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A ADDITIONAL ASSUMPTIONS

A4: We list two classical examples here:
– when A4 is “⇥ is finite, l(·, ·) is a zero-one loss, samples are i.i.d”, �(|⇥|, n, �) =p

(log(|⇥|) + log(1/�))/2n

– when A4 is “samples are i.i.d”, �(|⇥|, n, �) = 2R(L) +
p
(log 1/�)/2n, where R(L)

stands for Rademacher complexity and L = {l✓ | ✓ 2 ⇥}, where l✓ is the loss function
corresponding to ✓.

For more information or more concrete examples of the generic term, one can refer to relevant
textbooks such as (Bousquet et al., 2003).

A5: the worst distribution for expected risk equals the worst distribution for empirical risk, i.e.,

argmax
P02T (P,A)

rP0(b✓) = argmax
P02T (P,A)

brP0(b✓)

where T (P,A) is the collection of distributions created by elements in A over samples from
P .

Assumption A5 appears very strong, however, the successes of methods like adversarial training
(Madry et al., 2018) suggest that, in practice, A5 might be much weaker than it appears.

A6: With (x,y) 2 (X,Y), the worst case sample in terms of maximizing cross-entropy loss and
worst case sample in terms of maximizing classification error for model b✓ follows:

8x, y>f(x; b✓)
infa2A y>f(a(x); b✓)

� exp
�
I(g(f(x; b✓)) 6= g(f(x0; b✓)))

�
(8)

where x0 stands for the worst case sample in terms of maximizing classification error, i.e.,

x0 = argmin
x

y>g(f(x; b✓))

Also,

8x, | inf
a2A

y>f(a(x); b✓)| � 1 (9)

Although Assumption A6 appears complicated, it describes simple situations that we will unveil in
two scenarios:

• If g(f(x; b✓)) = g(f(x0; b✓)), which means either the sample is misclassified by b✓ or the adversary
is incompetent to find a worst case transformation that alters the prediction, the RHS of Eq. 8 is
1, thus Eq. 8 always holds (because A has the identity map as one of its elements).

• If g(f(x; b✓)) 6= g(f(x0; b✓)), which means the adversary finds a transformation that alters the
prediction. In this case, A2 intuitively states that the A is reasonably rich and the adversary is
reasonably powerful to create a gap of the probability for the correct class between the original
sample and the transformed sample. The ratio is described as the ratio of the prediction confidence
from the original sample over the prediction confidence from the transformed sample is greater
than e.

We inspect Assumption A6 by directly calculating the frequencies out of all the samples when it
holds. Given a vanilla model (Base), we notice that over 74% samples out of 50000 samples fit this
assumption.
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B PROOF OF THEORETICAL RESULTS

B.1 PROOF OF LEMMA 3.1

Lemma. With Assumptions A1, A4, and A5, with probability at least 1� �, we have

sup
P02T (P,A)

rP0(b✓)  1

n

X

(x,y)⇠P

sup
a2A

I(g(f(a(x); b✓)) 6= y) + �(|⇥|, n, �) (10)

Proof. With Assumption A5, we simply say

argmax
P02T (P,A)

rP0(b✓) = argmax
P02T (P,A)

brP0(b✓) = Pw

we can simply analyze the expected risk following the standard classical techniques since both
expected risk and empirical risk are studied over distribution Pw.

Now we only need to make sure the classical analyses (as discussed in A4) are still valid over
distribution Pw:

• when A4 is “⇥ is finite, l(·, ·) is a zero-one loss, samples are i.i.d”, �(|⇥|, n, �) =r
log(|⇥|) + log(1/�)

2n
. The proof of this result uses Hoeffding’s inequality, which only requires

independence of random variables. One can refer to Section 3.6 in Liang (2016) for the detailed
proof.

• when A4 is “samples are i.i.d”, �(|⇥|, n, �) = 2R(L)+
r

log 1/�

2n
. The proof of this result relies

on McDiarmid’s inequality, which also only requires independence of random variables. One can
refer to Section 3.8 in Liang (2016) for the detailed proof.

