
Anonymous project website: https://robot-sgrv2.github.io/458

A Simulation Task Details459

Open Microwave Open Door Water Plants Toilet Seat Up Phone On Base Put Books

Take Out Umbrella Open Fridge Open Drawer Slide Block Sweep To Dustpan Meat Off Grill

Turn Tap Put in Drawer Close Jar Drag Stick Stack Blocks Screw Bulb

Put In Safe Place Wine Place In Cupboard Sort Shape Push Buttons Insert Peg

Stack Cups Place Cups Lift Cube Pick Cube Stack Cube Pick Singe YCB (002)

Pick Singe YCB (004) Pick Singe YCB (005) Pick Singe YCB (006) Pick Singe YCB (007) Pick Singe YCB (008) Pick Singe YCB (010)

Pick Singe YCB (011) Stack Stack Three Square Threading Coffee

Hammer Cleanup Mug Cleanup

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(13) (14) (15) (16) (17) (18)

(19) (20) (21) (22) (23) (24)

(25) (26) (27) (28) (29) (30)

(31) (32) (33) (34) (35) (36)

(37) (38) (39) (40) (41) (42)

(43) (44)

Figure 5: Simulation Tasks. Our simulation experiments encompass 26 tasks (1-26) from RL-
Bench, 4 tasks (27-37, where 30-37 are 8 different YCB [62] objects of task PickSingleYCB) from
ManiSkill2, and 7 tasks (38-44) from MimicGen.

13

https://robot-sgrv2.github.io/


Our simulation experiments are conducted on 3 robot learning benchmarks: RLBench [12], Man-460

iSkill2 [13], and MimicGen [14]. See Figure 5 for an overview of the simulation tasks. In these461

simulations, all cameras have a resolution of 128× 128. In the following, we will provide a detailed462

examination of tasks from the three benchmarks.463

A.1 RLBench Tasks464

We utilize 26 RLBench tasks, including 8 tasks used in SGR [10] and 18 tasks used in PerAct [16]465

and RVT [17]. For tasks with multiple variations, we use the first variation. In RLBench, we use466

5 demonstrations per task, unless specified otherwise. Given that SGR and PerAct provide detailed467

descriptions of these RLBench tasks, we omit these details here for simplicity.468

A.2 ManiSkill2 Tasks469

We utilize 4 ManiSkill2 tasks, each described in detail as follows. (1) Lift Cube: Pick up a red cube470

and lift it to a specified height. (2) Pick Cube: Pick up a red cube and move it to a target position. (3)471

Stack Cube: Pick up a red cube and place it onto a green cube. (4) Pick Single YCB: Pick up a YCB472

[62] object and move it to the target position. In our experiments, we use 8 YCB objects (excluding473

those that are too difficult to pick up): 002 master chef can, 004 sugar box, 005 tomato soup can,474

006 mustard bottle, 007 tuna fish can, 008 pudding box, 010 potted meat can, 011 banana. For475

the first three tasks, we utilize 50 demonstrations per task, while for the last one (Pick Single YCB),476

we employ 50 demonstrations per YCB object.477

A.3 MimicGen Tasks478

We utilize 7 MimicGen tasks with 50 demonstrations per task, all employing the initial distribution479

D1, which presents a broader and more challenging range. The details are as follows: (1) Stack:480

Stack a red block on a green one. (2) Stack Three: Similar to Stack, but with an additional step of481

stacking a blue block on the red one. (3) Square: Pick up a square nut and place it on a peg. (4)482

Threading: Pick up a needle and thread it through a hole in a tripod. (5) Coffee: Pick up a coffee483

pod, insert it into the coffee machine, and close the machine hinge. (6) Hammer Cleanup: Open a484

drawer, pick up a hammer, place it back into the drawer, and close the drawer. (7) Mug Cleanup:485

Similar to Hammer Cleanup, but with a mug.486

B SGRv2 Details487

B.1 Architecture Details488

Input Data. The SGRv2 model takes as input RGB images {Ik}Kk=1 of size H×W and correspond-489

ing depth images of the same size from multiple camera views. Point clouds are generated from these490

depth images using known camera extrinsics and intrinsics. A crucial aspect is the alignment of the491

