458 Anonymous project website: https://robot-sgrv2.github.io/

59 A Simulation Task Details
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Figure 5: Simulation Tasks. Our simulation experiments encompass 26 tasks (1-26) from RL-
Bench, 4 tasks (27-37, where 30-37 are 8 different YCB [62] objects of task PickSingleYCB) from
ManiSkill2, and 7 tasks (38-44) from MimicGen.
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Our simulation experiments are conducted on 3 robot learning benchmarks: RLBench [12], Man-
iSkill2 [13], and MimicGen [14]. See Figure 5 for an overview of the simulation tasks. In these
simulations, all cameras have a resolution of 128 x 128. In the following, we will provide a detailed
examination of tasks from the three benchmarks.

A.1 RLBench Tasks

We utilize 26 RLBench tasks, including 8 tasks used in SGR [10] and 18 tasks used in PerAct [16]
and RVT [17]. For tasks with multiple variations, we use the first variation. In RLBench, we use
5 demonstrations per task, unless specified otherwise. Given that SGR and PerAct provide detailed
descriptions of these RLBench tasks, we omit these details here for simplicity.

A.2 ManiSKkill2 Tasks

We utilize 4 ManiSkill2 tasks, each described in detail as follows. (1) Lift Cube: Pick up a red cube
and lift it to a specified height. (2) Pick Cube: Pick up a red cube and move it to a target position. (3)
Stack Cube: Pick up ared cube and place it onto a green cube. (4) Pick Single YCB: Pick up a YCB
[62] object and move it to the target position. In our experiments, we use 8 YCB objects (excluding
those that are too difficult to pick up): 002_master_chef_can, 004_sugar_box, 005 _tomato_soup_can,
006_mustard_bottle, 007 tuna_fish_can, 008_pudding_box, 010_potted_meat_can, 011 _banana. For
the first three tasks, we utilize 50 demonstrations per task, while for the last one (Pick Single YCB),
we employ 50 demonstrations per YCB object.

A.3 MimicGen Tasks

We utilize 7 MimicGen tasks with 50 demonstrations per task, all employing the initial distribution
D, which presents a broader and more challenging range. The details are as follows: (1) Stack:
Stack a red block on a green one. (2) Stack Three: Similar to Stack, but with an additional step of
stacking a blue block on the red one. (3) Square: Pick up a square nut and place it on a peg. (4)
Threading: Pick up a needle and thread it through a hole in a tripod. (5) Coffee: Pick up a coffee
pod, insert it into the coffee machine, and close the machine hinge. (6) Hammer Cleanup: Open a
drawer, pick up a hammer, place it back into the drawer, and close the drawer. (7) Mug Cleanup:
Similar to Hammer Cleanup, but with a mug.

B SGRv2 Details

B.1 Architecture Details

Input Data. The SGRv2 model takes as input RGB images { /| k}szl of size H x W and correspond-
ing depth images of the same size from multiple camera views. Point clouds are generated from these
depth images using known camera extrinsics and intrinsics. A crucial aspect is the alignment of the
RGB images with the point clouds, ensuring a precise one-to-one correspondence between elements
in the two data forms. For keyframe control, the point cloud is represented in the robot’s base frame.
In contrast, for dense control—inspired by FrameMiner [43]—the point cloud is transformed into
the end-effector frame to simplify computation and enhance performance.

For keyframe control, the model additionally receives proprioceptive data z, which includes four
scalar values: gripper open state, left finger joint position, right finger joint position, and action
sequence timestep. In dense control, proprioceptive data is not utilized. Additionally, following
SGR [10], if a task comes with language instruction S, this also forms part of the model’s input.

Other Details. Following SGR [10], we use CLIP-ResNet-50 as the image encoder for the seman-
tic branch. For the 3D encoder-decoder, we employ PointNeXt-XL. The output from the encoder-
decoder is a point-wise feature, denoted as f;*" € R for the i-th point, where the feature dimension
C'is 64. We apply a linear layer followed by a ReLLU activation to produce a processed point-wise
feature f;, increasing the feature dimension to 256. We then predict the relative position Ap(f;),
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magnitude m( f;) (for dense control), rotation r( f;), gripper open state o( f;), and collision indicator
¢(f;) (for keyframe control) of the i-th point, where Ap, m, r, o, ¢ are 3-layer MLPs. Note that when
representing the ground-truth actions as one-hot vectors—such as rotation, gripper open state, and
collision indicators in keyframe control—the action predictions correspond to the output probabil-
ities following the softmax layer. Finally, for each action component, we assign a learned weight
w, ( f;) to each point, where w, represents separate 3-layer MLPs with softmax normalization across
the points dimension.

B.2 SGR Details

SGRv2 is built upon SGR [10], which we briefly introduced in Section 3.1. Here, we provide a
detailed description of SGR’s three components: semantic branch, geometric branch, and fusion
network.

