, we tailor four tabular denoising networks, spanning MLP, ResNet, Trans-
former, and U-Net. We also propose Harmonization to enhance coherence
between observed and imputed data by infusing the data back and denoising them
multiple times during the sampling stage. To enable efficient inference while
maintaining imputation performance, we propose a refined non-Markovian sam-
pling process that works along with Harmonization. Empirical evaluations
on seven diverse datasets underscore the prowess of DiffImpute. Specifi-
cally, when paired with the Transformer as the denoising network, it consis-
tently outperforms its competitors, boasting an average ranking of 1.7 and the
most minimal standard deviation. In contrast, the next best method lags with
a ranking of 2.8 and a standard deviation of 0.9. The code is available at
https://anonymous.4open.science/r/anonymization-C1B5.

1 INTRODUCTION

Tabular data, ubiquitous across domains like healthcare, finance, and customer relationship manage-
ment, is foundational for data management and decision-making. However, the utility of tabular data
is often compromised by missing values because most deep-learning methods can only be applied
to complete datasets. Yet, missing data is common because it can stem from many factors, such as
human errors, privacy issues, and the inherent complexities of data collection (Tan et al., 2013). To
counter this, researchers resort to imputation methods to replace missing entries. Broadly, imputa-
tion methods are bifurcated into single and multiple imputation (Rubin, 1987). Single imputation,
characterized by techniques like mean and median imputation, is simple but can introduce bias by
homogenizing missing entries with singular values. This approach can lead to a misrepresentation of
the genuine data distribution (Roderick J. A. Little, 2002). On the opposite spectrum, multiple impu-
tation suggests a gamut of plausible values for missing entries, leveraging iterative methods (Raghu-
nathan et al., 2000; Buuren et al., 2006; van Buuren & Groothuis-Oudshoorn, 2011) and deep gen-
erative models (Gondara & Wang, 2018; Nazabal et al., 2020; Ivanov et al., 2019; Richardson et al.,
2020). Yet, these methods come with strings attached. Iterative methods might strain computa-
tional resources and demand robust data assumptions. Deep generative models, such as Generative
Adversarial Networks (GANs) and Variation AutoEncoders (VAEs), grapple with challenges like
mode collapse and posterior distribution alignment (Kingma & Welling, 2019; Goodfellow et al.,
2014), which leads to suboptimal imputation performance. In light of these challenges, we propose
DiffImpute, a Denoising Diffusion Probabilistic Model (DDPM) specifically tailored for tabular
data imputation. Unlike GANs and VAEs which are confined to Missing Completely At Random
(MCAR) settings (Jarrett et al., 2022), the diffusion models can be applied to more generous settings
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like Missing At Random (MAR). Drawing inspiration from the principles of image inpainting (Lug-
mayr et al., 2022), our method first involves training the DDPM (Ho et al., 2020) on complete
datasets. During inference, our method effectively replaces the missing entries within an observed
dataset while preserving the integrity of the observed values. DiffImpute addresses mode col-
lapse challenges observed in GAN-based approaches (Salimans et al., 2016; Goodfellow, 2015) by
the stability and simplicity of our training and inference process. Additionally, DiffImpute im-
proves traceability by incorporating Gaussian noise throughout the diffusion process, as opposed to
the prevalent practice of zero-padding in VAE-based approaches (Mattei & Frellsen, 2019). Corre-
spondingly, we propose a novel Time Step Tokenizer to embed temporal order information
into the denoising network. Based on this, we explore four different denoising network architectures,
including MLP, ResNet, U-Net, and Transformer, to demonstrate the improvement of incorporat-
ing time information in the imputation process. Additionally, to produce an intricately continuous
data distribution, we propose Harmonization. Specifically, Harmonization meticulously
aligns the synthetically generated tabular entries in data-deficient regions with the observed datasets
through iterative processes of diffusion and denoising. This can further help model to learn de-
pendencies among variables like MAR. Lastly, addressing efficiency concerns while keeping the
imputation quality, our research introduces the Impute-DDIM. This method, inspired by the non-
Markovian Denoising Diffusion Implicit Models (DDIM) (Song et al., 2022), offers a significant
boost to the imputation speed, where our adaptation is laser-focused on tabular data.

Our major contributions are four-fold:

• We introduce DiffImpute, a method that trains a diffusion model on complete data.
DiffImpute offers a more stable and simplified training and inference process compared
to other generative approaches. Furthermore, it enables imputation for various missing
mechanisms of both MCAR and MAR.

• DDPM, originally developed for image data, is adapted for tabular data by introducing
the Time Step Tokenizer to encode temporal order information. This modification
enables the customization of four tabular denoising network architectures: MLP, ResNet,
Transformer, and U-Net in our experiment.

• We also introduce Harmonization to enhance coherence between imputed and ob-
served data during the sampling stage.

• To accelerate the inference and keep enhanced coherence, we extend the applica-
bility of Harmonization beyond consecutive time step sequences by proposing
Impute-DDIM. This modified approach supports repetitive and condensed time step se-
quences during the non-Markovian sampling process (Song et al., 2022).

Correspondingly, we conduct extensive experiments on seven tabular datasets which suggest Trans-
former as the denoising network demonstrates faster training and inference, along with state-of-the-
art performance.

2 RELATED WORKS

Missing Tabular Data Imputation. Most deep learning solutions often encounter challenges
when dealing with missing data, while ensemble learning approaches tend to experience a decrease
in predictive power due to the presence of missing data. Missing data originates from a myriad of
sources including human error, equipment malfunction, and data loss (Tan et al., 2013) and basic
single imputation methods such as mean and median imputation, while convenient, are notorious
for introducing bias (Roderick J. A. Little, 2002). To tackle this, the field has advanced toward
more complex imputation strategies, broadly categorized into iterative and generative methods. Iter-
ative techniques like Multiple Imputation by Chained Equations (MICE) (van Buuren & Groothuis-
Oudshoorn, 2011) and MissForest (Stekhoven & Bühlmann, 2011) harness the conditional distribu-
tions between features to iteratively estimate missing values. On the other hand, generative models
like GAIN (Yoon et al., 2018) and MIWAE (Mattei & Frellsen, 2019) use deep function approxima-
tors to capture the joint probability distribution of features and impute missing values accordingly.
Despite their sophistication, these approaches have limitations, including complicated optimization
landscapes (Jarrett et al., 2022) and strong assumptions about data missingness patterns (Li et al.,
2019; Yoon & Sull, 2020; Nazabal et al., 2020).
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Figure 1: Schematic representation of DiffImpute. During inference, noisy data is extracted
from known regions and supplemented with data imputed from the unknown region.

Diffusion Models for Tabular Data. Generative models like GANs and VAEs have carved a
niche in realms such as computer vision and natural language processing (Rombach et al., 2022;
Chen et al., 2022), but their foray into tabular data is still in its nascency. The reasons for this
limited penetration are multifaceted, including the constrained sample sizes and the intricate task
of integrating domain knowledge (Liu et al., 2023). Stepping into this milieu are diffusion mod-
els, which uniquely harness Markov chains to emulate the target distribution (Sohl-Dickstein et al.,
2015; Ho et al., 2020). Their distinctive edge is twofold: the capacity to spawn high-caliber sam-
ples (Ho et al., 2020) and the simplicity and robustness of their training paradigm (Goodfellow
et al., 2014; Sohl-Dickstein et al., 2015). In fact, burgeoning literature indicates that DDPMs can
potentially overshadow their generative counterparts (Dhariwal & Nichol, 2021; Nichol & Dhariwal,
2021). Yet, the potential of diffusion models in the tabular data context remains under-leveraged.
A handful of pioneering studies have blazed the trail, Tashiro et al. (2021) charted a course with
a score-based diffusion model targeted at imputing lacunae in time series data, while Zheng &
Charoenphakdee (2022) broadened this scope to envelop general tabular data imputation. Moreover,
previous work (Ouyang et al., 2023) delineated an innovative score-centric approach, grounded on
the gradient of the log-density score function. However, the landscape still lacks a simple but effi-
cient denoising diffusion stratagem crafted explicitly for tabular data imputation.

3 METHODS

In this section, we elaborate on DiffImpute and unpack the four denoising network architectures
correspondingly. Specifically, DiffImpute encompasses two stages: (1) the training of a diffusion
model using complete tabular data; (2) the imputation of missing data from observed values.

3.1 TRAINING STAGE OF DIFFIMPUTE .

The training phase of DiffImpute leverages DDPM on complete tabular data, denoted as
x0 = (x1

0, x
2
0, · · · , xk

0) ∈ Rk, where k signifies the tabular data’s dimensionality i.e., the num-
ber of columns. Within DDPM, Gaussian noise ϵ is introduced to drive the transition from input
x0 to distorted latent feature xt across a span of t time steps (Ho et al., 2020). Then, the objective
during the training of DiffImpute is to adeptly approximate the authentic data distribution of
the complete tabular set. To accomplish this, a denoising network is trained to acutely predict the
noise profile ϵ that has been infused into xt. Specifically, we employ the smooth L1 loss function,
motivated by the function’s proficiency in discerning the discrepancies between the anticipated and
the genuine noise (Gokcesu & Gokcesu, 2021).

3.2 SAMPLING STAGE OF DIFFIMPUTE .

Missing Data Imputation. In the sampling stage, the observed tabular data x is categorized into
two distinct regions (Lugmayr et al., 2022). The “known region” defined by truly observed values
is represented as m⊙ x, where m ∈ {0, 1}k is a Boolean mask pinpointing the known data with ⊙
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denoting element-wise multiplication. Conversely, the “unknown region” harbors the missing val-
ues, denoted by (1 −m) ⊙ x. Imputation is executed by leveraging our trained denoising network
within DiffImpute, symbolized as fθ(xt, t). This network focuses on the unknown region while
retaining the values in the known sector, as illustrated in Fig. 1. Diving deeper, this denoising net-
work embarks on a stepwise refinement of the “unknown region”, commencing with unadulterated
Gaussian noise. By tapping into the Markov Chain property of DDPM, Gaussian noise is injected at
each time step t to aid in sampling from the known region, m⊙ x, depicted as follows:

xknown
t−1 =

√
ᾱt−1 · x0 +

√
1− ᾱt−1 · ϵ, (1)

where ᾱt−1 signifies the aggregate diffusion level or noise imposed on the initial input data x0 until
time step t − 1, and ϵ ∈ Rk is drawn from a Gaussian distribution. However, for the unknown
territories, the denoising network facilitates the sampling of progressively refined data with every
backward step as follows:

xunknown
t−1 =

1
√
αt

·
(
xt −

1− αt√
1− ᾱt

· fθ(xt, t)

)
+ σt · ϵ, (2)

where αt represents the diffusion coefficient at time step t, σt denotes the posterior standard devi-
ation at time step t. To synthesize the imputed data, the segments xknown

t−1 and xunknown
t−1 are amalga-

mated based on their respective masks, yielding xt−1 at the t− 1 time step:

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 . (3)
This procedure is reiterated in every reverse step until the final imputed data, x0, emerges.

To further bolster the quality of our imputation, we propose Harmonization as a means to en-
hance the coherence between xknown

t−1 and xunknown
t−1 , thereby improving the quality of imputation.

While Harmonization promises improved performance, extended time steps might inadvertently
prolong inference runtime. To counterbalance this, we design Impute-DDIM to expedite the sam-
pling process.

Harmonization. During the sampling of xknown
t−1 , we observed notable inconsistencies despite

the model’s active efforts to harmonize data at each interval (Lugmayr et al., 2022), because the cur-
rent methodologies are suboptimal in leveraging the generated components from the entire dataset.
To overcome this challenge and enhance the consistency during the sampling stage, we introduce
Harmonization to retrace the output xt−1 in Eq. (3) back by one or more steps to xt−1+j by cal-
culating

√
ᾱt−1+j ·x0+

√
1− ᾱt−1+j ·ϵ, where j ≥ 1 represents the number of steps retraced. For

instance, j = 1 indicates a single-step retrace. It should be noted that as j increases, the semantic
richness of the data is amplified. However, a trade-off emerges as the run-time during the inference
phase grows since the denoising network having to initiate its operation from the time step t−1+ j.

Impute-DDIM. To accelerate the sampling stage without compromising the benefits of
Harmonization, we introduced Impute-DDIM, inspired by DDIM (Song et al., 2022). Central
to its merit is the capacity to sample data at a substantially condensed time step τ for xunknown

t−1 dur-
ing inference. By honing in on the forward procedure, specifically within the subset xτ1, . . . ,xτS

where S ∈ {1, . . . , T}, the computational weight tied to inference is appreciably reduced. Here, τ
represents a sequentially increasing subset extracted from the range {1, . . . , T}. It’s worth noting
that the derivation of xunknown

t−1 from its preceding time step xunknown
t underwent a slight alteration:

xunknown
t−1 =

√
αt−1 ·

(
xt −

√
1− αtfθ(x

unknown
t , t)

√
αt

)
+

√
1− αt−1 − σ2

t · fθ(xunknown
t , t) + σtϵ,

where fθ(x
unknown
t , t) refers to the predicted noise at time step for the unknown region of x using a

trained denoising model.

Overview. In brief, the overall sampling process of DiffImpute is summarized in Alg. 1. Start-
ing at time step T and backtracking to 1, the initial step involves drawing the noise-laden obser-
vation xknown

t−1 at time step t − 1. This is followed by its multiplication with the mask m to derive
the known section. For the unknown region (1 − m) ⊙ x, xunknown

t−1 is sourced using the reverse
procedure. The denoising network fθ(xt, t) underpins this reverse modeling. Subsequently, the al-
gorithm amalgamates the known and uncertain data facets to compute the imputed value at t − 1.
When the Harmonization setting with j = 1 is active, a diffusion of the output xt−1 back to xt

is executed.
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Algorithm 1 Pseudo code for the sampling stage of DiffImpute with Harmonization.

1: input: Observed tabular data x ⊆ Rk, retraced step J , the Boolean mask for the known region
m, time step T , denoising network fθ(xt, t)

2: for t = T, . . . , 1 do ▷ Loop through every time step t reversely
3: for j = 1, . . . , J do ▷ Harmonization parameter: retraced steps
4: ϵ ∼ N (0, I) if t > 1, else ϵ = 0 ▷ Sampling random noise
5: xknown

t−1 =
√
ᾱt · x0 +

√
1− ᾱt · ϵ ▷ Calculate the noisy observation at time step t− 1

6: xunknown
t−1 = 1√

αt
·
(
xt − 1−αt√

1−ᾱt
· fθ(xt, t)

)
+ αt · ϵ ▷ Sampling denoised data

7: xt−1 = m · xknown
t − 1 + (1−m) · xunknown

t−1 ▷ Combining known and unknown regions
8: if j < J and t > 1 then
9: xt−1+j =

√
ᾱt−1+j · xt−1 +

√
1− ᾱt−1+j · ϵ ▷ Diffuse xt−1 back to xt−1+j

10: end if
11: end for
12: end for
13: return x0

3.3 DENOISING NETWORK ARCHITECTURE.

To obtain a denoising network tailored specifically for tabular data, we introduce the Time Step
Tokenizer to encode temporal information into the denoising procedure. Building upon this
foundational component, we have adapted four prominent denoising network architectures: MLP,
ResNet, Transformer, and U-Net, as illustrated in Fig. 2.

Time Step Tokenizer. Time step tokenizer is designed to encapsulate the information of
time step t ∈ R, written as temb = TimeStepTokenier(t) ∈ R2k. The tokenizer achieves
this by formulating two distinct embeddings for scale and shift respectively, denoted as temb =
Concate[temb scale, temb shift] ∈ R2k, where Concat signifies the concatenation of the two tensors
temb scale and temb shift along the same dimension. These learnable embeddings, temb scale and temb shift,
are inspired by the fixed sine and cosine transformations of t (Vaswani et al., 2017), defined as:

temb = Concat[temb scale, temb shift]

= Linear(SiLU(Linear(GELU(Linear[tscale, tshift])))),

tscale = sin(t · exp (− log(10000)

k
· [0, 1, 2, . . . , k − 1])) ∈ Rk,

tshift = cos(t · exp (− log(10000)

k
· [0, 1, 2, . . . , k − 1])) ∈ Rk,

(4)

where Linear is a learnable linear layer, SiLU refers to the Sigmoid Linear Unit activa-
tion (Elfwing et al., 2017), and GeLU applies the Gaussian Error Linear Units function (Hendrycks
& Gimpel, 2023). Thus, each of the temb scale, temb shift maintain the same dimension with xt ∈ Rk.
To seamlessly integrate these time step embeddings with the feature x, we compute the update as
x · (temb scale + 1) + temb shift, as depicted by “Add & Multiply” in Fig. 2(b).

MLP. By leveraging the time step tokenizer, we can adapt the MLP (Gorishniy et al., 2021)
to serve as a denoising network by incorporating t as an auxiliary input. Specifically, we intro-
duce the time embedding, temb, derived from the time step tokenizer, into a modified block named
TimeStepMLP. This new block is an evolution of the traditional MLP Block. The architecture of
this adaptation is depicted in Fig. 2(b) and can be mathematically represented as

MLP(x, temb) = Linear(TimeStepMLP(. . . (TimeStepMLP(x, temb)))),

TimeStepMLP(x, temb) = Dropout(ReLU(Linear(x) · (temb scale + 1) + temb shift)),
(5)

where Dropout randomly zeroes some of the elements of the input tensor using samples from a
Bernoulli distribution, and ReLU stands for the rectified linear unit function (Agarap, 2019).