RGB images with the point clouds, ensuring a precise one-to-one correspondence between elements492

in the two data forms. For keyframe control, the point cloud is represented in the robot’s base frame.493

In contrast, for dense control—inspired by FrameMiner [43]—the point cloud is transformed into494

the end-effector frame to simplify computation and enhance performance.495

For keyframe control, the model additionally receives proprioceptive data z, which includes four496

scalar values: gripper open state, left finger joint position, right finger joint position, and action497

sequence timestep. In dense control, proprioceptive data is not utilized. Additionally, following498

SGR [10], if a task comes with language instruction S, this also forms part of the model’s input.499

Other Details. Following SGR [10], we use CLIP-ResNet-50 as the image encoder for the seman-500

tic branch. For the 3D encoder-decoder, we employ PointNeXt-XL. The output from the encoder-501

decoder is a point-wise feature, denoted as f raw
i ∈ RC for the i-th point, where the feature dimension502

C is 64. We apply a linear layer followed by a ReLU activation to produce a processed point-wise503

feature fi, increasing the feature dimension to 256. We then predict the relative position ∆p(fi),504

14



magnitude m(fi) (for dense control), rotation r(fi), gripper open state o(fi), and collision indicator505

c(fi) (for keyframe control) of the i-th point, where ∆p,m, r, o, c are 3-layer MLPs. Note that when506

representing the ground-truth actions as one-hot vectors—such as rotation, gripper open state, and507

collision indicators in keyframe control—the action predictions correspond to the output probabil-508

ities following the softmax layer. Finally, for each action component, we assign a learned weight509

w∗(fi) to each point, where w∗ represents separate 3-layer MLPs with softmax normalization across510

the points dimension.511

B.2 SGR Details512

SGRv2 is built upon SGR [10], which we briefly introduced in Section 3.1. Here, we provide a513

detailed description of SGR’s three components: semantic branch, geometric branch, and fusion514

network.515

Semantic Branch. Using a collection of RGB images {Ik}Kk=1 from K calibrated cameras, they516

initially apply a frozen pre-trained 2D model G, such as CLIP’s visual encoder, to extract multi-view517

image features {G(Ik)}Kk=1. When a language instruction S accompanies a task, they utilize a pre-518

trained language model H, like CLIP’s language encoder, to generate the language features H(S).519

They align these image features G(Ik) with the language features H(S) using a visual grounding520

module, producing {Mk}Kk=1. Subsequently, they rescale the visual or aligned feature maps to the521

dimensions of the original images through bilinear interpolation and reduce their channels by 1× 1522

convolution, generating a set of features {Fk}Kk=1, where each Fk ∈ RH×W×C1 . These high-level523

semantic features are then back-projected into 3D space to form point-wise features for the point524

cloud, expressed as Fsem ∈ RN×C1 , where N = K ×H ×W .525

Geometric Branch. They construct the initial point cloud coordinates P = {pi}Ni=1 ∈ RN×3526

and RGB features Fc ∈ RN×3 using multi-view RGB-D images and camera parameters (i.e., cam-527

era intrinsics and extrinsics). Optionally, they append a D-dimensional vector, derived from robot528

proprioceptive data z via a linear layer, to each point feature. They then process the point cloud coor-529

dinates P and features Fc through a hierarchical PointNeXt encoder, extracting compact geometric530

coordinates P ′ ∈ RM×3 and features F ′
c ∈ RM×C2 (M < N ).531

Fusion Network. To merge the two complementary branches, they first subsample the point-wise532

semantic features Fsem using the same point subsampling procedure as in the geometric branch,533

resulting in F ′
sem ∈ RM×C1. They then perform a channel-wise concatenation of the semantic and534

geometric features to form Ffuse = Concat(F ′
sem, F

′
c) ∈ RM×(C1+C2). Finally, the fused features535

are processed through several set abstraction blocks [37, 15], enabling a cohesive modeling of the536

cross-modal interaction between 2D semantics and 3D geometric information.537

B.3 Training Details538

Losses. As illustrated in Section 3.3, in keyframe control, our loss objective is as follows:539