Semantic Branch. Using a collection of RGB images {/, k}szl from K calibrated cameras, they
initially apply a frozen pre-trained 2D model G, such as CLIP’s visual encoder, to extract multi-view
image features {G ([, k)}kK:r When a language instruction S accompanies a task, they utilize a pre-
trained language model H, like CLIP’s language encoder, to generate the language features H(.S).
They align these image features G(I)) with the language features H(.S) using a visual grounding
module, producing {M k}szl. Subsequently, they rescale the visual or aligned feature maps to the
dimensions of the original images through bilinear interpolation and reduce their channels by 1 x 1
convolution, generating a set of features {Fk}szl, where each F), € RHXWxC1 These high-level
semantic features are then back-projected into 3D space to form point-wise features for the point
cloud, expressed as Fye, € RVXC1 where N = K x H x W.

Geometric Branch. They construct the initial point cloud coordinates P = {p;}», € RN*3
and RGB features F, € RY*3 using multi-view RGB-D images and camera parameters (i.e., cam-
era intrinsics and extrinsics). Optionally, they append a D-dimensional vector, derived from robot
proprioceptive data z via a linear layer, to each point feature. They then process the point cloud coor-
dinates P and features F through a hierarchical PointNeXt encoder, extracting compact geometric
coordinates P’ € RM*3 and features F! € RM*C2 (M < N).

Fusion Network. To merge the two complementary branches, they first subsample the point-wise
semantic features Fi.,, using the same point subsampling procedure as in the geometric branch,
resulting in F!, € RM*CL They then perform a channel-wise concatenation of the semantic and
geometric features to form Fy,se = Concat(Fl, , F!) € RM*(C1+C2) Finally, the fused features
are processed through several set abstraction blocks [37, 15], enabling a cohesive modeling of the
cross-modal interaction between 2D semantics and 3D geometric information.

B.3 Training Details
Losses. As illustrated in Section 3.3, in keyframe control, our loss objective is as follows:
Ekeyframe = ACpos + g Lror + a3£0pen + g Leollide, 3)

where Ly is L1 loss, and Lro, Lopen, and Leonige are cross-entropy losses. In our experiments, we
set oy = 300 and avg = a3 = gy = 1.

In dense control, our loss objective is:
['dense = /81 (Edir + Cmag) + 52£rot + 53£0pen + /84£rega (4)

where Lgir, Limag and Ly are MSE losses, Lopen is cross-entropy loss, and L. is smoothness regu-
larization loss. In our experiments, we set 81 = 10, 5 = 83 = 1 and 84 = 0.3.

Data Augmentation. (1) Translation and rotation perturbations: in keyframe control, the train-
ing samples is augmented with £0.125 m translation perturbations and £45° yaw rotation pertur-
bations. (2) Color drop is to randomly replace colors with zero values. This technique serves as a
powerful augmentation for PointNeXt [15], leading to significant enhancements in the performance
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of tasks where color information is available. (3) Feature drop: Color drop randomly replaces
colors with zero values, which results in both the RGB and semantic features becoming constant.
However, there are certain tasks where colors play a crucial role, and disregarding color informa-
tion in these tasks would make them unsolvable. To address this issue, we propose feature drop.
Specifically, this involves randomly replacing the semantic features with zero values, while keeping
the RGB values unchanged. (4) Point resampling is a widely used technique in point cloud data
processing that adjusts the density of the point cloud. It involves selecting a subset of points from the
original dataset to create a new dataset with a modified density. Firstly, we filter out points outside
the workspace. Then in keyframe control, we resample 4096 points from the point cloud using far-
thest point sampling (FPS), while in dense control, we resample 1200 points using the same method.
(5) Demo augmentation [32] [16], used in keyframe control, captures transitions from intermediate
points along a trajectory to keyframe states, rather than from the initial state to the keyframe state.
This approach significantly increases the volume of the training data.

Hyperparameters. The configuration of hyperparameters applied in our studies are shown in Ta-
ble 4. For each task, the experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU.

Table 4: Hyper-parameters used in our simulation experiments.

Config Keyframe Control Dense Control
Training iterations 20,000 100, 000
Leraning rate 0.003 0.0003
Batch size 16 16
Optimizer AdamW AdamW
Lr Scheduler Cosine Cosine
Warmup step 200 0
Weight decay 1x10°6 1x10°6
Color drop 0.4 0
Feature drop 0 0.4
Number of input points 4096 1200

C Real-Robot Details

C.1 Real-Robot Setup

For our real-robot experiments, we use a Franka Emika Panda manipulator equipped with a parallel
gripper. We utilize keyframe control, and the motion planning is executed through MoveIt 2. Per-
ception is achieved through an Intel RealSense L515 camera, positioned in front of the scene. The
camera generates RGB-D images with a resolution of 1280 x 720. We leverage the realsense-ros®
to align depth images with color images. The extrinsic calibration between the camera frame and
robot base frame is carried out using the MoveIt calibration package.