ResNet. Building on the foundation of the TimeStepMLP, we then introduce a variant of
ResNet (Gorishniy et al., 2021) tailored for tabular DDPM. In this design, the TimeStepMLP
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Figure 2: Four types of denoising network architecture for tabular data. (a) Time Step Tokenzier,
(b) MLP; (c) ResNet; (d) Transformer; (e) U-Net.

block is seamlessly integrated into each ResNet block, as illustrated in Fig. 2(c). We hypothesize
that due to the depth of its representations, this ResNet variant will outperform the MLP-based
models. Formally, the representation of our ResNet architecture is:

ResNet(x, temb) = Prediction(ResBlock(. . . (ResBlock(Linear(x), temb)))),

ResBlock(x, temb) = x+ Dropout(Linear(TimeStepMLP(BatchNorm(x), temb))),

Prediction(x) = Linear(ReLU(BatchNorm(x))),

(6)

where BatchNorm refers to the 1D batch normalization (Ioffe & Szegedy, 2015).

Transformer. To further enhance our imputation capabilities, we adapt the Transformer archi-
tecture to tailor it explicitly for the tabular domain, as shown in Fig. 2(d). The transformer
processes the feature and time step embeddings through a series of sequential layers, with each
layer focusing on the feature level associated with a specific time stamp, t. To elevate the rep-
resentation of input tabular data, x, we employ a learnable linear layer, aptly named Feature
Tokenizer (Gorishniy et al., 2021). Then, for a given feature x = (x1, · · · , xk) ∈ Rk, its em-
beddings are constructed as xk

emb = bk + xk · Wk ∈ Rd, where bk ∈ Rd is the learnable bias
and Wk ∈ Rd represents the learnable weight. The aggregated embeddings are then represented
as xemb = [x1

emb, . . . ,x
k
emb] ∈ Rk×d, with d being the feature embedding dimension. To capture

global contexts and further enhance the model’s performance on downstream tasks, we introduce
the [CLS] ∈ Rd token (Devlin et al., 2019). This token is concatenated with the embedding ma-
trix xemb, resulting in Concat([CLS],xemb) ∈ R(k+1)×d. The architecture can be mathematically
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described as:
Transformer(x, temb) = Prediction(TransBlock(. . . (TransBlock(

Concat([CLS],FeatureTokenizer(x)), temb))))

TransBlock(x, temb) = ResPreNorm(FFNtemb ,ResPreNorm(MHSA, x)),

ResPreNorm(Operator,x) = x+ Dropout(Operator(LayerNorm(x))),

FFNtemb(x) = Linear(TimeStepMLP(x, temb)),

Prediction(x) = Linear(ReLU(LayerNorm(x))),

(7)

where LayerNorm refers to layer normalization (Ba et al., 2016), while MHSA denotes the Multi-
Head Self-Attention layer (Vaswani et al., 2017) and we set nheads = 8.

U-Net. U-Net (Ronneberger et al., 2015) has garnered significant acclaim in the domain of dif-
fusion models. Historically, its prowess has been predominantly demonstrated in image and text
sequence processing. This has inadvertently led to a dearth of U-Net architectures specifically fine-
tuned for tabular data. Addressing this gap, we introduce a novel U-Net tailored for tabular data,
integrating both an encoder and decoder, as illustrated in Fig. 2(e). This design uniquely amalga-
mates a variant of TimeStepMLP and self-attention mechanisms, ensuring optimal performance
for tabular data. Mathematically, our U-Net is represented as:

UNet(x, temb) = Linear(DecoderBlock(· · · (DecoderBlock((
BottleneckBlock(· · · (EncoderBlock(· · ·EncoderBlock((x, temb))))))))),

DecoderBlock(x, temb) = MHSA(ResBlockUNet(UpsampleBlock(x, temb))),

EncoderBlock(x, temb) = MHSA(ResBlockUNet(DownsampleBlock(x, temb))),

ResBlockUNet(x) = GroupNorm(x) + x,

(8)

where GroupNorm refers to Group Normalization (Wu & He, 2018), while Conv1d signifies
1D convolution (Kiranyaz et al., 2019). The DownSampleBlock, UpSampleBlock, and
BottleneckBlock components, although distinct in their roles, share analogous layers with
variations primarily in input and output channel sizes. Specifically, the DownSampleBlock com-
mences with 64 channels, amplifying to 512, capturing intricate semantic information. In contrast,
the UpSampleBlock initiates with 768 channels, tapering to 1, facilitating the restoration of fea-
ture map dimensions by harnessing the insights from the DownSampleBlock. This restoration is
achieved through a skip connection, merging upsampled feature maps with their counterparts from
the downsampling trajectory. The BottleneckBlock serves as a conduit, preserving consistent
input and output channel dimensions, and distilling pivotal features from the downsampling phase.
A comprehensive formulation is provided in the Appendix.

Denoising Network Formulation. Consequently, the denoising network is formulated as
fθ(x, t) = Network(x,TimeTokenizer(t)). Here, Network can be any of the following
architectures: MLP, ResNet, Transformer, or U-Net.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATIONS.

Dataset. We leverage seven publicly accessible datasets, offering a diverse representation of do-
mains. These datasets are: (1) California Housing (CA), real estate data (R. Kelley Pace, 1997); (2)
Helena (HE) and (3) Jannis (JA) are both anonymized datasets (Guyon et al., 2019); (4) Higgs (HI),
simulated data of physical particles (P. Baldi, 2014), where we adopted the version housing 98K
samples from the OpenML repository (Vanschoren et al., 2013); (5) ALOI (AL), an image-centric
dataset (Geusebroek et al., 2005); (6) Year (YE), dataset capturing audio features (Bertin-Mahieux
et al., 2011); (7) Covertype (CO), it describes forest characteristics (Blackard & Dean, 1999).

Data Preprocessing. To ensure equitable benchmarking, we administer a consistent preprocessing
strategy for all datasets and models. Specifically, we scale each feature to a (0, 1) range by subtract-
ing its minimum and then dividing by its range. This transformation, conveniently integrated within
the Scikit-learn library (Pedregosa et al., 2011), has been applied to both training and test data.
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Figure 3: Imputation performance rankings of imputation methods in terms of MSE. The lower the
better.

Evaluation Metrics. To gauge the precision of imputed values, we manually induce random
masks on the test set data. The randomness of the mask is characterized by a percentage prandom ∈
{10%, . . . , 90%} for each row (MCAR) and column mask (MAR) number pcol ∈ {1, . . . , 4}. Three
evaluative criteria have been established: (1) Mean Squared Error (MSE); (2) Pearson Correlation
Coefficient; (3) Downstream Tasks Performance. To mitigate potential biases from randomness dur-
ing mask generation, we instantiate five distinct random seeds for each missing percentage. Given
the inherent variability in data masking and diffusion inference, each random setting undergoes 25
inferences, arising from 5 unique data masks and 5 independent inferences per mask. For each mask
generated using a unique random seed, the imputed data is multiplied by one-fifth for each inference,
and the results are accumulated over five inferences. Subsequently, the sum of these accumulated
results is employed to calculate the MSE for the particular generated mask. The final outcome for
each mask setting is determined by averaging the five MSE results obtained from each generated
mask from the corresponding random seed.

4.2 RESULTS.

Comparison on Imputation Performance and Downstream Tasks. We start our evaluation by
contrasting the performance of DiffImpute with a range of established single and iterative tab-
ular imputation methods. As illustrated in Fig. 3 and Tab. 1, when equipped with a Transformer
as the denoising network, DiffImpute consistently surpasses its peers, both in terms of MSE
that measures the imputation performance and downstream tasks on the imputed data. However, an
anomaly is observed with the HI dataset. Its second-place performance can be traced back to the
dataset’s distinct characteristics, notably its dominant normal distributions and scant tail densities.

Table 1: Downstream task performance comparison using the imputed dataset. As different datasets
apply different metrics, we report the performance rankings as the measurement.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 3.9 4.5 6.5 1.8 6.9 3.9 4.3 4.5 1.7
Median Imputation 5.2 5.6 6.9 2.9 3.7 3.7 2.9 4.4 1.5
Mode Imputation 6.6 7.3 5.8 4.1 5.5 6.9 6.2 6.0 1.1
0 Imputation 10.1 9.2 8.1 7.6 7.9 8.0 9.5 8.7 1.0
1 Imputation 10.7 11.0 10.2 11.5 11.3 9.7 10.6 10.7 0.6
LOCF Imputation 8.2 10.5 10.1 9.7 11.5 10.5 8.5 9.9 1.2
NOCB Imputation 9.2 12.1 12.1 12.0 12.0 12.2 10.0 11.4 1.2
MICE 2.8 2.1 3.0 6.0 2.8 3.9 9.6 4.3 2.6
GAIN 4.9 3.5 4.0 7.3 4.9 5.2 7.7 5.4 1.6
DiffImpute w/ MLP 8.5 8.5 7.7 8.5 10.2 8.9 8.2 8.7 0.8
DiffImpute w/ ResNet 6.2 5.1 5.4 6.6 6.6 6.1 3.3 5.6 1.2
DiffImpute w/ Transformer 1.5 2.2 2.4 2.4 1.4 3.4 1.4 2.1 0.7
DiffImpute w/ U-Net 12.1 9.0 8.2 10.1 5.2 6.1 6.2 8.1 2.5
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Table 2: Ablation on Time Step
Tokenizer (‘TST‘) and Harmonization
(‘H’) with four denoising networks. We use
the CA dataset and report the imputation
performance in terms of MSE.

TST H MLP ResNet Transformer U-Net
✕ ✕ 0.0212 0.0457 0.0210 0.0497
✓ ✕ 0.0585 0.0498 0.0194 0.6831
✕ ✓ 0.0164 0.0199 0.0174 0.0184
✓ ✓ 0.0268 0.0181 0.0191 4.2497

Table 3: Ablation on Impute-DDIM with
four denoising networks. Note that when
τ = 500, no Impute-DDIM is applied.

τ MLP ResNet Transformer U-Net
10 0.2791 0.2574 0.2576 0.2741
25 0.2396 0.1892 0.1808 0.2274
50 0.1895 0.1164 0.0986 0.1727
100 0.1252 0.0525 0.0353 0.1145
250 0.0556 0.0240 0.0193 0.0795
500 0.0585 0.0498 0.0194 0.6831

This particular outcome accentuates the effectiveness of the mean imputation technique. Interest-
ingly, mean imputation not only holds its own but even outperforms well-regarded methods such
as MICE, GAIN, and DiffImpute with ResNet. While MICE does outshine mean imputation
in specific datasets like HE, AL, and YE, its overall rank suffers due to variable performance on
other datasets. Within the sphere of deep generative models, GAIN’s performance parallels that of
DiffImpute with ResNet, albeit at a slower inference speed.

Effect of Denoising Network Architectures. Among the four denoising networks, the Trans-
former consistently stands out, marking its dominance in the tabular data domain. ResNets, on the
other hand, serve as a robust baseline, delivering both impressive performance and swift inference
speeds, thereby outperforming other models. The MLP and U-Net architectures face challenges in
grasping sequential data, such as time step inputs. However, U-Net exhibits exceptional performance
on the AL dataset, aligning with its foundational design for image data processing. Yet, its extended
training and inference times make it a less optimal choice for tabular imputation. In summary, the
Transformer within DiffImpute emerges as a leading solution.

Ablation Study. To gain deeper insights into the contributions of individual components, we con-
ducted an ablation study on the time embedding layers, Harmonization, and Impute-DDIM on
the CA dataset. We initiated our investigation by excluding the time step tokenizer from
the denoising network. Interestingly, the impact on MSE performance was not uniform across mod-
els. This omission led to a noticeable decline in performance for the Transformer achitecture, with
a 7.96% drop in MSE performance and 6.28% drop in the downstream task efficacy respectively.
The U-Net and MLP architectures experienced significant improvements, recording a 63.81% and
94.76% enhancement in MSE, respectively. Subsequently, we evaluated the impact of incorporating
the Harmonization with j = 5. The results, as detailed in Tab. 2, highlight the performance
boosts achieved by Harmonization across various architectures. To illustrate, when integrated
into the DiffImpute with the MLP model, there was a remarkable 53.81% increase in MSE and
a 22.84% improvement in downstream task performance for the CA dataset. Lastly, we assessed the
efficacy of Impute-DDIM in enhancing the inference speed, experimenting with different τ sam-
pling steps, specifically τ ∈ {10, 25, 50, 100, 250}. We also set j = 5. As shown in Tab. 3, when
τ increases, the quality of imputation improves. Remarkably, with Impute-DDIM and a τ setting
of 250, we managed to double the inference speed without compromising the MSE performance for
both our MLP and Transformer models.

5 CONCLUSION

In this work, we introduce DiffImpute, a novel denoising diffusion model for imputing missing
tabular data. By seamlessly incorporating the Time Step Tokenizer, we have adapted four
distinct denoising network architectures to enhance the capabilities of DiffImpute. Moreover, the
amalgamation of the Harmonization technique and Impute-DDIM ensures that DiffImpute
delivers superior performance without incurring extended sampling time. Our empirical evaluations,
spanning seven diverse datasets, underscore the potential of DiffImpute as a foundational tool,
poised to catalyze future innovations in the realm of tabular data imputation. One future direction
is to further accelerate the sampling stage by distillation (Salimans & Ho, 2022). Additionally, we
envision broadening the scope of DiffImpute to cater to missing multimodal scenarios, given
that latent space features can be intuitively treated as tabular data.
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A DATASET DETAILS

Dataset Descriptions and Statistics. We employed seven benchmark datasets in our experiments,
the specifics of which are elaborated in Tab. 4. These datasets span two primary tasks, namely clas-
sification and regression. For evaluation, we adopt the mean square error (MSE) for regression tasks
and the accuracy score for classification tasks. The data distribution for each dataset is structured
such that 80% is allocated for training and the remaining 20% for testing.

Table 4: Statistics of the seven datasets used in our experiments. Regression tasks utilize mean
square error (MSE) for evaluation, while classification tasks employ accuracy score.

Name Abbr. # Train # Test # Num Task Type Batch Size
California Housing CA 16512 4128 8 Regression 256
Helena HE 52156 13040 27 Multiclass 256
Jannis JA 66986 16747 54 Multiclass 256
Higgs Small HI 78439 19610 28 Binclass 256
ALOI AL 86400 21600 128 Multiclass 256
Year YE 463715 51630 90 Regression 256
Covtype CO 464809 116203 54 Multiclass 256

Download Link. All datasets, formatted as Numpy.darray, are accessible for down-
load from https://www.dropbox.com/s/o53umyg6mn3zhxy/data.tar.
gz?dl=1. The source of these datasets is https://github.com/Yura52/
tabular-dl-revisiting-models.

Preprocessing. For preprocessing, we standardized the numerical features and target values of
each dataset using the scikit-learn library (Pedregosa et al., 2011). The standardization is
based on the following equations:

Xstd =
(X−Xmin)

Xmax −Xmin
,

Xscaled = Xstd · (max − min) + min.
(9)

This preprocessing is applied to all variables, excluding the classification labels y for datasets CA,
HE, JA, HI, AL, and CO. The feature values are scaled to lie between 0 and 1, with min=0 and
max=1. Then we maintain a consistent 80% and 20% train-test split across all datasets, enabling
uniform evaluation.

B METHODOLOGICAL DETAILS

This section elaborates on the details of the methodology.

Detailed Formulation of of U-Net. The following equations given the formal definition of the
DownSampleBlock, UpSampleBlock, and the BottleneckBlock:

DownSampleBlock(x, temb) = SiLU(GroupNorm(Conv1d(SiLU(

TimeStepMLP(GroupNorm(Conv1d(x))), temb)))) + x

UpSampleBlock(Concat(x,DownSampleBlock(x, temb)), temb) = SiLU(

GroupNorm(Conv1d(SiLU(TimeStepMLP(GroupNorm(Conv1d(

Concat(x,DownSampleBlock(x, temb))))), temb)))) + Concat(x,

DownSampleBlock(x, temb))

BottleneckBlock(x) = MHSA(ResU-Net(SiLU(GroupNorm(Conv1d(SiLU(

TimeStepMLP(GroupNorm(Conv1d(x))), temb)))) + x)).

(10)

Pseudo Code for the Training Stage. The pseudo code of DiffImpute training is summarized
in Alg. 2.
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Algorithm 2 Pseudo code for the training stage of DiffImpute on a complete dataset x.

1: input: Complete training data x ⊆ Rk, batch size N , time steps T , denoising network fθ, and
smooth L1 loss scaling parameter βL1 = 1.

2: for epoch = 1, 2, . . . do
3: for sampled mini-batch {x}N} ∈ X do
4: t ∼ Uniform({1, . . . , T}) ▷ Uniformly sample time steps for denoising model training
5: ϵ ∼ N (0, I) ▷ Sample random noise from the Gaussian distribution
6: Compute the xt based on x0 :

√
ᾱtx0 +

√
1− ᾱtϵ ▷ Diffuse x0 to the noisy data xt

based on Eq. (1)
7: Compute the predicted noise ϵθ = f(xi

t, t)

8: Define the smooth L1 loss function L :=

{
0.5 (ϵ− ϵθ)

2
/βL1, if |ϵ− ϵθ| < βL1

|ϵ− ϵθ| − 0.5 · βL1 otherwise
▷

Calculate the loss between predicted noise ϵθ and ground truth noise ϵ
9: Update neural network fθ(xt, t) to minimize L using AdamW optimizer.