Lkeyframe = α1Lpos + α2Lrot + α3Lopen + α4Lcollide, (3)

where Lpos is L1 loss, and Lrot, Lopen, and Lcollide are cross-entropy losses. In our experiments, we540

set α1 = 300 and α2 = α3 = α4 = 1.541

In dense control, our loss objective is:542

Ldense = β1(Ldir + Lmag) + β2Lrot + β3Lopen + β4Lreg, (4)

where Ldir, Lmag and Lrot are MSE losses, Lopen is cross-entropy loss, and Lreg is smoothness regu-543

larization loss. In our experiments, we set β1 = 10, β2 = β3 = 1 and β4 = 0.3.544

Data Augmentation. (1) Translation and rotation perturbations: in keyframe control, the train-545

ing samples is augmented with ±0.125 m translation perturbations and ±45◦ yaw rotation pertur-546

bations. (2) Color drop is to randomly replace colors with zero values. This technique serves as a547

powerful augmentation for PointNeXt [15], leading to significant enhancements in the performance548

15



of tasks where color information is available. (3) Feature drop: Color drop randomly replaces549

colors with zero values, which results in both the RGB and semantic features becoming constant.550

However, there are certain tasks where colors play a crucial role, and disregarding color informa-551

tion in these tasks would make them unsolvable. To address this issue, we propose feature drop.552

Specifically, this involves randomly replacing the semantic features with zero values, while keeping553

the RGB values unchanged. (4) Point resampling is a widely used technique in point cloud data554

processing that adjusts the density of the point cloud. It involves selecting a subset of points from the555

original dataset to create a new dataset with a modified density. Firstly, we filter out points outside556

the workspace. Then in keyframe control, we resample 4096 points from the point cloud using far-557

thest point sampling (FPS), while in dense control, we resample 1200 points using the same method.558

(5) Demo augmentation [32] [16], used in keyframe control, captures transitions from intermediate559

points along a trajectory to keyframe states, rather than from the initial state to the keyframe state.560

This approach significantly increases the volume of the training data.561

Hyperparameters. The configuration of hyperparameters applied in our studies are shown in Ta-562

ble 4. For each task, the experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU.563

Table 4: Hyper-parameters used in our simulation experiments.
Config Keyframe Control Dense Control

Training iterations 20, 000 100, 000
Leraning rate 0.003 0.0003
Batch size 16 16
Optimizer AdamW AdamW
Lr Scheduler Cosine Cosine
Warmup step 200 0
Weight decay 1× 10−6 1× 10−6

Color drop 0.4 0
Feature drop 0 0.4
Number of input points 4096 1200

C Real-Robot Details564

C.1 Real-Robot Setup565

For our real-robot experiments, we use a Franka Emika Panda manipulator equipped with a parallel566

gripper. We utilize keyframe control, and the motion planning is executed through MoveIt 2. Per-567

ception is achieved through an Intel RealSense L515 camera, positioned in front of the scene. The568

camera generates RGB-D images with a resolution of 1280×720. We leverage the realsense-ros3569

to align depth images with color images. The extrinsic calibration between the camera frame and570

robot base frame is carried out using the MoveIt calibration package.571

When preprocessing the RGB-D images, we resize the 1280 × 720 images to 256 × 256 using572

nearest-neighbor interpolation. We choose this interpolation method instead of others, like bilinear573

interpolation, because the latter can introduce artifacts into the depth map, resulting in a noisy point574

cloud. Following these steps enables us to process RGB-D images as we do in our simulation575

experiments. It is essential to adjust the camera’s intrinsic parameters appropriately after resizing576

the images. We train SGRv2 for 40,000 training steps and use the final checkpoint for evaluation.577

C.2 Real-Robot Tasks578

Our real-robot experiments involve three tasks: Tidy Up the Table, Make Coffee, and Move Color579

Cup to Target. The first two are long-horizon tasks, while the last is a generalization task. We580

2https://moveit.ros.org/
3https://github.com/IntelRealSense/realsense-ros

16

https://moveit.ros.org/
https://github.com/IntelRealSense/realsense-ros


Figure 6: Real-robot generalization task.