Assumption A1 guarantees the samples from distribution Pw are still independent, thus the generic
term holds for at least these two concrete examples, thus the claim is proved.

B.2 PROOF OF PROPOSITION 3.2

Proposition. With A2, and de(·, ·) in A2 chosen to be `1 norm, for any a 2 A, we have

X

i

||f(xi; b✓)� f(a(xi); b✓)||1 = W1(f(x; b✓), f(a(x); b✓)) (11)

Proof. We leverage the order statistics representation of Wasserstein metric over empirical distribu-
tions (e.g., see Section 4 in Bobkov & Ledoux (2019))

W1(f(x; b✓), f(a(x); b✓)) = inf
�

X

i

||f(xi; b✓)� f(a(x�(i)), b✓)||1

where � stands for a permutation of the index, thus the infimum is taken over all possible permuta-
tions. With Assumption A2, when de(·, ·) in A2 chosen to be `1 norm, we have:

||f(xi; b✓)� f(a(xi); b✓)||1  min
j 6=i

||f(xi; b✓)� f(a(xj), b✓)||1

Thus, the infimum is taken when � is the natural order of the samples, which leads to the claim.
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B.3 PROOF OF THEOREM 3.3

Theorem. With Assumptions A1, A2, A4, A5, and A6, and de(·, ·) in A2 is `1 norm, with probability

at least 1� �, the worst case generalization risk will be bounded as

sup
P02T (P,A)

rP0(b✓)  brP(b✓) +
X

i

||f(xi; b✓)� f(x0
i; b✓)||1 + �(|⇥|, n, �) (12)

and x0 = a(x), where a = argmaxa2A y>f(a(x); b✓).

Proof. First of all, in the context of multiclass classification, where g(f(x, ; ✓)) predicts a label
with one-hot representation, and y is also represented with one-hot representation, we can have the
empirical risk written as:

brP(x; b✓) = 1� 1

n

X

(x,y)⇠P

y>g(f(x; b✓))

Thus,

sup
P02T (P,A)

brP0(x; b✓) = brP(x; b✓) + sup
P02T (P,A)

brP0(x; b✓)� brP(x; b✓)

= brP(x; b✓) +
1

n
sup

P02T (P,A)

� X

(x,y)⇠P

y>g(f(x; b✓))�
X

(x,y)⇠P0

y>g(f(x; b✓))
�

With A6, we can continue with:

sup
P02T (P,A)

brP0(x; b✓)  brP(x; b✓) +
1

n
sup

P02T (P,A)

� X

(x,y)⇠P

y> log(f(x; b✓))�
X

(x,y)⇠P0

y> log(f(x; b✓))
�

If we use e(·) = �y> log(·) to replace the cross-entropy loss, we simply have:

sup
P02T (P,A)

brP0(x; b✓)  brP(x; b✓) +
1

n
sup

P02T (P,A)

� X

(x,y)⇠P0

e(f(x; b✓))�
X

(x,y)⇠P

e((f(x; b✓))
�

Since e(·) is a Lipschitz function with constant  1 (because of A6, Eq.(9)) and together with the
dual representation of Wasserstein metric (See e.g., Villani (2003)), we have

sup
P02T (P,A)

brP0(x; b✓)  brP(x; b✓) +W1(f(x, b✓), f(x0, b✓))

where x0 = a(x), where a = argmaxa2A y>f(a(x); b✓).
Further, we can use the help of Proposition 3.2 to replace Wassertein metric with `1 distance. Finally,
we can conclude the proof with Assumption A5 as how we did in the proof of Lemma 3.1.