10: end for
11: end for
12: return denoising network fθ(xt, t)

Algorithms for Impute-DDIM Step Schedule. Pseudo code for the Impute-DDIM skip type
schedule function definition is depicted in code snippet. 1.

Code Listing 1: Impute-DDIM skip type schedule function
def skip_seq(num_timesteps, timesteps, skip_type="uniform"):

if skip_type == "uniform":
skip = num_timesteps // timesteps
seq = range(0, num_timesteps, skip)
return seq

elif skip_type == "quad":
seq = (

np.linspace(
0, np.sqrt(num_timesteps * 0.8), timesteps

)
** 2

)
seq = [int(s) for s in list(seq)]
return ddim_seq

else:
raise NotImplementedError

Algorithms for Harmonization with Impute-DDIM Schedule. Pseudo code for the
Harmonization schedule function definition is illustrated in code snippet. 2, where working
with the Impute-DDIM. The ddim seq argument is the output of the function of skip seq
from the code snippet. 1.
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Code Listing 2: Harmonization schedule function definition

def get_schedule_jump_DDIM(ddim_seq, jump_length, jump_n_sample):
jumps = {}
for j in range(0, len(ddim_seq)-jump_length, jump_n_sample):

jumps[ddim_seq[j]] = jump_n_sample - 1

t = len(ddim_seq)
ts = []

while t >= 1:
t = t-1
ts.append(ddim_seq[t])

if jumps.get(ddim_seq[t], 0) > 0:
jumps[ddim_seq[t]] = jumps[ddim_seq[t]]-1
for _ in range(jump_length):

t = t + 1
ts.append(ddim_seq[t])

ts.append(-1)

return ts

Schematic Illustration. To elucidate the diffusing and denoising process, we present a visual rep-
resentation in Fig. 4. This diagram captures the intricate dynamics of noise addition and subsequent
denoising. Specifically, it illustrates how the data distribution gradually morphs into a Gaussian
distribution during the noise addition phase and reverts during the denoising phase.

Figure 4: This visualization captures the dual processes of noise addition and denoising. As noise is
added, the data distribution converges towards a Gaussian shape, which is then reversed during the
denoising phase.

C IMPLEMENTATION DETAILS

Hardware Platforms. Our implementation followed a structured workflow:

• We did the data preprocessing on any suitable hardware.
• Model training, inference, and evaluation were exclusively performed on an NVIDIA Tesla

3090 24GB GPU, boasting 35.6 TFLOPS. The software environment was consistent across
all experiments, utilizing Python version 3.10.9 and Pytorch version 2.0.1+cu117.
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Training Settings. While DiffImpute is trained on complete data, it performs imputation on
test data, thereby leveraging insights from the complete dataset. To ensure a fair comparison, we
also provided the training data as contextual information for all competing methods during their test
data imputation.

Hyper-parameters for DiffImpute. DiffImpute is trained over 20 epochs using batch sizes
of 64. Across all denoising network architectures and datasets, we employed an initial learning rate
of 1e − 3, complemented by a learning rate decay of 1e − 5, optimized via AdamW. A notable
deviation is observed in the U-Net architecture for the YE dataset, which operates without feature
learning rate decay and adopts an initial rate of 0.01. During training, we designate the time step
as Ttraining = 1000. Conversely, during the sampling phase, it’s set to Tsampling=500, representing the
reverse process steps. The diffusion coefficient, αt, is derived from the forward process variance βt,
defined as αt := 1 − βt. We adopt the βt schedule from a cosine schedule (Nichol & Dhariwal,
2021). The posterior variance calculation follows: σt = 1−ᾱt−1

1−ᾱt
· βt (Ho et al., 2020). For the

Impute-DDIM acceleration, we partition the sampling step Tsampling by a condensed time step S,
uniformly distributing Tsampling across S steps. For clarity, we set η = 0, resulting in σt = 0, where
σt(η) = η

√
(1− αt−1) / (1− αt)

√
1− αt/αt−1 (Song et al., 2022). Tabs. 5 to 8 describe the

implementation and configuration details of the four denoising networks.

Table 5: MLP model hyper-parameters as denoising network architecture in DiffImpute.

Imputation Methods CA HE JA HI AL YE CO
Layer count 3 3 3 3 3 3 3
Feature embedding size / / / / / / /
Head count 8 8 8 8 8 8 8
Activation & FFN size factor (ReLU, /) (ReLU, /) (ReLU, /) (ReLU, /) (ReLU, /) (ReLU, /) (ReLU, /)
Attention dropout 0.2 0.2 0.2 0.2 0.2 0.2 0.2
FFN dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Residual droupout 0 0 0 0 0 0 0
Initialization / / / / / / /
Parameter count 2376 18,279 65,718 19,516 65,718 174,330 65,718
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

Table 6: ResNet model hyper-parameters as denoising network architecture in DiffImpute.

Imputation Methods CA HE JA HI AL YE CO
Layer count 3 3 3 3 3 3 3
Feature embedding size 192 4.5 3.0 4.3 3.3 2.0 5.8
Head count 8 8 8 8 8 8 8
Activation & FFN size factor (ReLU, /) (ReLU, /) (ReLU, /) (ReLU, /) (ReLU, /) (ReLU, /) (ReLU, /)
Attention dropout 0.2 0.2 0.2 0.2 0.2 0.2 0.2
FFN dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Residual droupout 0 0 0 0 0 0 0
Initialization / / / / / / /
Parameter count 3784 22,119 73,014 23,484 73,014 186,234 73,014
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
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Table 7: U-Net model hyper-parameters as denoising network architecture in DiffImpute.

Imputation Methods CA HE JA HI AL YE CO
Layer count 3 3 3 3 3 3 3
Feature embedding size / / / / / / /
Head count 8 8 8 8 8 8 8
Activation & FFN size factor (SiLU, /) (SiLU, /) (SiLU) (SiLU, /) (SiLU, /) (SiLU, /) (SiLU, /)
Attention dropout 0.2 0.2 0.2 0.2 0.2 0.2 0.2
FFN dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Residual droupout 0 0 0 0 0 0 0
Initialization / / / / / / /
Parameter count 5,284,664 5,590,792 6,051,898 5,607,324 6,051,898 6,714,334 6,051,898
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight decay 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2

Table 8: Transformer model hyper-parameters as denoising network architecture in DiffImpute.

Imputation Methods CA HE JA HI AL YE CO
Layer count 3 3 3 3 3 3 3
Feature embedding size 192 192 192 192 192 192 192
Head count 8 8 8 8 8 8 8
Activation & FFN size factor (ReGLU, 4/3) (ReGLU, 4/3) (ReGLU, 4/3) (ReGLU, 4/3) (ReGLU, 4/3) (ReGLU, 4/3) (ReGLU, 4/3)
Attention dropout 0.2 0.2 0.2 0.2 0.2 0.2 0.2
FFN dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Residual droupout 0 0 0 0 0 0 0
Initialization kaiming kaiming kaiming kaiming kaiming kaiming kaiming
Parameter count 3,997,448 4,008,411 4,023,990 4,008,988 4,023,990 4,044,762 4,023,990
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
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Evaluation Metrics. To assess imputation performance, we employ the following metrics. We
first denote the imputed data as x̂ ∈ Rk and the ground truth as x ∈ Rk. Here, x̂i represents the i-th
imputed value, and xi is the corresponding i-th ground truth value. We use Nmiss to signify the total
number of missing values.

• Mean Squared Error (MSE): This metric quantifies the average squared discrepancy be-
tween the imputed and actual values.

MSE(x, x̂) =
∑Nmiss−1

i=0 (xi − x̂i)
2

Nmiss
(11)

• Pearson Correlation Coefficient: This evaluates the linear relationship between the actual
and imputed values.

R(x, x̂) =
∑Nmiss−1

i=0 ((xi −mean(x)) · (x̂i −mean(x̂)))√∑Nmiss−1
i=0 (xi −mean(x))2 ·

√∑Nmiss−1
i=0 (x̂i −mean(x̂))2

• Downstream Tasks Performance: For evaluating the performance on downstream tasks,
we consistently use the same training and test sets. Depending on the nature of the down-
stream task, we employ either the root mean squared error (RMSE) for regression or the
accuracy score for classification.

– RMSE: For regression tasks, the RMSE metric is used, where yi and ŷi denote the
i-th actual and predicted values, respectively, and N is the total number of values,
defined as:

RMSE(y, ŷ) =

√∑N−1
i=0 (yi − ŷi)

2

N
(12)

– Accuracy Score: For classification tasks, we utilize the accuracy score, as defined in
the Scikit-learn library (Pedregosa et al., 2011). Here, 1[ŷi=yi] is an indicator
function that returns 1 if the condition x̂i = yi holds true.

Accuracy Score(y, ŷ) =
∑N

i=0 1[x̂i=yi]

N
(13)

Compared Methods. Our research endeavors to benchmark various imputation techniques and
model architectures across a suite of seven datasets. It’s crucial to note that we refrained from fine-
tuning model parameters or employing model-agnostic deep learning enhancements like pretraining,
additional loss functions, or data augmentation. Although these methods can potentially elevate
model performance, our core objective remains to gauge the intrinsic efficacy of the diverse model
architectures under uniform conditions. Below, we elaborate on a concise synopsis of the methods
under comparison:

• Mean Imputation: Substitutes missing values with the feature’s mean.

• Median Imputation: Uses the median of available values for imputation.

• Mode Imputation: Fills missing slots with the most frequent value.

• 0 Imputation: Directly replaces missing values with 0.

• 1 Imputation: Uses 1 as the replacement.

• LOCF Imputation: Fills gaps with the last observed value.

• NOCB Imputation: Uses the subsequent observed value for imputation.

• MICE (linear) Imputation: Employs multiple imputations based on regularized linear
regression (van Buuren & Groothuis-Oudshoorn, 2011).

• GAIN Imputation: Leverages Generative Adversarial Nets for imputation (Yoon et al.,
2018).
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Hyper-parameters for Compared Methods. Below, we detail the hyper-parameters of the com-
pared methods used in our experiments:

• MICE: We fix and do not tune the following hyper-parameters:
– nimputations = 1

– maxiter = 100

– initialstrategy = 0

– imputationorder = 0

– randomstate is set to the current time.
• GAIN: We fix and do not tune the following hyper-parameters:

– batchsize = 256

– nepochs = 1000

– hintrate = 0.9

– lossalpha = 10

D MORE RESULTS

D.1 IMPUTATION PERFORMANCE IN TERMS OF MSE.

We present the mean squared error (MSE) results for imputed data, evaluated under various miss-
ingness mechanisms across our seven benchmark datasets.

Random Mask. In this segment, we focus on the imputation performance under the random mask
settings. This mechanism aligns with the Missing Completely At Random (MCAR). The results for
each of the seven datasets are detailed in the subsequent tables, referenced as Tabs. 9 to 15.

Table 9: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on CA using MSE. Optimal results are highlighted in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.0210 0.0212 0.0214 0.0212 0.0213 0.0212 0.0212 0.0213 0.0212
Median Imputation 0.0254 0.0256 0.0257 0.0254 0.0257 0.0256 0.0256 0.0256 0.0256
Mode Imputation 0.0689 0.0843 0.0683 0.0689 0.0683 0.0681 0.0533 0.0536 0.0534
0 Imputation 0.1055 0.1054 0.1067 0.1070 0.1073 0.1072 0.1070 0.1069 0.1069
1 Imputation 0.6892 0.6896 0.6881 0.6874 0.6868 0.6871 0.6872 0.6875 0.6876
LOCF Imputation 0.0422 0.0421 0.0418 0.0426 0.0421 0.0422 0.0425 0.0425 0.0426
NOCB Imputation 0.0420 0.0436 0.0438 0.0425 0.0437 0.0432 0.0429 0.0430 0.0431
MICE (linear) 0.0192 0.0230 0.0252 0.0270 0.0314 0.0333 0.0367 0.0376 0.0400
GAIN 0.0224 0.0232 0.0238 0.0290 0.0422 0.0532 0.0739 0.0907 0.1024
DiffImpute w/ MLP 0.0495 0.0526 0.0554 0.0582 0.0609 0.0639 0.0670 0.0701 0.0734
DiffImpute w/ ResNet 0.0160 0.0171 0.0182 0.0196 0.0218 0.0254 0.0321 0.0449 0.0680
DiffImpute w/ Transformer 0.0155 0.0170 0.0184 0.0195 0.0210 0.0221 0.0233 0.0246 0.0259
DiffImpute w/ U-Net 0.6323 0.6540 0.6759 0.6895 0.7005 0.7077 0.7155 0.7206 0.7252
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Table 10: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on HE using MSE. Optimal results are highlighted in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.0285 0.0285 0.0285 0.0284 0.0285 0.0285 0.0285 0.0285 0.0285
Median Imputation 0.0294 0.0294 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293
Mode Imputation 0.0965 0.0960 0.0961 0.0960 0.0960 0.0960 0.0959 0.0958 0.0965
0 Imputation 0.2547 0.2547 0.2544 0.2543 0.2542 0.2542 0.2542 0.2543 0.2543
1 Imputation 0.3942 0.3943 0.3949 0.3950 0.3951 0.3951 0.3951 0.3950 0.3950
LOCF Imputation 0.0570 0.0573 0.0573 0.0572 0.0571 0.0571 0.0570 0.0570 0.0570
NOCB Imputation 0.0573 0.0574 0.0573 0.0572 0.0572 0.0572 0.0572 0.0572 0.0572
MICE (linear) 0.0125 0.0137 0.0156 0.0180 0.0205 0.0246 0.0296 0.0365 0.0453
GAIN 0.0227 0.0220 0.0241 0.0298 0.0544 0.1342 0.1550 0.1401 0.2536
DiffImpute w/ MLP 0.1116 0.1292 0.1482 0.1684 0.1902 0.2130 0.2371 0.2619 0.2876
DiffImpute w/ ResNet 0.0122 0.0136 0.0154 0.0178 0.0218 0.0291 0.0442 0.0757 0.1381
DiffImpute w/ Transformer 0.0088 0.0101 0.0117 0.0137 0.0162 0.0193 0.0227 0.0268 0.0314
DiffImpute w/ U-Net 0.2464 0.2579 0.2705 0.2894 0.3026 0.3233 0.3475 0.3759 0.4098

Table 11: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on JA using MSE. Optimal results are highlighted in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295
Median Imputation 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303
Mode Imputation 0.1003 0.0998 0.0998 0.1009 0.1011 0.1012 0.1013 0.1033 0.1005
0 Imputation 0.2262 0.2263 0.2261 0.2262 0.2262 0.2263 0.2262 0.2262 0.2262
1 Imputation 0.4131 0.4128 0.4132 0.4130 0.4129 0.4128 0.4129 0.4128 0.4128
LOCF Imputation 0.0590 0.0589 0.0588 0.0589 0.0588 0.0588 0.0588 0.0588 0.0589
NOCB Imputation 0.0589 0.0588 0.0589 0.0588 0.0589 0.0588 0.0588 0.0587 0.0586
MICE (linear) 0.0366 0.0376 0.0384 0.0396 0.0410 0.0428 0.0456 0.0487 0.0533
GAIN 0.0407 0.0375 0.0436 0.0538 0.0733 0.1355 0.0904 0.0804 0.2039
DiffImpute w/ MLP 0.2158 0.2521 0.2880 0.3230 0.3569 0.3902 0.4229 0.4547 0.4857
DiffImpute w/ ResNet 0.0242 0.0253 0.0270 0.0301 0.0358 0.0470 0.0679 0.1035 0.1599
DiffImpute w/ Transformer 0.0233 0.0240 0.0249 0.0260 0.0273 0.0288 0.0305 0.0325 0.0347
DiffImpute w/ U-Net 0.3720 0.4570 0.5631 0.6937 0.8462 1.016 1.1949 1.3656 1.4972