provide details of the task design as follows. The videos of experiment rollouts can be found on the581

anonymous website: https://robot-sgrv2.github.io/582

Tidy Up the Table (as shown in Figure 4 Top Left) is to place the clutter on the table in its appro-583

priate locations. The task consists of 6 sub-tasks, each detailed as follows: (1) Put trash in trash584

can: Pick up the trash and place it in the trash can. (2) Put socks in box: Pick up the socks and place585

them in the box. (3) Put marker in pen holder: Pick up the marker and place it in the pen holder.586

(4) Open drawer: Grasp the drawer handle and pull it open. (5) Put lollipop in drawer: Pick up the587

lollipop and place it into the drawer. (6) Close drawer: Push the drawer closed.588

Make Coffee (as shown in Figure 4 Bottom Left) is to make pour-over coffee. This task is composed589

of 4 sub-tasks, each described in detail as follows: (1) Turn on coffee machine: Press the button on590

the coffee machine to activate it. (2) Put funnel onto carafe: Pick up the funnel and place it onto the591

carafe. (3) Pour powder into funnel: Pick up the powder holder and pour the powder into the funnel.592

(4) Pour water: Pick up the kettle and pour the water onto the powder in the funnel.593

Move Color Cup to Target (as shown in Figure 6) is to select the target color cup from three cups594

and move it to the white area. The target color is indicated through language instructions. We have595

6 cups of different colors: white, red, yellow, orange, black, and green. Each scenario involves one596

target cup and two distractor cups of different colors. We collect five demonstrations for each of the597

first 4 colors and test the model on both 4 seen and 2 unseen scenarios.598

D Additional Results599

For our simulation experiments using the SGRv2 on RLBench with 5 demonstrations (mentioned600

in Table 1) and on ManiSkill2 and MimicGen with 50 demonstrations (mentioned in Table 2), we601

employed 3 random seeds to ensure the reliability of our results. In the main body of the paper, we602

present averaged results for clarity. Here we include both the mean and standard deviation derived603

from our simulation results. The results for RLBench are shown in Table 5, and the results for604

ManiSkill2 and MimicGen are presented in Table 6.605

We also report the ablations mentioned in Table 3 for each task in Table 7.606

17

https://robot-sgrv2.github.io/


Avg. Open Open Water Toilet Phone Put Take Out Open
Method Success ↑ Microwave Door Plants Seat Up On Base Books Umbrella Fridge
R3M 4.7 0.9 ± 0.6 36.4 ± 3.7 2.9 ± 3.7 15.5 ± 2.1 0.0 ± 0.0 0.5 ± 0.9 5.2 ± 8.7 3.2 ± 1.4
PointNeXt 25.3 7.1 ± 6.3 60.9 ± 5.2 5.6 ± 4.6 49.9 ± 14.7 46.4 ± 4.9 57.5 ± 8.2 37.5 ± 2.3 9.2 ± 4.0
PerAct 22.3 4.3 ± 7.0 59.6 ± 16.0 28.5 ± 3.1 69.3 ± 11.1 0.0 ± 0.0 25.1 ± 4.4 75.9 ± 7.0 3.1 ± 1.3
SGR 23.6 6.4 ± 2.2 55.3 ± 3.7 24.9 ± 8.2 30.7 ± 9.2 47.2 ± 1.4 29.3 ± 5.2 36.3 ± 6.4 7.1 ± 1.5
RVT 40.4 18.3 ± 1.8 71.2 ± 2.8 34.8 ± 3.3 47.6 ± 6.7 62.3 ± 1.4 46.5 ± 10.9 85.3 ± 4.5 24.0 ± 4.2
SGRv2 (ours) 53.2 27.2 ± 2.0 76.8 ± 8.0 38.0 ± 1.7 89.6 ± 2.8 84.1 ± 4.5 63.7 ± 11.8 74.5 ± 5.5 13.2 ± 3.4