When preprocessing the RGB-D images, we resize the 1280 x 720 images to 256 x 256 using
nearest-neighbor interpolation. We choose this interpolation method instead of others, like bilinear
interpolation, because the latter can introduce artifacts into the depth map, resulting in a noisy point
cloud. Following these steps enables us to process RGB-D images as we do in our simulation
experiments. It is essential to adjust the camera’s intrinsic parameters appropriately after resizing
the images. We train SGRv2 for 40,000 training steps and use the final checkpoint for evaluation.

C.2 Real-Robot Tasks

Our real-robot experiments involve three tasks: Tidy Up the Table, Make Coffee, and Move Color
Cup to Target. The first two are long-horizon tasks, while the last is a generalization task. We

*https://moveit.ros.org/
*https://github.com/IntelRealSense/realsense-ros
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Figure 6: Real-robot generalization task.

provide details of the task design as follows. The videos of experiment rollouts can be found on the
anonymous website: https://robot-sgrv2.github.io/

Tidy Up the Table (as shown in Figure 4 Top Left) is to place the clutter on the table in its appro-
priate locations. The task consists of 6 sub-tasks, each detailed as follows: (1) Put trash in trash
can: Pick up the trash and place it in the trash can. (2) Put socks in box: Pick up the socks and place
them in the box. (3) Put marker in pen holder: Pick up the marker and place it in the pen holder.
(4) Open drawer: Grasp the drawer handle and pull it open. (5) Put lollipop in drawer: Pick up the
lollipop and place it into the drawer. (6) Close drawer: Push the drawer closed.

Make Coffee (as shown in Figure 4 Bottom Left) is to make pour-over coffee. This task is composed
of 4 sub-tasks, each described in detail as follows: (1) Turn on coffee machine: Press the button on
the coffee machine to activate it. (2) Put funnel onto carafe: Pick up the funnel and place it onto the
carafe. (3) Pour powder into funnel: Pick up the powder holder and pour the powder into the funnel.
(4) Pour water: Pick up the kettle and pour the water onto the powder in the funnel.

Move Color Cup to Target (as shown in Figure 6) is to select the target color cup from three cups
and move it to the white area. The target color is indicated through language instructions. We have
6 cups of different colors: white, red, yellow, orange, black, and green. Each scenario involves one
target cup and two distractor cups of different colors. We collect five demonstrations for each of the
first 4 colors and test the model on both 4 seen and 2 unseen scenarios.

D Additional Results

For our simulation experiments using the SGRv2 on RLBench with 5 demonstrations (mentioned
in Table 1) and on ManiSkill2 and MimicGen with 50 demonstrations (mentioned in Table 2), we
employed 3 random seeds to ensure the reliability of our results. In the main body of the paper, we
present averaged results for clarity. Here we include both the mean and standard deviation derived
from our simulation results. The results for RLBench are shown in Table 5, and the results for
ManiSkill2 and MimicGen are presented in Table 6.

We also report the ablations mentioned in Table 3 for each task in Table 7.

17


https://robot-sgrv2.github.io/

Avg. Open Open Water Toilet Phone Put Take Out  Open

Method Success T Microwave  Door Plants Seat Up OnBase Books Umbrella Fridge
R3M 4.7 09+06 364=+37 29+37 155=+21 00+00 05+09 52+87 32+14
PointNeXt 25.3 71+63 609=52 56+46 499147 464+49 575+82 37.5+23 92+40
PerAct 223 43+70 59.6+160 28.5+3.1 693 +11.1 0.0+00 25.1+44 759+70 3.1+13
SGR 23.6 6.4+:22 553+37 249+82 30.7:92 472+14 293+52 363:64 7.1+15
RVT 40.4 183 +1.8 71.2+28 348+33 47.6+67 623 +14 465+109 85345 24.0+42
SGRV2 (ours)  53.2 272+20 76.8+80 38.0+1.7 89.6+28 84.1+45 63.7+118 745+55 13.2+34
Open Slide Sweep To Meat Off  Turn Put In Close Drag Stack
Method Drawer Block Dustpan Grill Tap Drawer Jar Stick Blocks
R3M 0.0+00 24.0=+88 04=+x04 0.1+x02 26172 00x00 00x00 03+05 0.0+00
PointNeXt 21.7+204 59.5+22.1 42.0+347 59.9+17.8 48.7 134 17.1 +27.8 36.0+46 18.5+321 1.9=1.6
PerAct 564 +18.0 47.5+243 28+04 859+69 80+75 0.1+02 0506 103=64 1.7+06
SGR 31.9+62 72.0+27.1 43.6+84 52.7+51 344+74 83+92 133+56 644+114 0.0+0.0
RVT 75.1 26 85.1+22 19.6+174 90.5+22 384 +54 19.6+55 252+36 457+109 8.8+42
SGRv2 (ours) 81.3 3.1 100.0+00 61.5+72 96.5+39 87.9+69 759+36 25.6+22 949=06 17.5+3.0
Screw Put In Place Put In Sort Push Insert Stack Place
Method Bulb Safe Wine  Cupboard Shape Buttons Peg Cups Cups
R3M 0.0£00 03:02 0404 0.0=00 0.0:00 6.8+37 0000 0.0=00 0.0x00
PointNeXt 41+15 12.1+42 31.5+45 33+06 04+04 22.0=381 0.1+02 44+38 04+04
PerAct 4452 09+x09 87+17 04+00 04=+04 83.1+53 19=12 0.1x02 0.7+06
SGR 0.9:08 169+22 247:58 0.1<02 0.1:02 12.0=14 0.1202 0.0+00 1.1+09
RVT 24.0+38 30.7+49 927:06 56+21 16+07 904:29 4.0+00 3.1:06 12+07