Table 12: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on HI using MSE. Optimal results are highlighted in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.0570 0.0572 0.0570 0.0570 0.0570 0.0570 0.0569 0.0569 0.0568
Median Imputation 0.0681 0.0698 0.0711 0.0739 0.0724 0.0738 0.0737 0.0737 0.0739
Mode Imputation 0.1028 0.1013 0.1015 0.1014 0.1004 0.0995 0.0977 0.1019 0.0984
0 Imputation 0.1844 0.1849 0.1847 0.1845 0.1845 0.1844 0.1845 0.1845 0.1845
1 Imputation 0.5811 0.5807 0.5806 0.5808 0.5808 0.5808 0.5807 0.5807 0.5806
LOCF Imputation 0.1135 0.1144 0.1139 0.1140 0.1140 0.1138 0.1135 0.1135 0.1135
NOCB Imputation 0.1135 0.1140 0.1137 0.1138 0.1141 0.1137 0.1137 0.1137 0.1137
MICE (linear) 0.0838 0.0875 0.0913 0.0956 0.0990 0.1022 0.1059 0.1088 0.1114
GAIN 0.0867 0.0811 0.0806 0.0955 0.1026 0.1330 0.1381 0.1483 0.1778
DiffImpute w/ MLP 0.1523 0.1652 0.1781 0.1921 0.2071 0.2226 0.2384 0.2544 0.2708
DiffImpute w/ ResNet 0.0545 0.0568 0.0592 0.0626 0.0680 0.0767 0.0911 0.1142 0.1501
DiffImpute w/ Transformer 0.0594 0.0613 0.0625 0.0638 0.0650 0.0661 0.0670 0.0680 0.0688
DiffImpute w/ U-Net 0.7151 0.7265 0.7362 0.7465 0.7575 0.7676 0.7777 0.7877 0.7975
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Table 13: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on AL using MSE. Optimal results are highlighted in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.0175 0.0176 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175
Median Imputation 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209
Mode Imputation 0.0255 0.0255 0.0255 0.0255 0.0255 0.0255 0.0255 0.0255 0.0255
0 Imputation 0.0386 0.0386 0.0387 0.0386 0.0386 0.0386 0.0386 0.0386 0.0386
1 Imputation 0.8833 0.8832 0.8831 0.8831 0.8833 0.8831 0.8832 0.8832 0.8832
LOCF Imputation 0.0351 0.0351 0.0351 0.0351 0.0351 0.0351 0.0351 0.0351 0.0351
NOCB Imputation 0.0351 0.0351 0.0351 0.0351 0.0351 0.0351 0.0351 0.0351 0.0351
MICE (linear) 0.0065 0.0071 0.0079 0.0087 0.0099 0.0114 0.0136 0.0169 0.0224
GAIN 0.0067 0.0079 0.0126 0.0154 0.0183 0.0203 0.0257 0.0302 0.0343
DiffImpute w/ MLP 0.2710 0.3174 0.3541 0.3857 0.4129 0.4370 0.4584 0.4776 0.4949
DiffImpute w/ ResNet 0.0098 0.0105 0.0115 0.0133 0.0168 0.0229 0.0327 0.0469 0.0652
DiffImpute w/ Transformer 0.0048 0.0054 0.0062 0.0071 0.0083 0.0100 0.0120 0.0146 0.0177
DiffImpute w/ U-Net 0.0130 0.0139 0.0148 0.0158 0.0169 0.0182 0.0197 0.0217 0.0242

Table 14: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on YE using MSE. Optimal results are highlighted in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
Median Imputation 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
Mode Imputation 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
0 Imputation 0.2251 0.2252 0.2252 0.2251 0.2252 0.2251 0.2251 0.2251 0.2252
1 Imputation 0.3553 0.3552 0.3552 0.3552 0.3552 0.3552 0.3552 0.3552 0.3552
LOCF Imputation 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018
NOCB Imputation 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018
MICE (linear) 0.0001 0.0002 0.0003 0.0004 0.0005 0.0007 0.0012 0.0014 0.0016
GAIN 0.0641 0.0015 0.0019 0.0032 0.0128 0.0843 0.0148 0.1877 0.2252
DiffImpute w/ MLP 0.2011 0.2672 0.3260 0.3795 0.4282 0.4729 0.5143 0.5526 0.5885
DiffImpute w/ ResNet 0.0013 0.0014 0.0016 0.0023 0.0048 0.0132 0.0346 0.0759 0.1440
DiffImpute w/ Transformer 0.0006 0.0006 0.0006 0.0007 0.0007 0.0008 0.0008 0.0009 0.0010
DiffImpute w/ U-Net 0.0036 0.0045 0.0057 0.0750 0.0106 0.0171 0.0313 0.0606 0.1161

Table 15: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on CO using MSE. Optimal results are highlighted in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333
Median Imputation 0.0425 0.0424 0.0424 0.0424 0.0424 0.0424 0.0425 0.0425 0.0425
Mode Imputation 0.0472 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471
0 Imputation 0.0909 0.0908 0.0908 0.0908 0.0908 0.0908 0.0908 0.0908 0.0908
1 Imputation 0.8479 0.8481 0.8480 0.8480 0.8480 0.8480 0.8480 0.8480 0.8480
LOCF Imputation 0.0666 0.0665 0.0666 0.0665 0.0666 0.0666 0.0666 0.0666 0.0666
NOCB Imputation 0.0665 0.0664 0.0665 0.0664 0.0665 0.0665 0.0665 0.0666 0.0667
MICE (linear) 29550 33301 880.73 7965.1 154.84 5.7013 0.46 8976.6 4148.3
GAIN 0.0290 0.0292 0.0314 0.0405 0.0663 0.0768 0.0751 0.784 0.0893
DiffImpute w/ MLP 0.1555 0.1827 0.2100 0.2373 0.2642 0.2910 0.3180 0.3443 0.3701
DiffImpute w/ ResNet 0.0200 0.0220 0.0243 0.0268 0.0300 0.0342 0.0368 0.0388 0.0407
DiffImpute w/ Transformer 0.0176 0.0206 0.0235 0.0263 0.0290 0.0315 0.0345 0.0368 0.0390
DiffImpute w/ U-Net 0.1098 0.1249 0.1447 0.1703 0.2047 0.2504 0.3122 0.3949 0.5069

Column Mask. In this segment, we assess the imputation performance under the column mask
settings, aligning with the Missing At Random (MAR). The results for each of the seven datasets
are detailed in the subsequent tables, referenced as Tabs. 16 to 22. It’s important to highlight that
the NOCB imputation method is not suitable for the column mask setting, given the absence of a
subsequent observation to utilize for imputation.
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Table 16: Imputation performance comparison in terms of column mask setting, i.e. Missing At
Random (MAR), on CA using MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.0228 0.0245 0.0220 0.0137
Median Imputation 0.0273 0.0314 0.0266 0.0162
Mode Imputation 0.0702 0.0544 0.0565 0.0281
0 Imputation 0.1043 0.1214 0.0944 0.0818
1 Imputation 0.7275 0.6591 0.7035 0.7407
LOCF Imputation 0.0419 0.0453 0.0462 0.0246
NOCB Imputation / / / /
MICE (linear) 0.1012 0.0009 0.0111 0.0030
GAIN 0.0610 0.0011 0.0062 0.0067
DiffImpute w/ MLP 0.0492 0.0586 0.0550 0.0469
DiffImpute w/ ResNet 0.0849 0.0225 0.0846 0.0902
DiffImpute w/ Transformer 0.0184 0.0208 0.0173 0.0088
DiffImpute w/ U-Net 0.6117 0.6188 0.7210 0.7079

Table 17: Imputation performance comparison in terms of column mask setting, i.e. Missing At
Random (MAR), on HE using MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.0225 0.0200 0.0351 0.0421
Median Imputation 0.0231 0.0202 0.0360 0.0437
Mode Imputation 0.1043 0.0239 0.1337 0.1733
0 Imputation 0.2856 0.3412 0.2279 0.2301
1 Imputation 0.3066 0.3333 0.4127 0.4674
LOCF Imputation 0.0266 0.0316 0.0469 0.0504
NOCB Imputation / / / /
MICE (linear) 0.0015 0.0014 0.0207 0.0321
GAIN 0.0009 0.0024 0.0143 0.0286
DiffImpute w/ MLP 0.0983 0.1067 0.1234 0.1322
DiffImpute w/ ResNet 0.2633 0.3497 0.2640 0.2210
DiffImpute w/ Transformer 0.0021 0.0149 0.0151 0.0149
DiffImpute w/ U-Net 0.1920 0.3147 0.2874 0.2284

Table 18: Imputation performance comparison in terms of column mask setting, i.e. Missing At
Random (MAR), on JA using MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.0347 0.0279 0.0294 0.0379
Median Imputation 0.0358 0.0281 0.0303 0.0389
Mode Imputation 0.0550 0.0776 0.0880 0.0719
0 Imputation 0.1891 0.1987 0.2332 0.3026
1 Imputation 0.4190 0.4063 0.3930 0.3380
LOCF Imputation 0.0582 0.0338 0.0631 0.0846
NOCB Imputation / / / /
MICE (linear) 0.0568 0.0561 0.0205 0.0272
GAIN 0.0303 0.0348 0.0164 0.0190
DiffImpute w/ MLP 0.2041 0.2014 0.1993 0.2253
DiffImpute w/ ResNet 0.2059 0.3091 0.2522 0.2880
DiffImpute w/ Transformer 0.0299 0.0253 0.0114 0.0197
DiffImpute w/ U-Net 0.3295 0.3412 0.3179 0.4265
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Table 19: Imputation performance comparison in terms of column mask setting, i.e. Missing At
Random (MAR), on HI using MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.0263 0.0492 0.0635 0.0534
Median Imputation 0.0264 0.0701 0.0842 0.0536
Mode Imputation 0.0707 0.0768 0.1187 0.1066
0 Imputation 0.1307 0.1545 0.1905 0.1830
1 Imputation 0.6354 0.6198 0.5846 0.5696
LOCF Imputation 0.0664 0.1227 0.1460 0.1021
NOCB Imputation / / / /
MICE (linear) 0.0018 0.0043 0.0543 0.1110
GAIN 0.0018 0.0030 0.0314 0.0723
DiffImpute w/ MLP 0.1090 0.1334 0.1473 0.1437
DiffImpute w/ ResNet 0.0788 0.1824 0.1983 0.1881
DiffImpute w/ Transformer 0.0301 0.0536 0.0676 0.0562
DiffImpute w/ U-Net 0.6449 0.6786 0.7392 0.7265

Table 20: Imputation performance comparison in terms of column mask setting, i.e. Missing At
Random (MAR), on AL using MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.0086 0.0214 0.0138 0.0185
Median Imputation 0.0102 0.0265 0.0171 0.0227
Mode Imputation 0.0102 0.0287 0.0171 0.0233
0 Imputation 0.0102 0.0331 0.0171 0.0368
1 Imputation 0.9433 0.8718 0.9328 0.8881
LOCF Imputation 0.0102 0.1004 0.0509 0.0752
NOCB Imputation / / / /
MICE (linear) 0.0106 0.0208 0.0068 0.0101
GAIN 0.0099 0.0201 0.0058 0.0086
DiffImpute w/ MLP 0.1989 0.2244 0.2204 0.2348
DiffImpute w/ ResNet 0.0507 0.0476 0.0225 0.0791
DiffImpute w/ Transformer 0.0029 0.0069 0.0037 0.0064
DiffImpute w/ U-Net 0.0068 0.0057 0.0166 0.0142
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Table 21: Imputation performance comparison in terms of column mask setting, i.e. Missing At
Random (MAR), on YE using MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.0007 0.0011 0.0010 0.0013
Median Imputation 0.0007 0.0011 0.0010 0.0013
Mode Imputation 0.0007 0.0014 0.0012 0.0015
0 Imputation 0.3638 0.2321 0.2263 0.2119
1 Imputation 0.2126 0.4028 0.3276 0.3496
LOCF Imputation 0.0009 0.0016 0.0011 0.0017
NOCB Imputation / / / /
MICE (linear) 0.0008 0.0012 0.0004 0.0007
GAIN 0.0006 0.0019 0.0003 0.0011
DiffImpute w/ MLP 0.1465 0.1535 0.1629 0.1756
DiffImpute w/ ResNet 0.3666 0.3285 0.2516 0.2469
DiffImpute w/ Transformer 0.0004 0.0007 0.0007 0.0009
DiffImpute w/ U-Net 0.0013 0.0011 0.0015 0.0014

Table 22: Imputation performance comparison in terms of column mask setting, i.e. Missing At
Random (MAR), on CO using MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.0378 0.0333 0.0323 0.0303
Median Imputation 0.0409 0.0353 0.0341 0.0321
Mode Imputation 0.0595 0.0394 0.0509 0.0566
0 Imputation 0.0622 0.1206 0.0633 0.0759
1 Imputation 0.8684 0.7813 0.8494 0.7801
LOCF Imputation 0.0444 0.2175 0.1031 0.0499
NOCB Imputation / / / /
MICE (linear) NaN NaN NaN NaN
GAIN NaN NaN NaN NaN
DiffImpute w/ MLP 0.1474 0.1451 0.1396 0.1430
DiffImpute w/ ResNet 0.0366 0.0322 0.0325 0.0292
DiffImpute w/ Transformer 0.0245 0.0213 0.0253 0.0230
DiffImpute w/ U-Net 0.1034 0.1022 0.0926 0.1111

Imputation Performance Rankings. In this segment, we showcase the consolidated rankings of
imputation performance, measured by mean squared error (MSE), under various masking mech-
anisms, specifically Missing Completely At Random (MCAR) and Missing At Random (MAR).
These rankings span seven datasets, as detailed in Tabs. 23 to 25. Within each dataset, the per-
formance metrics are sorted to determine the rankings. The column labeled “rank” represents the
average ranking across the different missingness settings.
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Table 23: Overall imputation performance rankings under the random mask setting (MCAR)
evaluated by MSE. DiffImpute with Transformer has the best overall performance. The
DiffImpute with the Transformer architecture outperform other methods in six datasets out of
seven datasets. The best results are in bold.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 2.1 3.4 2.0 1.2 4.3 2.4 2.6 2.6 0.9
Median Imputation 4.2 4.6 3.1 3.6 5.9 2.4 4.4 4.0 1.0
Mode Imputation 9.2 8.4 8.6 5.8 7.3 4.6 5.4 7.0 1.7
0 Imputation 11.0 10.8 10.1 10.3 10.8 11.0 9.0 10.4 0.7
1 Imputation 12.3 12.9 11.8 12.0 13.0 12.3 12.1 12.3 0.4
LOCF Imputation 6.4 6.3 6.7 7.8 8.8 6.6 7.3 7.1 0.8
NOCB Imputation 7.1 7.1 6.3 7.8 8.8 6.6 6.8 7.2 0.8
MICE 4.4 3.1 4.7 5.6 2.2 2.3 12.9 5.0 3.4
GAIN 7.2 6.8 7.1 7.1 5.1 8.8 5.7 6.8 1.1
DiffImpute w/ MLP 9.0 10.2 11.2 10.7 12.0 12.6 10.8 10.9 1.1
DiffImpute w/ ResNet 3.6 3.9 4.7 3.7 6.0 7.8 2.4 4.6 1.7
DiffImpute w/ Transformer 1.7 1.2 1.7 2.4 1.1 1.9 1.3 1.6 0.4
DiffImpute w/ U-Net 12.7 12.0 12.9 13.0 4.7 9.2 10.2 10.7 2.8

Table 24: Overall imputation performance rankings under the column mask setting (MAR) evaluated
by MSE. DiffImpute with Transformer has the best overall performance. The DiffImpute
with the Transformer architecture outperform other methods in six datasets out of seven datasets.
The best results are in bold.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 3.8 4.0 3.3 2.5 4.3 3.3 2.8 3.4 0.6
Median Imputation 4.8 5.0 4.3 4.0 5.8 3.3 4.0 4.4 0.7
Mode Imputation 7.5 7.5 6.3 6.3 6.3 5.8 5.5 6.4 0.7
0 Imputation 9.8 10.5 8.8 9.3 6.8 10.3 6.8 8.8 1.4
1 Imputation 11.8 11.5 11.8 11.0 12.0 11.5 10.0 11.4 0.6
LOCF Imputation 5.8 6.3 6.0 6.3 8.5 7.0 6.8 6.6 0.9
NOCB Imputation / / / / / / / / /
MICE 3.3 2.3 4.5 3.0 4.8 3.5 NaN 3.5 0.9
GAIN 2.8 1.5 2.5 1.8 2.8 3.5 NaN 2.5 0.7
DiffImpute w/ MLP 7.3 7.3 8.5 8.3 11.0 9.0 8.8 8.5 1.2
DiffImpute w/ ResNet 7.8 10.3 9.8 9.5 9.5 11.3 2.3 8.8 2.8
DiffImpute w/ Transformer 2.5 2.3 1.3 4.0 1.3 1.8 1.0 2.0 1.0
DiffImpute w/ U-Net 11.3 9.8 11.3 12.0 3.0 6.0 7.3 8.6 3.1
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Table 25: Overall imputation performance rankings under the random mask (MCAR) and the col-
umn mask (MAR) settings evaluated by MSE. DiffImpute with Transformer has the best overall
performance. The DiffImpute with the Transformer architecture outperform other methods in
six datasets out of seven datasets. The best results are in bold.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 2.6 3.6 2.4 1.6 4.3 2.7 2.6 2.8 0.9
Median Imputation 4.4 4.7 3.5 3.7 5.8 2.7 4.3 4.2 1.0
Mode Imputation 8.7 8.2 7.8 5.9 7.0 4.9 5.5 6.9 1.4
0 Imputation 10.6 10.7 9.7 10.0 9.5 10.8 8.3 9.9 0.9
1 Imputation 12.2 12.5 11.8 11.7 12.7 12.1 11.5 12.0 0.4
LOCF Imputation 6.2 6.3 6.5 7.3 8.7 6.7 7.2 7.0 0.9
NOCB Imputation 7.1 7.1 6.3 7.8 8.8 6.6 6.8 7.2 0.8
MICE 4.1 2.8 4.6 4.8 3.0 2.7 12.9 5.0 3.6
GAIN 5.8 5.2 5.7 5.5 4.4 7.2 5.7 5.6 0.8
DiffImpute w/ MLP 8.5 9.3 10.4 9.9 11.7 11.5 10.2 10.2 1.1
DiffImpute w/ ResNet 4.8 5.8 6.2 5.5 7.1 8.8 2.4 5.8 2.0
DiffImpute w/ Transformer 1.9 1.5 1.5 2.9 1.2 1.8 1.2 1.7 0.6
DiffImpute w/ U-Net 12.2 11.3 12.4 12.7 4.2 8.2 9.3 10.0 3.1

Visualization of the Imputation Performance. Fig. 5 demonstrates the imputation process
through the time steps of four denoising networks for the CA dataset with 90% random mask.
The ResNet and Transformer architectures utilized in DiffImpute exhibit superior imputation
capability.