B.4 PROOF OF LEMMA 3.4

Lemma. With Assumptions A1-A6, and de(·, ·) in A2 chosen as `1 norm distance, dx(·, ·) in A3

chosen as Wasserstein-1 metric, assuming there is a a0() 2 A where brPa0 (b✓) = 1
2

�
brPa+ (b✓) +

brPa� (b✓)
�
, with probability at least 1� �, we have:

sup
P02T (P,A)

rP0(b✓) 1

2

�
brPa+ (b✓) + brPa� (b✓)

�
+

X

i

||f(a+(xi); b✓)� f(a�(x0); b✓)||1 + �(|⇥|, n, �)

(13)

Proof. We can continue with

sup
P02T (P,A)

brP0(x; b✓)  brP(x; b✓) +W1(f(x, b✓), f(x0, b✓))
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from the proof of Lemma 3.3. With the help of Assumption A3, we have:

dx(f(a
+(x), b✓), f(a�(x), b✓)) � dx(f(x, b✓), f(x0, b✓))

When dx(·, ·) is chosen as Wasserstein-1 metric, we have:

sup
P02T (P,A)

brP0(x; b✓)  brP(x; b✓) +W1(f(a
+(x), b✓), f(a�(x), b✓))

Further, as the LHS is the worst case risk generated by the transformation functions within A,
and brP(x; b✓) is independent of the term W1(f(a+(x), b✓), f(a�(x), b✓)), WLOG, we can replace
brP(x; b✓) with the risk of an arbitrary distribution generated by the transformation function in A. If
we choose to use brPa0 (b✓) = 1

2

�
brPa+ (b✓) + brPa� (b✓)

�
, we can conclude the proof, with help from

Proposition 3.2 and Assumption A5 as how we did in the proof of Lemma 3.3.
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Vanilla Scenario Challenging Scenario
Vanilla Augmented Regularized Vanilla Augmented Regularized

Frequency 0.005 0.152 0.999 0.001 0.021 0.711
Paired Distance 217968.06 42236.75 1084.4 66058.4 28122.45 4287.31

Wasserstein (greedy) 152736.47 38117.77 1084.4 37156.5 20886.7 4218.53
Paired/Wasserstein 1.42 1.10 1 1.77 1.34 1.02

Table 5: Empirical results from synthetic data for Assumption A2.

C SYNTHETIC RESULTS TO VALIDATE ASSUMPTIONS

We test the assumptions introduced in this paper over MNIST data and rotations as the variation of
the data.

Assumption A2: We first inspect Assumption A2, which essentially states the distance de(·, ·)
is the smaller between a sample and its augmented copy (60� rotation) than the sample and the
augmented copy from any other samples. We take 1000 training examples and calculate the `1 pair-
wise distances between the samples and its augmented copies, then we calculated the frequencies
when the A2 hold for one example. We repeat this for three different models, the vanilla model,
the model trained with augmented data, and the model trained with regularized adversarial training.
The results are shown in the Table 5 and suggest that, although the A2 does not hold in general, it
holds for regularized adversarial training case, where A2 is used. Further, we test the assumption in
a more challenging case, where half of the training samples are 15� rotations of the other half, thus
we may expect the A2 violated for every sample. Finally, as A2 is essentially introduced to replace
the empirical Wasserstein distance with `1 distances of the samples and the augmented copies, we
directly compare these metrics. However, as the empirical Wasserstein distance is forbiddingly hard
to calculate (as it involves permutation statistics), we use a greedy heuristic to calculate by iteratively
picking the nearest neighbor of a sample and then remove the neighbor from the pool for the next
sample. Our inspection suggests that, even in the challenging scenario, the paired distance is a
reasonably good representative of Wasserstein distance for regularized adversarial training method.

Assumption A3: Whether Assumption A3 hold will depend on the application and the domain
knowledge of vertices, thus here we only discuss the general performances if we assume A3 hold.
Conveniently, this can be shown by comparing the performances of RA and the rest methods in
the experiments reported in Section 4.1: out of six total scenarios ({texture, rotation, contrast} ⇥
{MNIST, CIFAR10}), there are four scenarios where RA outperforms VWA, this suggests that the
domain-knowledge of vertices can actually help in most cases, although not guaranteed in every
case.