SGRV2 (ours) 24.1+0.6 55.6+80 53.1+74 203+92 19+06 93.2=53 41=+14 213+118 1.6+07

Table 5: RLBench results (%) on 5 demonstrations with mean and standard deviation.

Method Avg. Success T Avg. Rank | LiftCube PickCube StackCube PickSingleYCB
PointNeXt 16.8 2.5 508152 4.7+:04 10.6 +43 1.1+0.1
SGR 14.9 2.5 269+40 122+3.1 3522 17.0 0.2
SGRV2 (ours) 55.8 1.0 80.5+73 729 +41 27.7+43 422 +23
Method Avg. Success T Avg. Rank | Stack  StackThree Square  Threading  Coffee HammerCleanup MugCleanup
PointNeXt 13.6 2.9 56.1+64 37=+14 0.9 =05 3.6+22 12.0=+52 11.7+28 7.1+09
SGR 14.2 2.0 50.8+77 5.6+17 1305 40<08 141=20 14.1+1.7 9.7+24
SGRv2 (ours) 26.0 1.0 81.2+44 379:15 2.8+07 6.7<20 27.9+70 16.1 <39 9.7+27

Table 6: ManiSkill2 and MimicGen results (%) on 50 demonstrations with mean and standard devi-
ation.

Avg. Open Open Water  Toilet Phone Put Take Out Open
Method Success T Microwave  Door Plants Seat Up On Base Books Umbrella Fridge
SGRv2 53.2 27.2 76.8 38.0 89.6 84.1 637 74.5 13.2
SGRv2 w/o decoder 213 44 68.4 12.4 38.8 328 272 35.6 6.8
SGRv2 w/ absolute pos prediction ~ 21.0 8.0 57.6 21.2 17.2 148 212 44.4 4.4
SGRv2 w/ uniform point weight 442 21.6 82.4 28.8 32.0 60.4  68.0 44.0 14.0
SGRv2 w/o dense supervision 40.0 6.4 59.2 6.8 54.4 784  60.8 68.0 6.0

Open Slide  Sweep To Meat Off Turn PutIn Close Drag  Stack
Method Drawer Block Dustpan Grill Tap  Drawer Jar Stick  Blocks
SGRv2 81.3 100.0 61.5 96.5 87.9 759 256 94.9 17.5
SGRv2 w/o decoder 14.0 78.8 15.6 40.8 46.8 4.0 18.8 0.8 0.0
SGRv2 w/ absolute pos prediction  20.4 99.2 50.8 10.8 68.8 4.0 6.4 54.8 1.2
SGRv2 w/ uniform point weight 92.8 100.0 72.8 90.8 67.6 740 43.6 97.6 1.6
SGRvV2 w/o dense supervision 75.2 92.8 19.2 72.0 84.0 42.0 288 59.6 43.2

Screw Put In Place Put In Sort Push Insert Stack  Place
Method Bulb Safe Wine Cupboard Shape Buttons Peg Cups  Cups
SGRv2 24.1 55.6 53.1 20.3 1.9 93.2 4.1 21.3 1.6
SGRv2 w/o decoder 32 16.4 27.6 0.0 0.0 56.8 0.4 0.8 1.6
SGRv2 w/ absolute pos prediction 0.4 1.6 32 0.0 0.0 35.2 1.6 0.0 0.0
SGRv2 w/ uniform point weight 1.6 32.8 50.4 1.2 0.8 64.4 0.0 52 0.8
SGRV2 w/o dense supervision 0.0 304 52.0 0.4 0.0 100.0 0.0 0.0 2.4

Table 7: Ablations results (%) for SGRv2 on RLBench with metrics for each task.
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