Figure 5: Sampling Process on CA dataset at 90% random mask of different model architectures.

D.2 IMPUTATION PERFORMANCE IN TERMS OF PEARSON CORRELATION.

The following tables display the Pearson correlation performance between the ground truth data and
the imputed data under different missingness mechanisms across seven datasets.

Random Mask. This section presents the evaluation of imputation performance using Pearson
correlation under random mask settings, which correspond to the Missing Completely At Random
(MCAR) mechanism, across seven datasets (Tabs. 26 to 32).
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Table 26: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on CA using Pearson correlation. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.8138 0.8118 0.8126 0.8145 0.8142 0.8144 0.8139 0.8136 0.8140
Median Imputation 0.7780 0.7763 0.7777 0.7788 0.7782 0.7789 0.7784 0.7783 0.7787
Mode Imputation 0.7162 0.6895 0.7154 0.6926 0.7154 0.7156 0.7383 0.7376 0.7385
LOCF Imputation 0.6597 0.6649 0.6683 0.6620 0.6673 0.6654 0.6651 0.6640 0.6608
NOCB Imputation 0.6649 0.6528 0.6538 0.6613 0.6555 0.6584 0.6608 0.6599 0.6571
MICE 0.8418 0.8222 0.8012 0.7848 0.7527 0.7369 0.7125 0.7009 0.6832
GAIN 0.8211 0.8160 0.7947 0.7480 0.6207 0.5500 0.4414 0.3555 0.4523
DiffImpute w/ MLP 0.5824 0.5649 0.5529 0.5408 0.5290 0.5151 0.5015 0.4881 0.4758
DiffImpute w/ ResNet 0.8628 0.8533 0.8461 0.8380 0.8262 0.8104 0.7804 0.7105 0.5272
DiffImpute w/ Transformer 0.8680 0.8543 0.8429 0.8325 0.8187 0.8072 0.7950 0.7814 0.7687
DiffImpute w/ U-Net -0.0219 -0.0392 -0.0573 -0.0678 -0.0730 -0.0775 -0.0803 -0.0839 -0.0827

Table 27: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on HE using Pearson correlation. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.7682 0.7685 0.7690 0.7692 0.7691 0.7692 0.7692 0.7691 0.7692
Median Imputation 0.7646 0.7653 0.7656 0.7656 0.7655 0.7656 0.7656 0.7655 0.7656
Mode Imputation 0.3891 0.3929 0.3966 0.3962 0.3953 0.4021 0.4066 0.4101 0.4056
LOCF Imputation 0.5907 0.5884 0.5888 0.5893 0.5899 0.5905 0.5910 0.5910 0.5910
NOCB Imputation 0.5891 0.5885 0.5893 0.5896 0.5896 0.5897 0.5899 0.5899 0.5899
MICE (linear) 0.9100 0.9019 0.8882 0.8711 0.8528 0.8236 0.7575 0.7381 0.6740
GAIN 0.8414 0.8390 0.8259 0.7960 0.7095 0.3360 0.2034 0.3752 0.2500
DiffImpute w/ MLP 0.3977 0.3533 0.3138 0.2783 0.2464 0.2183 0.1938 0.1728 0.1542
DiffImpute w/ ResNet 0.9092 0.8987 0.8858 0.8689 0.8450 0.8107 0.7560 0.6594 0.4552
DiffImpute w/ Transformer 0.9354 0.9252 0.9130 0.8971 0.8769 0.8521 0.8229 0.7882 0.7425
DiffImpute w/ U-Net 0.2709 0.2677 0.2671 0.2648 0.2613 0.2562 0.2520 0.2474 0.2437

Table 28: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on JA using Pearson correlation. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.7182 0.7179 0.7182 0.7180 0.7182 0.7181 0.7180 0.7179 0.7179
Median Imputation 0.7140 0.7137 0.7140 0.7137 0.7141 0.7140 0.7139 0.7138 0.7139
Mode Imputation 0.3168 0.3176 0.3155 0.3127 0.3094 0.3062 0.3042 0.3034 0.3013
LOCF Imputation 0.5163 0.5162 0.5166 0.5164 0.5165 0.5163 0.5162 0.5160 0.5162
NOCB Imputation 0.5162 0.5164 0.5164 0.5164 0.5160 0.5165 0.5167 0.5167 0.5174
MICE (linear) 0.6996 0.6916 0.6855 0.6759 0.6638 0.6489 0.6262 0.6004 0.5631
GAIN 0.6658 0.6803 0.6514 0.6283 0.5944 0.3190 0.4965 0.4867 0.0952
DiffImpute w/ MLP 0.1892 0.1691 0.1509 0.1359 0.1236 0.1130 0.1032 0.0943 0.0864
DiffImpute w/ ResNet 0.7773 0.7672 0.7530 0.7310 0.6974 0.6442 0.5630 0.4463 0.2906
DiffImpute w/ Transformer 0.7904 0.7827 0.7739 0.7630 0.7503 0.7351 0.7176 0.6970 0.6743
DiffImpute w/ U-Net 0.1525 0.1473 0.1472 0.1500 0.1536 0.1561 0.1571 0.1568 0.1563

27



Under review as a conference paper at ICLR 2024

Table 29: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on HI using Pearson correlation. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.6248 0.6240 0.6243 0.6243 0.6240 0.6243 0.6248 0.6250 0.6251
Median Imputation 0.5513 0.5419 0.5329 0.5157 0.5246 0.5161 0.5171 0.5172 0.5176
Mode Imputation 0.3910 0.3947 0.3880 0.3860 0.3922 0.3977 0.4012 0.3907 0.4091
LOCF Imputation 0.3912 0.3878 0.3896 0.3899 0.3899 0.3911 0.3922 0.3922 0.3922
NOCB Imputation 0.3919 0.3911 0.3920 0.3913 0.3900 0.3913 0.3907 0.3907 0.3907
MICE (linear) 0.5469 0.5316 0.5093 0.4861 0.4688 0.4521 0.4329 0.4180 0.4032
GAIN 0.4461 0.4754 0.4829 0.4305 0.4532 0.3956 0.3797 0.4449 0.2699
DiffImpute w/ MLP 0.2938 0.2781 0.2667 0.2552 0.2437 0.2341 0.2261 0.2189 0.2129
DiffImpute w/ ResNet 0.6475 0.6317 0.6138 0.5914 0.5593 0.5124 0.4430 0.3457 0.2271
DiffImpute w/ Transformer 0.6133 0.5994 0.5885 0.5774 0.5671 0.5574 0.5496 0.5416 0.5339
DiffImpute w/ U-Net 0.0052 0.0041 0.0036 0.0031 0.0014 -0.0001 -0.0012 -0.0024 -0.0036

Table 30: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on AL using Pearson correlation. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.6797 0.6793 0.6802 0.6800 0.6798 0.6798 0.6798 0.6797 0.6796
Median Imputation 0.6310 0.6304 0.6313 0.6311 0.6309 0.6310 0.6310 0.6309 0.6308
Mode Imputation 0.5520 0.5508 0.5519 0.5515 0.5514 0.5551 0.5515 0.5514 0.5513
LOCF Imputation 0.4617 0.4617 0.4617 0.4617 0.4617 0.4617 0.4617 0.4617 0.4617
NOCB Imputation 0.4612 0.4612 0.4612 0.4612 0.4612 0.4612 0.4612 0.4612 0.4612
MICE (linear) 0.9006 0.8912 0.8789 0.8660 0.8486 0.8248 0.7907 0.7395 0.6545
GAIN 0.8993 0.8804 0.7993 0.7464 0.6900 0.6576 0.5322 0.4854 0.4521
DiffImpute w/ MLP 0.0752 0.0546 0.0406 0.0304 0.0227 0.0161 0.0112 0.0069 0.0034
DiffImpute w/ ResNet 0.8360 0.8239 0.8049 0.7705 0.7035 0.5849 0.4190 0.2437 0.0939
DiffImpute w/ Transformer 0.9233 0.9133 0.9009 0.8845 0.8627 0.8335 0.7952 0.7448 0.6819
DiffImpute w/ U-Net 0.7762 0.7597 0.7428 0.7241 0.7035 0.6788 0.6509 0.6156 0.5722
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Table 31: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on YE using Pearson correlation. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.9877 0.9876 0.9876 0.9876 0.9876 0.9876 0.9876 0.9876 0.9876
Median Imputation 0.9876 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875
Mode Imputation 0.9864 0.9863 0.9863 0.9864 0.9863 0.9864 0.9864 0.9864 0.9865
LOCF Imputation 0.9755 0.9754 0.9754 0.9754 0.9754 0.9754 0.9755 0.9755 0.9755
NOCB Imputation 0.9754 0.9754 0.9754 0.9754 0.9754 0.9754 0.9754 0.9754 0.9754
MICE (linear) 0.9989 0.9977 0.9963 0.9947 0.9928 0.9906 0.9829 0.9810 0.9782
GAIN 0.9830 0.9815 0.9777 0.9719 0.9384 0.7138 0.9052 0.2598 0.2119
DiffImpute w/ MLP 0.2620 0.2079 0.1741 0.1506 0.1340 0.1218 0.1124 0.1052 0.0994
DiffImpute w/ ResNet 0.9818 0.9809 0.9789 0.9740 0.9602 0.9206 0.8206 0.6173 0.2984
DiffImpute w/ Transformer 0.9921 0.9917 0.9912 0.9906 0.9900 0.9892 0.9883 0.9874 0.9862
DiffImpute w/ U-Net 0.9499 0.9375 0.9229 0.9045 0.8818 0.8512 0.8102 0.7602 0.7064

Table 32: Imputation performance comparison in terms of random mask setting, i.e. Missing Com-
pletely At Random (MCAR), on CO using Pearson correlation. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.7499 0.7499 0.7500 0.7499 0.7500 0.7501 0.7501 0.7501 0.7501
Median Imputation 0.6827 0.6828 0.6828 0.6828 0.6827 0.6829 0.6828 0.6827 0.6828
Mode Imputation 0.6520 0.6520 0.6520 0.6520 0.6520 0.6521 0.6521 0.6520 0.6521
LOCF Imputation 0.5622 0.5628 0.5625 0.5626 0.5623 0.5622 0.5624 0.5627 0.5623
NOCB Imputation 0.5628 0.5631 0.5631 0.5632 0.5630 0.5630 0.5627 0.5625 0.5618
MICE (linear) -0.0150 -0.0070 0.0036 -0.0510 -0.1070 -0.0390 0.1820 0.0021 -0.0020
GAIN 0.7928 0.7928 0.7874 0.7475 0.5077 0.3772 0.4619 0.4580 0.2975
DiffImpute w/ MLP 0.2707 0.2231 0.1846 0.1526 0.1263 0.1044 0.0852 0.0693 0.0556
DiffImpute w/ ResNet 0.8604 0.8441 0.8267 0.8064 0.7815 0.7475 0.7218 0.7054 0.6888
DiffImpute w/ Transformer 0.8780 0.8543 0.8317 0.8094 0.7880 0.7671 0.7425 0.7223 0.7034
DiffImpute w/ U-Net 0.3785 0.3344 0.2863 0.2348 0.1806 0.1257 0.0703 0.0167 -0.0340

Column Mask. In this segment, we delve into the imputation performance assessment using the
Pearson correlation metric under the column mask settings. This approach aligns with the Missing
At Random (MAR) paradigm. The detailed results for each of the seven datasets are provided in
Tabs. 33 to 39. It’s pertinent to mention that the column mask setting renders the NOCB imputation
method inapplicable, given the lack of a subsequent observation for imputation purposes.

Table 33: Imputation performance comparison in terms of column mask setting, i.e. Missing Com-
pletely At Random (MCAR), on CA using Pearson correlation. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.8140 0.8140 0.8140 0.8140
Median Imputation 0.7787 0.7787 0.7787 0.7787
Mode Imputation 0.7385 0.7385 0.7385 0.7385
LOCF Imputation 0.6615 0.6615 0.6615 0.6615
NOCB Imputation / / / /
MICE (linear) 0.1814 0.2818 0.6596 0.9691
GAIN 0.0323 0.2640 0.7887 0.9685
DiffImpute w/ MLP 0.0317 0.3627 0.3746 0.5798
DiffImpute w/ ResNet 0.1733 -0.0002 0.3057 -0.0469
DiffImpute w/ Transformer 0.2575 0.6394 0.7743 0.9175
DiffImpute w/ U-Net -0.0022 -0.0640 -0.0143 -0.0897
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Table 34: Imputation performance comparison in terms of column mask setting, i.e. Missing Com-
pletely At Random (MCAR), on HE using Pearson correlation. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.7692 0.7692 0.7692 0.7692
Median Imputation 0.7656 0.7656 0.7656 0.7656
Mode Imputation 0.4056 0.4056 0.4056 0.4056
LOCF Imputation 0.5911 0.5911 0.5911 0.5911
NOCB Imputation / / / /
MICE (linear) 0.0797 0.9836 0.7218 0.7660
GAIN 0.0509 0.9713 0.7839 0.7937
DiffImpute w/ MLP 0.0457 0.2731 0.1824 0.3239
DiffImpute w/ ResNet 0.5779 0.2973 0.5354 0.5509
DiffImpute w/ Transformer 0.7734 0.8365 0.8169 0.8914
DiffImpute w/ U-Net 0.0572 0.2208 0.0971 0.1945

Table 35: Imputation performance comparison in terms of column mask setting, i.e. Missing Com-
pletely At Random (MCAR), on JA using Pearson correlation. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.7179 0.7179 0.7179 0.7179
Median Imputation 0.7138 0.7139 0.7139 0.7139
Mode Imputation 0.3013 0.3013 0.3013 0.3013
LOCF Imputation 0.5162 0.5162 0.5162 0.5162
NOCB Imputation / / / /
MICE (linear) -0.0090 0.2864 0.8519 0.7471
GAIN 0.0141 0.3346 0.8844 0.8060
DiffImpute w/ MLP 0.0138 0.0548 0.0941 0.1827
DiffImpute w/ ResNet 0.1849 0.2422 0.3213 0.4518
DiffImpute w/ Transformer 0.1979 0.3747 0.8622 0.8505
DiffImpute w/ U-Net -0.0180 0.0699 0.0916 0.2285

Table 36: Imputation performance comparison in terms of column mask setting, i.e. Missing Com-
pletely At Random (MCAR), on HI using Pearson correlation. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.6251 0.6251 0.6251 0.6251
Median Imputation 0.5176 0.5176 0.5176 0.5176
Mode Imputation 0.4091 0.4091 0.4091 0.4091
LOCF Imputation 0.3911 0.3911 0.3911 0.3911
NOCB Imputation / / / /
MICE (linear) 0.5234 0.3278 0.5956 0.5393
GAIN 0.3119 0.2392 0.7328 0.6325
DiffImpute w/ MLP 0.0024 0.1180 0.2406 0.2306
DiffImpute w/ ResNet 0.2010 -0.0460 0.3727 0.1481
DiffImpute w/ Transformer 0.4956 0.3981 0.5255 0.5383
DiffImpute w/ U-Net -0.0030 0.0196 0.0095 0.5255
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Table 37: Imputation performance comparison in terms of column mask setting, i.e. Missing Com-
pletely At Random (MCAR), on AL using Pearson correlation. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.6796 0.6796 0.6796 0.6796
Median Imputation 0.6308 0.6308 0.6308 0.6308
Mode Imputation 0.5513 0.5513 0.5513 0.5513
LOCF Imputation 0.4617 0.4617 0.4617 0.4617
NOCB Imputation / / / /
MICE (linear) 0.7555 0.8037 0.8102 0.8228
GAIN 0.7392 0.7910 0.8314 0.8373
DiffImpute w/ MLP 0.0329 0.0131 0.0256 0.0562
DiffImpute w/ ResNet 0.4733 0.4771 0.4027 0.3236
DiffImpute w/ Transformer 0.8375 0.8549 0.8666 0.8738
DiffImpute w/ U-Net 0.5533 0.6889 0.6778 0.7592

Table 38: Imputation performance comparison in terms of column mask setting, i.e. Missing Com-
pletely At Random (MCAR), on YE using Pearson correlation. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.9876 0.9876 0.9876 0.9876
Median Imputation 0.9875 0.9875 0.9875 0.9875
Mode Imputation 0.9863 0.9863 0.9863 0.9863
LOCF Imputation 0.9839 0.9839 0.9839 0.9839
NOCB Imputation / / / /
MICE (linear) 0.3292 0.8135 0.9912 0.9918
GAIN 0.0309 0.6259 0.9925 0.9883
DiffImpute w/ MLP -0.0009 0.3019 0.1618 0.1459
DiffImpute w/ ResNet 0.0516 0.0828 -0.2318 -0.2155
DiffImpute w/ Transformer 0.5469 0.9382 0.9049 0.9478
DiffImpute w/ U-Net 0.0254 0.7423 0.9545 0.9638

Table 39: Imputation performance comparison in terms of column mask setting, i.e. Missing Com-
pletely At Random (MCAR), on CO using Pearson correlation. The best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.7501 0.7501 0.7501 0.7501
Median Imputation 0.6828 0.6828 0.6828 0.6828
Mode Imputation 0.6521 0.6521 0.6521 0.6521
LOCF Imputation 0.5621 0.5621 0.5621 0.5621
NOCB Imputation / / / /
MICE (linear) NaN NaN NaN NaN
GAIN NaN NaN NaN NaN
DiffImpute w/ MLP 0.0121 0.1933 0.1223 0.1786
DiffImpute w/ ResNet 0.1872 0.5201 0.4335 0.6617
DiffImpute w/ Transformer 0.4553 0.7481 0.6273 0.7497
DiffImpute w/ U-Net -0.0028 0.1780 0.2590 0.2288