Assumption A6: We inspect Assumption A6 by directly calculating the frequencies out of all the
samples when it holds. Given a vanilla model (Base), we notice that over 74% samples fit this
assumption.
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Texture Rotation Contrast
C R I C R I C R I

Base 0.7013 0.3219 0.714 0.7013 0.0871 0.5016 0.7013 0.2079 0.34
VA 0.6601 0.5949 0.9996 0.7378 0.4399 0.6168 0.7452 0.6372 0.4406
RA 0.6571 0.6259 1 0.6815 0.5166 0.852 0.7742 0.6325 0.535

VWA 0.6049 0.5814 1 0.714 0.6009 0.9172 0.7387 0.6708 0.479
RWA 0.663 0.6358 1 0.7606 0.6486 0.9244 0.7489 0.6326 0.3736

Table 6: Results of CIFAR10 data. (“C” stands for clean accuracy, “R” stands for robustness, and
“I” stands for invariance score): invariance score shows big differences while accuracy does not.

D ADDITIONAL DETAILS OF SYNTHETIC EXPERIMENTS SETUP

We consider three different sets of transformation functions:

• Texture: we use Fourier transform to perturb the texture of the data by discarding the high-
frequency components of the given a radius r. The smaller r is, the less high-frequency com-
ponents the image has. We consider A = {a(), a12(), a10(), a8(), a6()}, where a() is the identity
map. Thus, vertexes are a() and a6().

• Rotation: we rotate the images clockwise r degrees. We consider A = {a(), a15(), a30(),
a45(), a60()}, where a() is the identity map. Thus, vertexes are a() and a60().

• Contrast: we create the images depicting the same semantic information, but with different scales
of the pixels, including the negative color representation. Therefore, we have A = {a(x) =
x, a1(x) = x/2, a2(x) = x/4, a3(x) = 1� x, a4(x) = (1� x)/2, a5(x) = (1� x)/4, where x
stands for the image whose pixel values have been normalized to be between 0 and 1. We consider
a() and a3() as vertexes.

We first train the baseline models to get reasonably high performance, and then train other aug-
mented models with the same hyperparameters. VA and RA are augmented with vertexes, while
VWA and RWA are augmented with A. For methods with a regularizer, we run the experiments
with 9 hyperparameters evenly split in the logspace from 10�4 to 104, and we report the methods
with the best worst-case accuracy.

Results Discussion Table 6 tells roughly the same story with Table 1. The invariance score of the
worst case methods in Table 6 behave lower than we expected, we conjecture this is mainly because
some elements in A of “contrast” will transform the data into samples inherently hard to predict (e.g.

a(x) = x/4 will squeeze the pixel values together, so the images look blurry in general and hard to
recognize), the model repeatedly identifies these case as the worst case and ignores the others. As
a result, RWA effectively degrades to RA yet is inferior to RA because it does not have the explicit
vertex information. To verify the conjecture, we count how often each augmented sample to be
considered as the worst case: for “texture” and “rotation”, each augmented sample generated by A
are picked up with an almost equal frequency, while for “constrast”, x/2 and (1�x)/2 are identified
only 10%-15% of the time x/4 and (1� x)/4 are identified as the worst case.
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Worst Clean Vertex All Beyond Invariance
Base 0.9860 0.9921 0.9911 0.9463 0.9236
VA 0.9906 0.9928 0.9925 0.9927 0.9650 0.9876
RA 0.9904 0.9909 0.9910 0.9909 0.9747 1
VWA 0.9903 0.9922 0.9923 0.9696 0.9940
RWA 0.9911 0.9915 0.9915 0.9773 1