Pearson Correlation Performance Rankings. This section presents overall Pearson correlation
performance rankings under different mask settings (MCAR, and MAR) across seven datasets, as
shown in Tabs. 40 to 42.
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Table 40: Overall Pearson correlation rankings under the random mask setting (MCAR).
DiffImpute with Transformer outperform other methods in six datasets out of seven datasets.
The best results are in bold.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 2.6 3.7 2.1 1.2 4.6 2.4 2.6 2.7 1.0
Median Imputation 4.4 4.7 3.2 3.6 6.0 3.4 4.4 4.3 0.9
Mode Imputation 5.9 8.7 8.8 7.1 7.3 4.6 5.4 6.8 1.5
LOCF Imputation 7.4 6.8 6.9 7.8 8.6 6.7 7.2 7.3 0.6
NOCB Imputation 8.2 7.1 6.7 7.4 9.6 7.2 6.7 7.6 1.0
MICE 4.6 2.7 4.6 5.0 2.1 2.3 10.7 4.6 2.7
GAIN 7.4 6.6 7.0 6.4 5.2 8.3 5.9 6.7 0.9
DiffImpute w/ MLP 9.7 10.4 10.7 10.0 11.0 11.0 9.8 10.4 0.5
DiffImpute w/ ResNet 2.8 3.9 4.2 3.9 6.0 7.9 2.4 4.4 1.8
DiffImpute w/ Transformer 2.0 1.2 1.6 2.4 1.0 2.2 1.3 1.7 0.5
DiffImpute w/ U-Net 11.0 10.3 10.2 11.0 4.6 9.4 9.6 9.4 2.1

Table 41: Overall Pearson correlation rankings under the random mask setting (MCAR).
DiffImpute with Transformer outperform other methods in two datasets out of seven datasets.
The mean imputaion methods outperform other methods in five datasets. The best results are in
bold.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 1.8 3.0 2.5 1.5 4.5 2.0 1.0 2.3 1.1
Median Imputation 3.0 4.3 3.5 4.0 5.8 3.0 2.5 3.7 1.0
Mode Imputation 4.3 7.3 6.5 5.3 7.0 4.0 3.8 5.4 1.4
LOCF Imputation 5.3 5.5 4.5 6.5 8.5 5.0 5.0 5.8 1.3
NOCB Imputation / / / / / / / / /
MICE 5.3 4.3 5.5 3.5 2.5 3.8 NaN 4.1 1.0
GAIN 5.0 3.8 3.8 4.0 2.5 4.8 NaN 4.0 0.8
DiffImpute w/ MLP 7.8 9.3 9.3 8.8 10.0 9.3 7.5 8.8 0.8
DiffImpute w/ ResNet 8.5 6.8 7.0 9.0 8.5 9.3 5.5 7.8 1.3
DiffImpute w/ Transformer 4.3 1.5 3.0 4.0 1.0 6.5 3.3 3.4 1.7
DiffImpute w/ U-Net 10.0 9.5 9.5 8.5 4.8 7.5 7.5 8.2 1.7
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Table 42: Overall Pearson correlation rankings of MCAR and MAR (MSE). DiffImpute with
Transformer outperform other methods in four datasets and the mean imputation methods outper-
form other methods in three datasets. The best results are in bold.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 2.3 3.5 2.2 1.3 4.5 2.3 2.1 2.6 1.1
Median Imputation 4.0 4.5 3.3 3.7 5.9 3.3 3.8 4.1 0.9
Mode Imputation 5.4 8.2 8.1 6.5 7.2 4.4 4.9 6.4 1.5
LOCF Imputation 6.8 6.4 6.2 7.4 8.5 6.2 6.5 6.8 0.9
NOCB Imputation 8.2 7.1 6.7 7.4 9.6 7.2 6.7 7.6 1.0
MICE 4.8 3.2 4.8 4.5 2.2 2.8 10.7 4.7 2.8
GAIN 6.7 5.7 6.0 5.7 4.4 7.2 5.9 5.9 0.9
DiffImpute w/ MLP 9.1 10.1 10.2 9.6 10.7 10.5 9.1 9.9 0.6
DiffImpute w/ ResNet 4.5 4.8 5.1 5.5 6.8 8.3 3.4 5.5 1.6
DiffImpute w/ Transformer 2.7 1.3 2.0 2.9 1.0 3.5 1.9 2.2 0.9
DiffImpute w/ U-Net 10.7 10.1 10.0 10.2 4.6 8.8 8.9 9.1 2.1

D.3 PERFORMANCE ON DOWNSTREAM TASKS.

In this section, we present the performance metrics of downstream tasks for imputed data, con-
sidering various missingness mechanisms across our seven benchmark datasets. Specifically, for
regression tasks, we employ the root mean squared error (RMSE) as the evaluation metric, while
classification tasks are gauged using the accuracy score. Our focus here is on the random mask
settings, which align with the Missing Completely At Random (MCAR) setting.

Random Mask. Delving deeper into the random mask settings, we evaluate the downstream task
performance in the context of the Missing Completely At Random (MCAR). Detailed results for
each of the seven datasets are provided in Tabs. 43 to 49.

Table 43: Downstream task performance comparison in random mask setting (MCAR) on CA,
evaluated by RMSE. For each missing setting, the best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.8707 1.0113 1.0974 1.1683 1.2189 1.2532 1.2680 1.2615 1.2461
Median Imputation 0.8986 1.0449 1.1319 1.2037 1.2480 1.2753 1.2795 1.2527 1.2150
Mode Imputation 0.9982 1.3324 1.3552 1.6428 1.5582 1.6270 1.3985 1.3580 1.2889
0 Imputation 1.1661 1.4571 1.6696 1.8366 1.9694 2.073 2.1479 2.2096 2.2443
1 Imputation 1.3509 1.6528 1.8069 1.8886 1.9268 1.9520 1.9805 2.0049 2.0774
LOCF Imputation 1.5345 1.6405 1.6802 1.4143 1.7231 1.7528 1.7746 1.787 1.8204
NOCB Imputation 1.5317 1.6512 1.6996 1.4195 1.7400 1.7782 1.8056 1.8163 1.8216
MICE(linear) 0.7643 0.8571 0.9543 1.0534 1.1461 1.2349 1.3023 1.3927 1.4240
GAIN 0.8464 0.9473 0.9991 1.1548 1.2405 1.3517 1.8428 2.1072 2.2291
DiffImpute w/ MLP 0.9986 1.2324 1.4155 1.5677 1.7011 1.8234 1.9264 2.0195 2.1030
DiffImpute w/ ResNet 0.7917 0.8916 0.9637 1.0388 1.1239 1.2563 1.5024 1.9100 2.2878
DiffImpute w/ Transformer 0.7614 0.8365 0.8951 0.9633 1.0286 1.0874 1.1465 1.1994 1.2527
DiffImpute w/ U-Net 1.2736 1.6123 1.8475 2.0147 2.1314 2.2267 2.2929 2.3461 2.3812
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Table 44: Downstream task performance comparison in random mask setting (MCAR) on HE, eval-
uated by accuracy score, the best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.3172 0.2723 0.2291 0.1874 0.1484 0.1149 0.0866 0.0643 0.0511
Median Imputation 0.3160 0.2705 0.2288 0.1874 0.1481 0.1131 0.0832 0.0567 0.0344
Mode Imputation 0.2931 0.2361 0.1877 0.1484 0.1176 0.0914 0.0694 0.0531 0.0412
0 Imputation 0.2295 0.1584 0.1203 0.0975 0.0810 0.0706 0.0646 0.0606 0.0596
1 Imputation 0.2238 0.1453 0.0963 0.0692 0.0524 0.0400 0.0323 0.0261 0.0207
LOCF Imputation 0.0234 0.0266 0.0252 0.0260 0.0256 0.0250 0.0240 0.0240 0.0240
NOCB Imputation 0.0243 0.0270 0.0262 0.0256 0.0266 0.0246 0.0256 0.0256 0.0256
MICE (linear) 0.3345 0.3083 0.2812 0.2433 0.2036 0.1600 0.1206 0.0875 0.0538
GAIN 0.3246 0.2798 0.2425 0.1968 0.1304 0.0937 0.0747 0.0655 0.0601
DiffImpute w/ MLP 0.2695 0.2007 0.1486 0.1115 0.0866 0.0701 0.0579 0.0499 0.0440
DiffImpute w/ ResNet 0.3313 0.2980 0.2621 0.2199 0.1726 0.1266 0.0868 0.0671 0.0610
DiffImpute w/ Transformer 0.3397 0.3145 0.2826 0.2439 0.1986 0.1567 0.1148 0.0780 0.0485
DiffImpute w/ U-Net 0.2531 0.1800 0.1327 0.1036 0.0826 0.0685 0.0578 0.0518 0.0474

Table 45: Downstream task performance comparison in random mask setting (MCAR) on JA, eval-
uated by accuracy score, the best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.6863 0.6547 0.6173 0.5762 0.5307 0.4782 0.4215 0.3579 0.2875
Median Imputation 0.6829 0.6497 0.6144 0.5743 0.5279 0.4776 0.4228 0.3693 0.3327
Mode Imputation 0.6577 0.6150 0.5813 0.5532 0.5299 0.5119 0.4983 0.4840 0.4736
0 Imputation 0.6243 0.5681 0.5342 0.5127 0.4979 0.4867 0.4767 0.4717 0.4664
1 Imputation 0.6289 0.5728 0.5317 0.5023 0.4816 0.4618 0.4449 0.4285 0.4037
LOCF Imputation 0.3759 0.3803 0.3839 0.3864 0.3858 0.3904 0.3907 0.3902 0.3935
NOCB Imputation 0.3766 0.3794 0.3831 0.3847 0.3880 0.3894 0.3921 0.3922 0.3932
MICE (linear) 0.6975 0.6780 0.6578 0.6291 0.5969 0.5699 0.5283 0.4902 0.4397
GAIN 0.6658 0.6803 0.6302 0.5909 0.5436 0.5054 0.4931 0.4697 0.4669
DiffImpute w/ MLP 0.6461 0.5903 0.5494 0.5183 0.4972 0.4797 0.4664 0.4585 0.4541
DiffImpute w/ ResNet 0.6905 0.6658 0.6409 0.5183 0.5724 0.5308 0.4937 0.4707 0.4572
DiffImpute w/ Transformer 0.6998 0.6838 0.6624 0.6379 0.6045 0.5637 0.5177 0.4608 0.3970
DiffImpute w/ U-Net 0.6421 0.5881 0.5477 0.5197 0.4973 0.4797 0.4651 0.4586 0.4527

Table 46: Downstream task performance comparison in random mask setting on HI, evaluated by
accuracy score, the best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.6931 0.6713 0.6515 0.6305 0.6135 0.5950 0.5786 0.5629 0.5463
Median Imputation 0.6929 0.6708 0.6506 0.6305 0.6114 0.5907 0.5736 0.5573 0.5430
Mode Imputation 0.6915 0.6670 0.6441 0.6232 0.6026 0.5840 0.5671 0.5528 0.5409
0 Imputation 0.6823 0.6507 0.6242 0.5984 0.5741 0.5516 0.5276 0.5040 0.4867
1 Imputation 0.6385 0.5844 0.5447 0.5188 0.5004 0.4872 0.4791 0.4747 0.4724
LOCF Imputation 0.5014 0.4994 0.4997 0.4976 0.5006 0.5013 0.5017 0.5017 0.5017
NOCB Imputation 0.4994 0.4978 0.4977 0.4990 0.4986 0.4973 0.4974 0.4974 0.4974
MICE (linear) 0.6890 0.6669 0.6453 0.6114 0.5906 0.5645 0.5480 0.5286 0.5119
GAIN 0.6849 0.6527 0.6280 0.6105 0.5945 0.5544 0.5378 0.5102 0.4874
DiffImpute w/ MLP 0.6768 0.6394 0.6120 0.5881 0.5674 0.5483 0.5340 0.5175 0.5050
DiffImpute w/ ResNet 0.6909 0.6664 0.6420 0.6176 0.5917 0.5670 0.5383 0.5044 0.4836
DiffImpute w/ Transformer 0.6979 0.6767 0.6545 0.6340 0.6097 0.5870 0.5652 0.5406 0.5196
DiffImpute w/ U-Net 0.6665 0.6243 0.5922 0.5681 0.5459 0.5284 0.5139 0.5016 0.4939
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Table 47: Downstream task performance comparison in random mask setting on AL, evaluated by
accuracy score, the best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.8002 0.6321 0.4549 0.2964 0.1756 0.0927 0.0421 0.0160 0.0052
Median Imputation 0.8325 0.7148 0.5730 0.4247 0.2877 0.1724 0.0891 0.0359 0.0098
Mode Imputation 0.8080 0.6604 0.4953 0.3371 0.2104 0.1155 0.0557 0.0229 0.0072
0 Imputation 0.7102 0.4903 0.3057 0.1729 0.0915 0.0448 0.0211 0.0092 0.0036
1 Imputation 0.1194 0.0272 0.0064 0.0021 0.0013 0.0012 0.0011 0.0011 0.0011
LOCF Imputation 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
NOCB Imputation 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
MICE (linear) 0.8724 0.7969 0.6883 0.5724 0.4309 0.2951 0.1693 0.0788 0.0202
GAIN 0.8724 0.7575 0.5574 0.3936 0.2470 0.1364 0.0551 0.0168 0.0040
DiffImpute w/ MLP 0.4176 0.1748 0.0751 0.0344 0.0169 0.0085 0.0045 0.0029 0.0019
DiffImpute w/ ResNet 0.8519 0.7366 0.5801 0.3987 0.2309 0.1063 0.0390 0.0125 0.0039
DiffImpute w/ Transformer 0.8875 0.8301 0.7386 0.6070 0.4427 0.2702 0.1313 0.0469 0.0103
DiffImpute w/ U-Net 0.8321 0.7061 0.5542 0.3925 0.2477 0.1345 0.0598 0.0221 0.0060

Table 48: Downstream task performance comparison in random mask setting on YE, evaluated by
RMSE, the best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 9.6483 9.9895 10.3056 10.5864 10.8372 11.0496 11.2184 11.3274 11.3629
Median Imputation 9.6279 9.9625 10.2814 10.5704 10.8363 11.0667 11.2547 11.3902 11.4502
Mode Imputation 9.7211 10.1028 10.4576 10.7646 11.1054 11.4239 11.7990 12.3536 13.2784
0 Imputation 10.2651 10.8614 11.2272 11.4203 11.5104 11.5486 11.5515 11.5434 11.5288
1 Imputation 10.4652 11.0338 11.329 11.4941 11.5855 11.6359 11.6544 11.6536 11.6344
LOCF Imputation 12.4934 12.4969 12.4953 12.5030 12.5114 12.5117 12.4934 12.4934 12.4934
NOCB Imputation 12.4883 12.4909 12.4963 12.5015 12.5267 12.5402 12.4883 12.4883 12.4883
MICE (linear) 9.9231 9.8463 10.1061 10.4166 10.7099 11.0431 11.3486 11.6996 11.9950
GAIN 9.9231 9.8463 10.8024 10.4166 11.3067 11.5499 11.4964 11.5453 11.5261
DiffImpute w/ MLP 10.2733 10.8953 11.2566 11.4651 11.5683 11.6109 11.6202 11.6075 11.5891
DiffImpute w/ ResNet 9.6229 9.9908 10.3924 10.8053 11.0905 11.2565 11.4274 11.4886 11.4806
DiffImpute w/ Transformer 9.5022 9.7544 10.0342 10.3449 10.6919 11.0639 11.4675 11.8724 12.2635
DiffImpute w/ U-Net 9.8339 10.2640 10.5960 10.8568 11.0618 11.2840 11.5149 11.6760 11.7223

Table 49: Downstream task performance comparison in random mask setting on CO, evaluated by
accuracy score, the best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Mean Imputation 0.8379 0.7526 0.6826 0.6252 0.5801 0.5447 0.5172 0.4978 0.4869
Median Imputation 0.8397 0.7549 0.6850 0.6280 0.5827 0.5471 0.5206 0.5015 0.4905
Mode Imputation 0.8270 0.7327 0.6549 0.5896 0.5343 0.4877 0.4473 0.4132 0.3853
0 Imputation 0.8118 0.7020 0.6093 0.5284 0.4587 0.3985 0.3458 0.2982 0.2300
1 Imputation 0.6544 0.5354 0.4691 0.4253 0.3940 0.3734 0.3633 0.3711 0.3942
LOCF Imputation 0.4004 0.3872 0.3918 0.3951 0.3979 0.4001 0.4015 0.4035 0.4047
NOCB Imputation 0.4001 0.3877 0.3927 0.3956 0.3982 0.3994 0.4015 0.4035 0.4043
MICE (linear) 0.7608 0.6504 0.5881 0.4820 0.4332 0.3916 0.3852 0.4534 0.3657
GAIN 0.8502 0.7707 0.6961 0.5760 0.4926 0.3988 0.3396 0.3098 0.2302
DiffImpute w/ MLP 0.7997 0.6870 0.6032 0.5397 0.4905 0.4522 0.4180 0.3898 0.3639
DiffImpute w/ ResNet 0.8557 0.7796 0.7114 0.6523 0.6008 0.5556 0.5165 0.4889 0.4630
DiffImpute w/ Transformer 0.8622 0.7904 0.7244 0.6646 0.6144 0.5710 0.5351 0.5031 0.4766
DiffImpute w/ U-Net 0.8086 0.7027 0.6185 0.5505 0.4963 0.4490 0.4073 0.3700 0.3373