RA-`1 0.9897 0.9904 0.9901 0.9903 0.9728 1

RA-W 0.9858 0.9888 0.9902 0.9893 0.9433 0.6428
RA-D 0.9892 0.9921 0.9912 0.9919 0.9373 0.2588
RA-KL 0.0980 0.0980 0.0980 0.0980 0.0980 0.2800
RAsoftmax 0.9898 0.9917 0.9919 0.9920 0.9633 0.9928
RAsoftmax-`1 0.9904 0.9925 0.9918 0.9925 0.9672 0.9960

Table 7: More methods tested with more comprehensive metrics over MNIST on texture

Worst Clean Vertex All Beyond Invariance
Base 0.2960 0.9921 0.7410 0.8914 0.2056
VA 0.9336 0.9884 0.9886 0.9775 0.8711 0.5628
RA 0.9525 0.9930 0.9919 0.9829 0.9201 0.6044
VWA 0.9408 0.9466 0.9827 0.5979 0.6284
RWA 0.9882 0.9934 0.9934 0.9417 0.8856

RA-`1 0.9532 0.9913 0.9916 0.9824 0.9145 0.5912
RA-W 0.9274 0.9882 0.9875 0.9757 0.8514 0.4600
RA-D 0.9368 0.9895 0.989 0.9782 0.8431 0.4132
RA-KL 0.9424 0.9875 0.9872 0.9762 0.9194 0.6800
RAsoftmax 0.9389 0.9900 0.9901 0.9792 0.8631 0.6060
RAsoftmax-`1 0.9424 0.9913 0.9901 0.9804 0.8663 0.5864

Table 8: More methods tested with more comprehensive metrics over MNIST on rotation.

Worst Clean Vertex All Beyond Invariance
Base 0.2699 0.9921 0.6377 0.2988 0.2003
VA 0.9837 0.9922 0.9917 0.9913 0.6044 0.4153
RA 0.9823 0.9936 0.9930 0.9911 0.6512 0.4166
VWA 0.4470 0.5360 0.7515 0.4649 0.2210
RWA 0.9893 0.9940 0.9930 0.4841 0.8786

RA-`1 0.9776 0.9935 0.9932 0.9902 0.6251 0.4176
RA-W 0.7357 0.9867 0.9865 0.9361 0.6547 0.2960
RA-D 0.9833 0.9913 0.9921 0.9909 0.6199 0.2000
RA-KL 0.9105 0.9894 0.9882 0.9677 0.6001 0.4153
RAsoftmax 0.9839 0.9916 0.9910 0.9906 0.6221 0.4273
RAsoftmax-`1 0.9844 0.9920 0.9918 0.9909 0.5843 0.4236

Table 9: More methods tested with more comprehensive metrics over MNIST on contrast.

E MORE SYNTHETIC RESULTS

E.1 EXPERIMENT SETUP

To understand these methods, we introduce a more comprehensive test of these methods, including
the five methods discussed in the main paper, and multiple ablation test methods, including

• RA-`1: when squared `2 norm of RA is replaced by `1 norm.
• RA-W: when the norm distance of RA is replaced by Wasserstein distance, enabled by the imple-

mentation of Wasserstein GAN Arjovsky et al. (2017); Gulrajani et al. (2017).
• RA-D: when the norm distance of RA is replaced by a discriminator. Our implementation uses a

one-layer neural network.
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Worst Clean Vertex All Beyond Invariance
Base 0.3219 0.7013 0.5997 0.3084 0.7140
VA 0.5949 0.6601 0.6394 0.6530 0.5583 0.9996
RA 0.6259 0.6571 0.6485 0.6553 0.5826 1

VWA 0.5814 0.6049 0.6024 0.5213 1

RWA 0.6358 0.6630 0.6612 0.5892 1

RA-`1 0.6230 0.6609 0.6511 0.6578 0.5775 1

RA-W 0.6140 0.6860 0.6578 0.6783 0.5801 1

RA-D 0.5794 0.7663 0.6734 0.7288 0.5632 0.3220
RA-KL 0.5866 0.5873 0.5868 0.5870 0.5804 1

RAsoftmax 0.6197 0.6263 0.6268 0.6266 0.5831 1

RAsoftmax-`1 0.6319 0.653 0.6480 0.6516 0.5830 1

Table 10: More methods tested with more comprehensive metrics over CIFAR10 on texture

Worst Clean Vertex All Beyond Invariance
Base 0.0871 0.7013 0.4061 0.4634 0.5016
VA 0.4399 0.7378 0.7199 0.6835 0.5096 0.6168
RA 0.5166 0.6815 0.6741 0.6452 0.4408 0.8520
VWA 0.6009 0.7140 0.7406 0.4446 0.9172
RWA 0.6486 0.7606 0.7507 0.4614 0.9244

RA-`1 0.4685 0.7505 0.7290 0.6852 0.4878 0.6248
RA-W 0.4228 0.7468 0.7287 0.6822 0.4753 0.6072
RA-D 0.4298 0.7752 0.7456 0.6941 0.4662 0.2664
RA-KL 0.5848 0.4241 0.4221 0.4211 0.3946 0.9200
RAsoftmax 0.5143 0.7187 0.7175 0.6851 0.4694 0.8188
RAsoftmax-`1 0.4779 0.7341 0.725 0.6911 0.4944 0.7288

Table 11: More methods tested with more comprehensive metrics over CIFAR10 on rotation.

• RA-KL: when the norm distance of RA is replaced by KL divergence.

• RAsoftmax: when the regularization of RA is applied to softmax instead of logits.

• RAsoftmax-`1: when the regularization of RA is applied to softmax instead of logits, and the
squared `2 norm is replaced by `1 norm. This is the method suggested by pure theoretical discus-
sion if we do not concern with the difficulties of passing gradient through backpropagation.

And we test these methods in the three scenarios mentioned in the previous section: texture, rotation,
and contrast. The overall test follows the same regime as the one reported in the main manuscript,
with additional tests:

• Vertex: average test performance on the perturbed samples with the vertex function from
A. Models with worst case augmentation are not tested with vertex as these models do not
have the specific concept of vertex.

• All: average test performance on all the samples perturbed by all the elements in A.

• Beyond: To have some sense of how well the methods can perform in the setting that
follows the same concept, but not considered in A, and not (intuitively) limited by the
verteics of A, we also test the accuracy of the models with some transformations related to
the elements in A, but not in A, To be specific:

– Texture: Abeyond = {a5(), a4()}.
– Rotation: Abeyond = {a330(), a345()}.
– Contrast: Abeyond = {a(x) = x/2 + 0.5, a(x) = x/4 + 0.75, a(x) = (1 � x)/2 +
0.5, a(x) = (1� x)/4 + 0.75}

We report the average test accuracy of the samples tested all the elements in Abeyond
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Worst Clean Vertex All Beyond Invariance
Base 0.2079 0.7013 0.4793 0.2605 0.3400
VA 0.6372 0.7452 0.7243 0.7365 0.3733 0.4406
RA 0.6867 0.7742 0.7702 0.7722 0.5527 0.5350
VWA 0.6708 0.7387 0.7375 0.5539 0.4790
RWA 0.6326 0.7489 0.7246 0.4789 0.3736
RA-`1 0.7096 0.7688 0.7634 0.7666 0.7330 0.6260

RA-W 0.6325 0.7442 0.7303 0.7364 0.4994 0.4396
RA-D 0.6451 0.7515 0.7392 0.7479 0.4820 0.2393
RA-KL 0.1137 0.4515 0.4517 0.3317 0.2648 0.5026
RAsoftmax 0.6856 0.7618 0.7558 0.7609 0.6531 0.4833
RAsoftmax-`1 0.6895 0.7585 0.7533 0.7581 0.7000 0.4946

Table 12: More methods tested with more comprehensive metrics over CIFAR10 on contrast.

E.2 RESULTS

We report the results in Table 7-12.