Column Mask. In this section, we assess the imputation performance using the Pearson correla-
tion metric, specifically under the column mask settings. These settings are representative of the
Missing at Random (MAR). Our evaluation spans across seven benchmark datasets, as detailed in
Tabs. 50 to 56. It’s important to highlight that the NOCB imputation method is not applicable in this
context, given the absence of a subsequent observation for backfilling missing values.
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Table 50: Downstream task performance comparison in column mask setting (MAR) on CA, evalu-
ated by RMSE, the best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.8321 0.9880 1.2584 1.2831
Median Imputation 0.8474 1.0118 1.3759 1.2288
Mode Imputation 0.925 1.0672 1.5293 1.2891
0 Imputation 0.9295 1.7578 1.5229 1.7217
1 Imputation 1.1986 1.1815 1.8452 1.8931
LOCF Imputation 0.9175 1.0747 1.5489 1.3072
NOCB Imputation / / / /
MICE (linear) 0.7302 0.6850 1.2246 0.8795
GAIN 0.7107 0.6862 0.9819 1.1849
DiffImpute w/ MLP 0.8775 1.2106 1.6318 1.6548
DiffImpute w/ ResNet 0.9440 1.8283 1.5211 1.8269
DiffImpute w/ Transformer 0.7228 0.7790 1.0002 1.0263
DiffImpute w/ U-Net 1.0677 1.9387 1.8962 2.0328

Table 51: Downstream task performance comparison in column mask setting (MAR) on HE, evalu-
ated by accuracy score, the best results are in bold

Imputation Methods 1 2 3 4
Mean Imputation 0.3547 0.3279 0.2832 0.2696
Median Imputation 0.3550 0.3277 0.2816 0.2681
Mode Imputation 0.3489 0.3141 0.2297 0.2364
0 Imputation 0.3160 0.2528 0.1727 0.1808
1 Imputation 0.3428 0.2626 0.1436 0.1376
LOCF Imputation 0.3546 0.3250 0.2646 0.2667
NOCB Imputation / / / /
MICE (linear) 0.3576 0.3567 0.3232 0.2657
GAIN 0.3574 0.3571 0.3346 0.2809
DiffImpute w/ MLP 0.3416 0.2945 0.2186 0.2137
DiffImpute w/ ResNet 0.3340 0.2900 0.1712 0.1888
DiffImpute w/ Transformer 0.3566 0.3393 0.3199 0.3117
DiffImpute w/ U-Net 0.3352 0.2561 0.2634 0.2160
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Table 52: Downstream task performance comparison in column mask setting (MAR) on JA, evalu-
ated by accuracy score, the best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.7108 0.7060 0.7005 0.6783
Median Imputation 0.7103 0.7056 0.7009 0.6774
Mode Imputation 0.7011 0.6987 0.6857 0.6532
0 Imputation 0.7100 0.6806 0.6793 0.6158
1 Imputation 0.6897 0.6862 0.6716 0.6021
LOCF Imputation 0.7101 0.7056 0.6960 0.6608
NOCB Imputation / / / /
MICE (linear) 0.7131 0.6706 0.7097 0.6915
GAIN 0.7129 0.6843 0.6980 0.6995
DiffImpute w/ MLP 0.7082 0.6919 0.6908 0.6524
DiffImpute w/ ResNet 0.7103 0.6781 0.6825 0.6158
DiffImpute w/ Transformer 0.7123 0.7078 0.7108 0.6937
DiffImpute w/ U-Net 0.7061 0.6732 0.6755 0.6815

Table 53: Downstream task performance comparison in column mask setting (MAR) on HI, evalu-
ated by accuracy score, the best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.6964 0.6998 0.7022 0.6914
Median Imputation 0.6970 0.6961 0.7006 0.6873
Mode Imputation 0.6961 0.6961 0.7009 0.6856
0 Imputation 0.6842 0.6832 0.7035 0.6718
1 Imputation 0.6842 0.6263 0.6367 0.5959
LOCF Imputation 0.6558 0.6954 0.6918 0.6888
NOCB Imputation / / / /
MICE (linear) 0.6350 0.6950 0.6840 0.6981
GAIN 0.6473 0.6943 0.6849 0.6898
DiffImpute w/ MLP 0.6764 0.6669 0.6895 0.6544
DiffImpute w/ ResNet 0.6773 0.6756 0.7030 0.6647
DiffImpute w/ Transformer 0.7032 0.6989 0.7027 0.6910
DiffImpute w/ U-Net 0.6726 0.6434 0.6564 0.6562

37



Under review as a conference paper at ICLR 2024

Table 54: Downstream task performance comparison in column mask setting (MAR) on AL, evalu-
ated by accuracy score, the best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.9164 0.9045 0.9047 0.8852
Median Imputation 0.9167 0.905 0.9052 0.8820
Mode Imputation 0.9167 0.9023 0.9052 0.8830
0 Imputation 0.9167 0.8954 0.9052 0.8458
1 Imputation 0.7638 0.5757 0.4265 0.3502
LOCF Imputation 0.9167 0.8247 0.8547 0.7762
NOCB Imputation / / / /
MICE (linear) 0.9108 0.9003 0.9116 0.9000
GAIN 0.9157 0.8958 0.9121 0.9011
DiffImpute w/ MLP 0.8783 0.8264 0.7922 0.7469
DiffImpute w/ ResNet 0.9161 0.8753 0.8917 0.8200
DiffImpute w/ Transformer 0.9177 0.9124 0.9146 0.9047
DiffImpute w/ U-Net 0.9161 0.9141 0.8978 0.8879

Table 55: Downstream task performance comparison in column mask setting (MAR) on YE, evalu-
ated by RMSE (MAR), the best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 9.2610 9.4197 9.3024 9.4945
Median Imputation 9.2610 9.3982 9.2909 9.4762
Mode Imputation 9.2610 9.3931 9.2842 9.4635
0 Imputation 9.2610 9.6935 9.3141 10.1599
1 Imputation 9.2606 10.1696 9.6535 10.2094
LOCF Imputation 9.2610 9.4576 9.2906 9.6248
NOCB Imputation / / / /
MICE (linear) 9.261 9.4699 9.2610 9.3314
GAIN 9.261 9.5965 9.2610 9.3885
DiffImpute w/ MLP 9.2609 9.9062 9.4708 10.2741
DiffImpute w/ ResNet 9.2611 9.6901 9.3116 10.1554
DiffImpute w/ Transformer 9.2609 9.3298 9.2727 9.4193
DiffImpute w/ U-Net 9.2609 9.2640 9.4906 9.3764
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Table 56: Downstream task performance comparison in column mask setting (MAR) on CO, evalu-
ated by accuracy score, the best results are in bold.

Imputation Methods 1 2 3 4
Mean Imputation 0.8919 0.8890 0.8187 0.7491
Median Imputation 0.8951 0.8924 0.8257 0.7610
Mode Imputation 0.8799 0.8875 0.8099 0.7271
0 Imputation 0.8784 0.8807 0.8064 0.7159
1 Imputation 0.8370 0.7896 0.6767 0.6398
LOCF Imputation 0.8939 0.8717 0.8223 0.7630
NOCB Imputation / / / /
MICE (linear) NaN NaN NaN NaN
GAIN NaN NaN NaN NaN
DiffImpute w/ MLP 0.8836 0.8703 0.8077 0.7247
DiffImpute w/ ResNet 0.8938 0.8882 0.8233 0.7564
DiffImpute w/ Transformer 0.8988 0.8962 0.8318 0.7745
DiffImpute w/ U-Net 0.8870 0.9281 0.8746 0.7861

Downstream Tasks Performance Rankings. This section presents overall downstream tasks per-
formance rankings under different mask settings (MCAR, and MAR) across seven datasets (Tabs. 57
and 58).

Table 57: Downstream task performance comparison under the random mask setting (MCAR) across
the seven datasets. As different datasets apply different metrics, we report the performance rankings
as the measurement. DiffImpute with Transformer has the best overall performance, the best
results are in bold.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 3.8 4.7 7.7 1.4 7.6 3.0 4.0 4.6 2.1
Median Imputation 5.3 6.1 8.1 2.3 3.6 3.0 3.0 4.5 1.9
Mode Imputation 6.4 7.3 4.8 3.8 6.0 8.1 5.3 6.0 1.4
0 Imputation 10.7 8.3 7.6 8.6 9.0 7.8 10.0 8.8 1.1
1 Imputation 10.8 11.2 10.0 12.0 11.0 10.0 10.9 10.8 0.6
LOCF Imputation 8.4 12.7 12.0 11.0 13.0 12.6 10.1 11.4 1.5
NOCB Imputation 9.2 12.1 12.1 12.0 12.0 12.2 10.0 11.4 1.1
MICE 3.1 1.8 2.3 5.4 1.6 4.1 9.6 4.0 2.6
GAIN 6.3 4.4 4.0 7.1 4.9 5.7 7.7 5.7 1.3
DiffImpute w/ MLP 8.7 8.4 7.7 8.2 10.0 9.0 8.2 8.6 0.7
DiffImpute w/ ResNet 4.8 2.8 4.0 6.6 5.8 4.6 2.8 4.5 1.3
DiffImpute w/ Transformer 1.2 2.0 2.7 2.4 1.4 3.7 1.3 2.1 0.8
DiffImpute w/ U-Net 12.2 9.0 7.9 10.0 5.2 7.0 7.9 8.5 2.1
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Table 58: Downstream task performance comparison under the column mask setting (MAR) across
the seven datasets. As different datasets apply different metrics, we report the performance rankings
as the measurement. DiffImpute with Transformer has the best overall performance, the best
results are in bold.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 4.3 4.0 3.8 2.5 5.5 6.0 5.3 4.5 1.1
Median Imputation 4.8 4.5 4.3 4.3 4.0 5.3 3.0 4.3 0.6
Mode Imputation 7.0 7.3 8.0 4.8 4.3 4.3 7.0 6.1 1.5
0 Imputation 8.8 11.3 9.3 5.5 5.5 8.5 8.5 8.2 1.9
1 Imputation 10.5 10.5 10.8 10.3 12.0 9.0 10.0 10.4 0.8
LOCF Imputation 7.5 5.8 5.8 6.8 8.3 6.0 4.8 6.4 1.1
NOCB Imputation / / / / / / / /
MICE 2.0 2.8 4.5 7.3 5.5 3.5 NaN 4.3 1.8
GAIN 1.8 1.5 4.0 7.8 5.0 4.3 NaN 4.0 2.1
DiffImpute w/ MLP 8.3 8.8 7.8 9.3 10.8 8.8 8.0 8.8 0.9
DiffImpute w/ ResNet 9.3 10.3 8.5 6.8 8.5 9.5 4.5 8.2 1.8
DiffImpute w/ Transformer 2.3 2.5 1.8 2.3 1.3 2.8 1.8 2.1 0.5
DiffImpute w/ U-Net 11.8 9.0 9.0 10.3 5.0 4.0 2.3 7.3 3.3

D.4 TIME PERFORMANCE.

Training Time. In the subsequent tables, we present the training durations associated with vari-
ous denoising models employed in our study. Notably, these durations exclude the time taken for
Harmonization and Impute-DDIM processes. All time measurements are provided in seconds,
as detailed in Tab. 59.

Table 59: The training time performance, measured in seconds, reveals that the U-Net model exhibits
the longest training duration.

Methods CA HE JA HI AL YE CO
DiffImpute w/ MLP 16 58 54 78 72 343 488
DiffImpute w/ ResNet 26 92 82 122 107 526 743
DiffImpute w/ Transformer 88 295 267 404 386 1762 2428
DiffImpute w/ U-Net 267 926 856 1252 1180 5555 7572

Inference Time. The subsequent tables detail the inference durations for the various de-
noising models incorporated in our research. It’s noteworthy to mention that, based on the
Harmonization algorithm (as seen in code snippet. 2), the inference time for models utiliz-
ing Harmonization witnessed an approximately fivefold increase. All durations are quantified
in seconds, as elaborated in Tab. 60.

Table 60: The inference time performance, measured in seconds, reveals that the U-Net model
exhibits the longest training duration.

Methods CA HE JA HI AL YE CO
DiffImpute w/ MLP 3 9 19 12 13 36 71
DiffImpute w/ ResNet 4 12 24 15 16 42 89
DiffImpute w/ Transformer 11 74 298 107 553 677 913
DiffImpute w/ U-Net 27 157 869 236 959 1827 2519
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D.5 ABLATION RESULTS WITHOUT TIME STEP TOKENIZER .

This section demonstrates the ablation results after excluding the Time Step Tokenizer. The
evaluations are specifically conducted under various missingness mechanisms, focusing on the CA
dataset.

Random Mask. Below, we present tables detailing the imputation outcomes under random mask
settings. These outcomes are quantified using three metrics: mean squared error (MSE), Pearson
correlation, and performance on downstream tasks. The respective results can be referenced in
Tabs. 61 to 62.

Table 61: Imputation MSE performance comparison without Time Step Tokenizer in random
mask (MCAR) setting on CA. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
MLP w/o Time Step Tokenizer 0.0173 0.0187 0.0199 0.0212 0.0226 0.0238 0.0251 0.0263 0.0275
ResNet w/o Time Step Tokenizer 0.0157 0.0171 0.0184 0.0198 0.0220 0.0255 0.0321 0.0448 0.0658
Transformer w/o Time Step Tokenizer 0.0169 0.0184 0.0199 0.0210 0.0224 0.0236 0.0250 0.0264 0.0277
U-Net w/o Time Step Tokenizer 0.0176 0.0189 0.0200 0.0212 0.0224 0.0234 0.0245 0.0257 0.0266

Table 62: Pearson correlation performance comparison without Time Step Tokenizer in ran-
dom mask (MCAR) setting on CA. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
MLP w/o Time Step Tokenizer 0.8515 0.8379 0.8284 0.8167 0.8035 0.7920 0.7797 0.7678 0.7569
ResNet w/o Time Step Tokenizer 0.8648 0.8527 0.8426 0.8332 0.8180 0.7984 0.7602 0.6794 0.5192
Transformer w/o Time Step Tokenizer 0.8531 0.8389 0.8268 0.8174 0.8041 0.7931 0.7790 0.7651 0.7527
U-Net w/o Time Step Tokenizer 0.8493 0.8372 0.8286 0.8188 0.8074 0.7981 0.7865 0.7756 0.7661

Table 63: Downstream task performance comparison without Time Step Tokenizer in ran-
dom mask (MCAR) setting on CA, evaluated by RMSE. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
MLP w/o Time Step Tokenizer 0.7916 0.8922 0.9683 1.0452 1.1141 1.1766 1.2294 1.2723 1.3099
ResNet w/o Time Step Tokenizer 0.7909 0.8914 0.9656 1.0409 1.1169 1.2139 1.3766 1.6312 1.8705
Transformer w/o Time Step Tokenizer 0.7844 0.8816 0.9588 1.0334 1.1041 1.1665 1.2242 1.2687 1.3095
U-Net w/o Time Step Tokenizer 0.7975 0.8994 0.9713 1.0449 1.1101 1.1680 1.2166 1.2536 1.2892

Column Mask. Below, we present tables detailing the imputation outcomes under random mask
settings. These outcomes are quantified using three metrics: mean squared error (MSE), Pearson
correlation, and performance on downstream tasks. The respective results can be referenced in
Tabs. 64 to 66.

Table 64: Imputation performance comparison without Time Step Tokenizer in column mask
(MAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 1 2 3 4
MLP w/o Time Step Tokenizer 0.0196 0.0223 0.0198 0.0112
ResNet w/o Time Step Tokenizer 0.0741 0.0951 0.0914 0.0722
Transformer w/o Time Step Tokenizer 0.0191 0.0224 0.0193 0.0106
U-Net w/o Time Step Tokenizer 0.2000 0.0180 0.0268 0.0205

D.6 ABLATION RESULTS OF HARMONIZATION .

This section delves into the imputation efficacy of four distinct denoising models when integrated
with the Harmonization technique. The evaluations are specifically conducted under various
missingness mechanisms, focusing on the CA dataset.
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Table 65: Pearson correlation performance comparison without Time Step Tokenizer in col-
umn mask (MAR) setting on CA. The best results are in bold.

Imputation Methods 1 2 3 4
MLP w/o Time Step Tokenizer 0.1728 0.5812 0.7376 0.8899
ResNet w/o Time Step Tokenizer 0.1983 0.3260 -0.0072 0.3305
Transformer w/o Time Step Tokenizer 0.1908 0.5899 0.7426 0.8977
U-Net w/o Time Step Tokenizer 0.1658 0.5232 0.7896 0.7782

Table 66: Downstream task performance comparison without Time Step Tokenizer in col-
umn mask (MAR) setting on CA, evaluated by RMSE. The best results are in bold.

Imputation Methods 1 2 3 4
MLP w/o Time Step Tokenizer 0.7566 0.8494 1.0102 1.1316
ResNet w/o Time Step Tokenizer 0.9282 1.7319 1.5977 1.5334
Transformer w/o Time Step Tokenizer 0.7498 0.8399 1.0759 1.0995
U-Net w/o Time Step Tokenizer 0.7637 0.9363 0.9413 1.1991

Random Mask. Below, we present tables detailing the imputation outcomes under random mask
settings. These outcomes are quantified using three metrics: mean squared error (MSE), Pearson
correlation, and performance on downstream tasks. The respective results can be referenced in
Tabs. 67 to 69.

Table 67: Imputation MSE performance comparison with Harmonization in random mask
(MCAR) setting on CA. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Harmonization w/ MLP 0.0253 0.0258 0.0265 0.0268 0.0274 0.0280 0.0285 0.0292 0.0298
Harmonization w/ ResNet 0.0146 0.0157 0.0169 0.0178 0.0189 0.0198 0.0208 0.0218 0.0229
Harmonization w/ Transformer 0.0155 0.0168 0.0180 0.0191 0.0206 0.0219 0.0232 0.0246 0.0258
Harmonization w/ U-Net 2.0681 2.6099 3.1769 3.9142 4.7691 5.6382 6.6880 7.9535 9.2977

Table 68: Pearson correlation performance comparison with Harmonization in random mask
(MCAR) setting on CA. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Harmonization w/ MLP 0.7817 0.7774 0.7747 0.7733 0.7694 0.7655 0.7614 0.7569 0.7533
Harmonization w/ ResNet 0.8752 0.8645 0.8554 0.8474 0.8373 0.8287 0.8184 0.8085 0.7986
Harmonization w/ Transformer 0.8772 0.8662 0.8566 0.8473 0.8352 0.8240 0.8115 0.7994 0.7883
Harmonization w/ U-Net 0.0781 0.0726 0.0683 0.0677 0.0663 0.0668 0.0671 0.0652 0.656

Table 69: Downstream task performance comparison with Harmonization in MCAR setting on
CA, evaluated by RMSE. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Harmonization w/ MLP 0.8692 1.0101 1.1407 1.1852 1.2500 1.3100 1.3547 1.3843 1.4057
Harmonization w/ ResNet 0.7679 0.8574 0.9255 1.0000 1.0723 1.1369 1.2031 1.2612 1.3190
Harmonization w/ Transformer 0.7486 0.8162 0.8705 0.9335 0.9943 1.0509 1.1076 1.1657 1.2264
Harmonization w/ U-Net 1.1727 1.4774 1.6634 1.7959 1.8834 1.9391 1.9825 2.0146 2.0634

Column Mask. In the subsequent tables, we detail the imputation outcomes when operating under
column mask settings. These results are gauged using three pivotal metrics: mean squared error
(MSE), Pearson correlation, and efficacy on downstream tasks. For a comprehensive understanding,
refer to Tabs. 70 to 72.
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Table 70: Imputation performance comparison with Harmonization in column mask (MAR)
setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Harmonization w/ MLP 0.02660 0.0296 0.0264 0.0189
Harmonization w/ ResNet 0.0184 0.0203 0.0173 0.0095
Harmonization w/ Transformer 0.0173 0.0202 0.0164 0.0084
Harmonization w/ U-Net 2.1512 0.1604 2.5408 4.2775

Table 71: Pearson correlation performance comparison with Harmonization in column mask
(MAR) setting on CA. The best results are in bold.

Imputation Methods 1 2 3 4
Harmonization w/ MLP 0.0929 0.5159 0.6368 0.8193
Harmonization w/ ResNet 0.2462 0.6083 0.7690 0.9112
Harmonization w/ Transformer 0.4130 0.6877 0.8064 0.9286
Harmonization w/ U-Net 0.1795 0.3662 0.1771 0.0948

Table 72: Downstream task performance comparison with Harmonization in column mask
(MAR) setting on CA, evaluated by RMSE. The best results are in bold.

Imputation Methods 1 2 3 4
Harmonization w/ MLP 0.8175 0.9961 1.2466 1.2839
Harmonization w/ ResNet 0.7557 0.8718 1.0723 1.0908
Harmonization w/ Transformer 0.7111 0.7647 0.9425 0.9991
Harmonization w/ U-Net 0.9452 1.6025 1.4419 1.9054

D.7 ABLATION RESULTS OF IMPUTE-DDIM.

The tables below display the experimental results of imputation performance using the
Impute-DDIM technique on the CA dataset, with the retraced step set to j = 5 and τ ∈
{10, 25, 50, 100, 250}.

Random Mask. The tables below shows the imputation performance with Impute-DDIM as
evaluated by mean squared error (MSE) setting τ ∈ {10, 25, 50, 100, 250}, under the random mask
settings (Tabs. 73 to 77).

Table 73: Imputation performance comparison with Impute-DDIM setting τ = 10 under the
random mask (MCAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Impute-DDIM w/ MLP 0.2725 0.2775 0.2807 0.2814 0.2825 0.2829 0.2835 0.2842 0.2849
Impute-DDIM w/ ResNet 0.2483 0.2539 0.2580 0.2594 0.2608 0.2615 0.2623 0.2633 0.2640
Impute-DDIM w/ Transformer 0.2438 0.2511 0.2571 0.2602 0.2634 0.2657 0.2677 0.2699 0.2718
Impute-DDIM w/ U-Net 0.2678 0.2719 0.2748 0.2752 0.2759 0.2760 0.2762 0.2766 0.2771
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Table 74: Imputation performance comparison with Impute-DDIM setting τ = 25 under the
random mask (MCAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Impute-DDIM w/ MLP 0.2301 0.2354 0.2398 0.2417 0.2437 0.2452 0.2467 0.2483 0.2499
Impute-DDIM w/ ResNet 0.1763 0.1822 0.1876 0.1904 0.1927 0.1946 0.1962 0.1980 0.1997
Impute-DDIM w/ Transformer 0.1601 0.1692 0.1774 0.1834 0.1890 0.1937 0.1980 0.2024 0.2064
Impute-DDIM w/ U-Net 0.2191 0.2236 0.2268 0.2279 0.2289 0.2296 0.2302 0.2311 0.2321

Table 75: Imputation performance comparison with Impute-DDIM setting τ = 50 under the
random mask (MCAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Impute-DDIM w/ MLP 0.1778 0.1832 0.1881 0.1911 0.1940 0.1964 0.1990 0.2014 0.2039
Impute-DDIM w/ ResNet 0.1027 0.1077 0.1129 0.1163 0.1192 0.1217 0.1240 0.1264 0.1285
Impute-DDIM w/ Transformer 0.0801 0.0867 0.0934 0.0992 0.1049 0.1103 0.1152 0.1204 0.1253
Impute-DDIM w/ U-Net 0.1638 0.1673 0.1701 0.1720 0.1734 0.1750 0.1760 0.1774 0.1788
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Table 76: Imputation performance comparison with Impute-DDIM setting τ = 100 under the
random mask (MCAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Impute-DDIM w/ MLP 0.1135 0.1175 0.1224 0.1259 0.1291 0.1324 0.1358 0.1390 0.1420
Impute-DDIM w/ ResNet 0.0443 0.0466 0.0495 0.0518 0.0541 0.0560 0.0579 0.0599 0.0617
Impute-DDIM w/ Transformer 0.0281 0.0303 0.0329 0.0351 0.0375 0.0399 0.0423 0.0451 0.0477
Impute-DDIM w/ U-Net 0.1064 0.1091 0.1114 0.1131 0.1147 0.1165 0.1180 0.1199 0.1218

Table 77: Imputation performance comparison with Impute-DDIM setting τ = 250 under the in
random mask (MCAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Impute-DDIM w/ MLP 0.0492 0.0512 0.0537 0.0555 0.0576 0.0596 0.0617 0.0641 0.0661
Impute-DDIM w/ ResNet 0.0210 0.0219 0.0230 0.0238 0.0248 0.0257 0.0266 0.0276 0.0285
Impute-DDIM w/ Transformer 0.0152 0.0165 0.0180 0.0191 0.0205 0.0215 0.0277 0.0240 0.0251
Impute-DDIM w/ U-Net 0.0748 0.0758 0.0777 0.0794 0.0808 0.0824 0.0845 0.0870 0.0900

Column Mask. The tables below shows the imputation performance with Impute-DDIM setting
τ ∈ {10, 25, 50, 100, 250}, as evaluated by mean squared error (MSE) under column mask settings
(Tabs. 78 to 82).

Table 78: Imputation performance comparison with Impute-DDIM setting τ = 10 under the
column mask (MAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Impute-DDIM w/ MLP 0.2770 0.2922 0.2715 0.2581
Impute-DDIM w/ ResNet 0.2557 0.2707 0.2505 0.2381
Impute-DDIM w/ Transformer 0.2438 0.2635 0.2477 0.2391
Impute-DDIM w/ U-Net 0.2732 0.2472 0.3016 0.2704

Table 79: Imputation performance comparison with Impute-DDIM setting τ = 25 under the
column mask (MAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Impute-DDIM w/ MLP 0.2333 0.2471 0.2347 0.2195
Impute-DDIM w/ ResNet 0.1854 0.1978 0.1858 0.1731
Impute-DDIM w/ Transformer 0.1572 0.1758 0.1714 0.1667
Impute-DDIM w/ U-Net 0.2244 0.2067 0.2461 0.2302

Table 80: Imputation performance comparison with Impute-DDIM setting τ = 50 under the
column mask (MAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Impute-DDIM w/ MLP 0.1791 0.1908 0.1874 0.1708
Impute-DDIM w/ ResNet 0.1128 0.1216 0.1157 0.1036
Impute-DDIM w/ Transformer 0.0791 0.0889 0.0916 0.0861
Impute-DDIM w/ U-Net 0.1679 0.1602 0.1815 0.1817
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Table 81: Imputation performance comparison with Impute-DDIM setting τ = 100 under the
column mask (MAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Impute-DDIM w/ MLP 0.1133 0.1216 0.1255 0.1096
Impute-DDIM w/ ResNet 0.0506 0.0547 0.0529 0.0425
Impute-DDIM w/ Transformer 0.0312 0.0334 0.0329 0.0225
Impute-DDIM w/ U-Net 0.1064 0.1098 0.1163 0.1250

Table 82: Imputation performance comparison with Impute-DDIM setting τ = 250 under the
column mask (MAR) setting on CA, evaluated by MSE. The best results are in bold.

Imputation Methods 1 2 3 4
Impute-DDIM w/ MLP 0.0492 0.0536 0.0555 0.0452
Impute-DDIM w/ ResNet 0.0236 0.0262 0.0238 0.0154
Impute-DDIM w/ Transformer 0.0177 0.0205 0.0168 0.0085
Impute-DDIM w/ U-Net 0.0622 0.0772 0.0851 0.0770

D.8 INFERENCE TIME ABLATION STUDY.

In the subsequent tables, we present the inference durations associated with four distinct denois-
ing networks. Specifically, we focus on the impact of integrating the Harmonization and
Impute-DDIM techniques on the CA dataset.

Impact of Harmonization on Inference Time. The table that follows delineates the inference
durations for four denoising networks when the Harmonization technique is employed with a
retraced step of j = 5. For a comprehensive understanding, we also provide a comparative analysis
against scenarios where the Harmonization technique is not utilized (Tab. 83).
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Table 83: Ablation of inference time comparison for Harmonization. The inference time is
about five times longer when employing the Harmonization technique, which aligns with our
algorithm 2. Time is measured in seconds.

Technique MLP ResNet Transformer U-Net
w/o Harmonization 3 4 27 11
Harmonization 15 19 53 29

Impute-DDIM Inference Time. The table below illustrates the inference time of four denois-
ing networks when utilizing the Impute-DDIM technique, with τ sequentially taking values from
10, 25, 50, 100, 250, 500. The retraced step j remains fixed at 5 in this context. Time is measured in
seconds (Tab. 84).

Table 84: Imputation performance comparison with Impute-DDIM in random mask setting on CA,
measured in seconds. Note that when τ = 500, no Impute-DDIM is applied.

Imputation Methods τ = 10 τ = 25 τ = 50 τ = 100 τ = 250 τ = 500
Impute-DDIM w/ MLP 2 1 2 3 8 15
Impute-DDIM w/ ResNet 1 1 2 4 10 19
Impute-DDIM w/ Transformer 1 2 5 11 26 53
Impute-DDIM w/ U-Net 1 7 15 30 74 149

D.9 COMPARISON RESULTS WITH MIWAE (VAE-BASED METHOD).

Random Mask. In the subsequent tables, we present the imputation results when employing the
MIWAE method (Mattei & Frellsen, 2019), a VAE-based approach, gauged using MSE under ran-
dom mask conditions. This evaluation spans five datasets, specifically Tabs. 85 to 87. It’s worth
noting that our experiments with MIWAE were confined to the CA, HE, JA, HI, and AL datasets.
This limitation arises from the memory-intensive nature of the MIWAE method. Despite utilizing
high-end GPUs like the NVIDIA A100, MIWAE often results in memory errors, underscoring its
significant memory demands.

Table 85: Imputation performance in terms of random mask setting (MCAR), using the MIWAE
method, evaluated with MSE and downstream task metrics across five datasets. According to the
experimental results from Tabs. 9 to 15, MIWAE method is inferior to DiffImpute in most of the
mask settings.

Dataset 10% 20% 30% 40% 50% 60% 70% 80% 90%
CA 0.0228 0.0233 0.0233 0.0231 0.0234 0.0236 0.0235 0.0234 0.0235
HE 0.0414 0.0413 0.0405 0.0395 0.0385 0.0372 0.0373 0.0346 0.0352
JA 0.0388 0.0395 0.0430 0.0402 0.0412 0.0390 0.0380 0.0369 0.0350
HI 0.0631 0.0629 0.0628 0.0628 0.0629 0.0629 0.0628 0.0628 0.0627
AL 0.0199 0.0199 0.0199 0.0199 0.0200 0.0200 0.0200 0.0200 0.0200
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Table 86: Imputation performance in terms of random mask setting (MCAR), using the MI-
WAE method, evaluated with Pearson correlation and downstream task metrics across five
datasets.According to the experimental results from Tabs. 26 to 32, MIWAE method is inferior
to DiffImpute in most of the mask settings.

Dataset 10% 20% 30% 40% 50% 60% 70% 80% 90%
CA 0.7995 0.7962 0.7950 0.7957 0.7938 0.7926 0.7924 0.7942 0.7940
HE 0.6857 0.6861 0.6895 0.6954 0.7008 0.7087 0.7079 0.7247 0.7191
JA 0.6501 0.6450 0.6253 0.6402 0.6349 0.6461 0.6510 0.6569 0.6714
HI 0.5762 0.5762 0.5810 0.5807 0.5805 0.5811 0.5817 0.5821 0.5825
AL 0.6399 0.6402 0.6400 0.6408 0.6400 0.6399 0.6393 0.6393 0.6391

Table 87: Imputation performance in terms of random mask setting (MCAR), using the MI-
WAE method, evaluated with downstream task metrics and downstream task metrics across five
datasets. According to the experimental results from Tabs. 43 to 49, MIWAE method is inferior to
DiffImpute in most of the mask settings.

Dataset 10% 20% 30% 40% 50% 60% 70% 80% 90%
CA 0.8768 1.0215 1.1207 1.2059 1.2682 1.3132 1.3511 1.3535 1.3535
HE 0.3017 0.2489 0.2036 0.1625 0.1306 0.1048 0.0791 0.0574 0.0370
JA 0.6792 0.6423 0.6088 0.5766 0.5428 0.5054 0.4717 0.4302 0.3858
HI 0.6934 0.6683 0.6451 0.6224 0.6006 0.5815 0.5597 0.5437 0.5241
AL 0.8210 0.6897 0.5375 0.3893 0.2558 0.1477 0.0735 0.0284 0.0081

Column Mask. In the following tables, we detail the imputation results using the MIWAE method,
a VAE-based approach, assessed by the mean squared error (MSE) under column mask conditions.
This assessment encompasses five datasets, as referenced in Tabs. 88 to 90.

Table 88: Imputation performance in terms of column mask setting (MAR), using the MIWAE
method, evaluated with MSE across five datasets. According to the experimental results from
Tabs. 16 to 22, MIWAE method is inferior to DiffImpute in most of the mask settings.

Dataset 1 2 3 4
CA 0.0658 0.0007 0.0067 0.0112
HE 0.0008 0.0148 0.0324 0.0627
JA 0.0308 0.0386 0.0571 0.0286
HI 0.0022 0.0036 0.0339 0.0968
AL 0.0242 0.0487 0.0192 0.0192

Table 89: Imputation performance in terms of column mask setting (MAR), using the MIWAE
method, evaluated with Pearson correlation across five datasets. According to the experimental
results from Tabs. 33 to 39, MIWAE method is inferior to DiffImpute in most of the mask
settings.

Dataset 1 2 3 4
CA 0.2132 0.0073 0.7670 0.8795
HE -0.0152 0.8110 0.4187 0.3196
JA -0.0016 0.1886 0.4394 0.6895
HI 0.0129 0.0356 0.7108 0.4627
AL -0.0039 0.3794 0.1198 0.5804

48



Under review as a conference paper at ICLR 2024

Table 90: Imputation performance in terms of column mask setting (MAR), using the MIWAE
method, evaluated with downstream task metrics across five datasets. According to the experimental
results from Tabs. 50 to 56, MIWAE method is inferior to DiffImpute in most of the mask
settings.

Dataset 1 2 3 4
CA 0.7122 0.6853 1.0053 1.2930
HE 0.3571 0.3570 0.3065 0.2556
JA 0.7130 0.6845 0.6699 0.6951
HI 0.6566 0.6882 0.6834 0.6794
AL 0.9126 0.8780 0.8977 0.8887
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