Ablation Study First we consider the ablation study to validate our choice as the squared `2 norm
regularization, particularly because our choice considers both the theoretical arguments and prac-
tical arguments regarding gradients. In case of worst-case prediction, we can see the other RA
variants can barely outperform RA, even not the one that our theoretical arguments directly suggest
(RAsoftmax-`1 or RA-W). We believe this is mostly due to the challenges of passing the gradient with
`1 norm and softmax, or through a classifier.

We also test the performances of other regularizations that are irrelevant to our theoretical studies,
but are popular choices in general (RA-D and RA-KL). These methods in general perform badly, can
barely match RA in terms of the worst-case performance. Further, when some cases when RA-D
and RA-KL can outperform RA in other accuracy-wise testing, these methods tend to behave terribly
in invariance test, which suggests these regularizations are not effective. In the cases when RA-D
and RA-KL can match RA in invariance test, these methods can barely compete with RA.

Broader Test We also test our methods in the broader test. As we can see, RWA behaves the
best in most of the cases. In three out of these six test scenarios, RWA lost to three other different
methods in the “beyond” case. However, we believe, in general, this is still a strong evidence to
show that RWA is a generally preferable method.

Also, comparing the methods of RA vs. VA, and RWA vs. VWA, we can see that regularization
helps mostly in the cases of “beyond” in addition to “invariance” test. This result again suggests the
importance of regularizations, as in practice, training phase is not always aware of all the transfor-
mation functions during test phase.
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300 315 330 345 0 15 30 45 60 avg.
Base 0.2196 0.2573 0.3873 0.6502 0.8360 0.6938 0.4557 0.3281 0.2578 0.4539
ST 0.2391 0.2748 0.4214 0.7049 0.8251 0.7147 0.4398 0.2838 0.2300 0.4593
GC 0.1540 0.1891 0.2460 0.3919 0.5859 0.4145 0.2534 0.1827 0.1507 0.2853
ETN 0.3855 0.4844 0.6324 0.7576 0.8276 0.7730 0.7324 0.6245 0.5060 0.6358
VA 0.2233 0.2832 0.4318 0.6364 0.8124 0.6926 0.5973 0.7152 0.7923 0.5761
RA 0.3198 0.3901 0.5489 0.7170 0.8487 0.7904 0.7455 0.8005 0.8282 0.6655

VWA 0.3383 0.3484 0.3835 0.4569 0.7474 0.866 0.8776 0.8738 0.8629 0.6394
RWA 0.4012 0.4251 0.4852 0.6765 0.8708 0.8871 0.8869 0.8870 0.8818 0.7113

Table 13: Comparison to advanced rotation-invariant models. We report the test accuracy on the test
sets clockwise rotated, 0�-60� and 300�-360�. Average accuracy is also reported. Augmentation
methods only consider 0�-60� clockwise rotations during training.

Clean Noise Blur Weather Digital mCEGauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Base 23.9 79 80 82 82 90 84 80 86 81 75 65 79 91 77 80 80.6
VA 23.7 79 80 79 75 87 80 79 78 76 69 58 70 86 73 75 76.3
RA 23.6 78 78 79 74 87 79 76 78 75 69 58 68 85 75 75 75.6

RWA 23.1 76 77 78 71 86 76 75 75 73 66 55 68 83 76 73 73.9
VWA 22.4 61 63 63 68 75 65 66 70 69 64 56 55 70 61 63 64.6
SU 24.5 67 68 70 74 83 81 77 80 74 75 62 77 84 71 71 74.3
AA 22.8 69 68 72 77 83 80 81 79 75 64 56 70 88 57 71 72.7

MBP 23 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4
SIN 27.2 69 70 70 77 84 76 82 74 75 69 65 69 80 64 77 73.3
AM 22.4 65 66 67 70 80 66 66 75 72 67 58 58 79 69 69 68.4

AMS 25.2 61 62 61 69 77 63 72 66 68 63 59 52 74 60 67 64.9

Table 14: Comparison to advanced models over ImageNet-C data. Performance reported (mCE)
follows the standard in ImageNet-C data: mCE is the smaller the better.

F ADDITIONAL DISCUSSIONS FOR COMPARISONS WITH ADVANCED
METHODS

Rotation-invariant Image Classification We compare our results with specifically designed
rotation-invariant models, mainly Spatial Transformer (ST) (Jaderberg et al., 2015), Group Con-
volution (GC) (Cohen & Welling, 2016), and Equivariant Transformer Network (ETN) (Tai et al.,
2019). We also attempted to run CGNet (Kondor et al., 2018), but the procedure does not scale
to the CIFAR10 and ResNet level. The results are reported in Table 13, where most methods use
the same architecture (ResNet34 with most performance boosting heuristics enabled), except that
GC uses ResNet18 because ResNet34 with GC runs 100 times slowly than others, thus not prac-
tical. We test the models with nine different rotations including 0� degree rotation. Augmentation
related methods are using the A of “rotation” in synthetic experiments (Appendix D), so the test-
ing scenario goes beyond what the augmentation methods have seen during training. The results in
Table 13 strongly endorses the efficacy of augmentation-based methods. Interestingly, regularized
augmentation methods, with the benefit of learning the concept of invariance, tend to behave well
in the transformations not considered during training. As we can see, RA outperforms VWA on
average.

Texture-perturbed ImageNet classification We also test the performance on the image classifica-
tion over multiple perturbations. We train the model over standard ImageNet training set and test
the model with ImageNet-C data Hendrycks & Dietterich (2019), which is a perturbed version of
ImageNet by corrupting the original ImageNet validation set with a collection of noises. Following
the standard, the reported performance is mCE, which is the smaller the better. We compare with
several methods tested on this dataset, including Patch Uniform (PU) Lopes et al. (2019), AutoAug-
ment (AA) Cubuk et al. (2019), MaxBlur pool (MBP) Zhang (2019), Stylized ImageNet (SIN)
Hendrycks & Dietterich (2019), AugMix (AM) Hendrycks et al. (2020), AugMix w. SIN (AMS)
Hendrycks et al. (2020). We use the performance reported in Hendrycks et al. (2020). Again, our
augmention only uses the generic texture with perturbation (the A in our texture synthetic experi-
ments with radius changed to 20, 25, 30, 35, 40). The results are reported in Table 14, which shows
that our generic method outperform the current SOTA methods after a continued finetuning process
with reducing learning rates.
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Base InfoDrop HEX PAR VA RA VWA RWA
Top-1 0.1204 0.1224 0.1292 0.1306 0.1362 0.1405 0.1432 0.1486

Top-5 0.2408 0.256 0.2564 0.2627 0.2715 0.2793 0.2846 0.2933

Table 15: Comparison to advanced cross-domain image classification models, over ImageNet-
Sketch dataset. We report top-1 and top-5 accuracy following standards on ImageNet related ex-
periments.

Cross-domain ImageNet-Sketch Classification We also compare to the methods used for cross-
domain evaluation. We follow the set-up advocated by (Wang et al., 2019b) for domain-agnostic
cross-domain prediction, which is training the model on one or multiple domains without domain
identifiers and test the model on an unseen domain. We use the most challenging setup in this
scenario: train the models with standard ImageNet training data, and test the model over ImageNet-
Sketch data (Wang et al., 2019a), which is a collection of sketches following the structure ImageNet
validation set. We compare with previous methods with reported performance on this dataset, such
as InfoDrop (Achille & Soatto, 2018), HEX (Wang et al., 2019b), and PAR (Wang et al., 2019a), and
report the performances in Table 15. Notice that, our data augmentation also follows the requirement
that the characteristics of the test domain cannot be utilized during training. Thus, we only augment
the samples with a generic augmentation set (A of “contrast” in synthetic experiments, Appendix D).
The results again support the strength of the correct usage of data augmentation.
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