Open Slide Sweep To Meat Off Turn Put In Close Drag Stack
Method Drawer Block Dustpan Grill Tap Drawer Jar Stick Blocks
R3M 0.0 ± 0.0 24.0 ± 8.8 0.4 ± 0.4 0.1 ± 0.2 26.1 ± 7.2 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 0.0 ± 0.0
PointNeXt 21.7 ± 20.4 59.5 ± 22.1 42.0 ± 34.7 59.9 ± 17.8 48.7 ± 13.4 17.1 ± 27.8 36.0 ± 4.6 18.5 ± 32.1 1.9 ± 1.6
PerAct 56.4 ± 18.0 47.5 ± 24.3 2.8 ± 0.4 85.9 ± 6.9 8.0 ± 7.5 0.1 ± 0.2 0.5 ± 0.6 10.3 ± 6.4 1.7 ± 0.6
SGR 31.9 ± 6.2 72.0 ± 27.1 43.6 ± 8.4 52.7 ± 5.1 34.4 ± 7.4 8.3 ± 9.2 13.3 ± 5.6 64.4 ± 11.4 0.0 ± 0.0
RVT 75.1 ± 2.6 85.1 ± 2.2 19.6 ± 17.4 90.5 ± 2.2 38.4 ± 5.4 19.6 ± 5.5 25.2 ± 3.6 45.7 ± 10.9 8.8 ± 4.2
SGRv2 (ours) 81.3 ± 3.1 100.0 ± 0.0 61.5 ± 7.2 96.5 ± 3.9 87.9 ± 6.9 75.9 ± 3.6 25.6 ± 2.2 94.9 ± 0.6 17.5 ± 3.0

Screw Put In Place Put In Sort Push Insert Stack Place
Method Bulb Safe Wine Cupboard Shape Buttons Peg Cups Cups
R3M 0.0 ± 0.0 0.3 ± 0.2 0.4 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 6.8 ± 3.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
PointNeXt 4.1 ± 1.5 12.1 ± 4.2 31.5 ± 4.5 3.3 ± 0.6 0.4 ± 0.4 22.0 ± 38.1 0.1 ± 0.2 4.4 ± 3.8 0.4 ± 0.4
PerAct 4.4 ± 5.2 0.9 ± 0.9 8.7 ± 1.7 0.4 ± 0.0 0.4 ± 0.4 83.1 ± 5.3 1.9 ± 1.2 0.1 ± 0.2 0.7 ± 0.6
SGR 0.9 ± 0.8 16.9 ± 2.2 24.7 ± 5.8 0.1 ± 0.2 0.1 ± 0.2 12.0 ± 1.4 0.1 ± 0.2 0.0 ± 0.0 1.1 ± 0.9
RVT 24.0 ± 3.8 30.7 ± 4.9 92.7 ± 0.6 5.6 ± 2.1 1.6 ± 0.7 90.4 ± 2.9 4.0 ± 0.0 3.1 ± 0.6 1.2 ± 0.7
SGRv2 (ours) 24.1 ± 0.6 55.6 ± 8.0 53.1 ± 7.4 20.3 ± 9.2 1.9 ± 0.6 93.2 ± 5.3 4.1 ± 1.4 21.3 ± 11.8 1.6 ± 0.7

Table 5: RLBench results (%) on 5 demonstrations with mean and standard deviation.

Method Avg. Success ↑ Avg. Rank ↓ LiftCube PickCube StackCube PickSingleYCB
PointNeXt 16.8 2.5 50.8 ± 15.2 4.7 ± 0.4 10.6 ± 4.3 1.1 ± 0.1
SGR 14.9 2.5 26.9 ± 4.0 12.2 ± 3.1 3.5 ± 2.2 17.0 ± 0.2
SGRv2 (ours) 55.8 1.0 80.5 ± 7.3 72.9 ± 4.1 27.7 ± 4.3 42.2 ± 2.3
Method Avg. Success ↑ Avg. Rank ↓ Stack StackThree Square Threading Coffee HammerCleanup MugCleanup
PointNeXt 13.6 2.9 56.1 ± 6.4 3.7 ± 1.4 0.9 ± 0.5 3.6 ± 2.2 12.0 ± 5.2 11.7 ± 2.8 7.1 ± 0.9
SGR 14.2 2.0 50.8 ± 7.7 5.6 ± 1.7 1.3 ± 0.5 4.0 ± 0.8 14.1 ± 2.0 14.1 ± 1.7 9.7 ± 2.4
SGRv2 (ours) 26.0 1.0 81.2 ± 4.4 37.9 ± 1.5 2.8 ± 0.7 6.7 ± 2.0 27.9 ± 7.0 16.1 ± 3.9 9.7 ± 2.7

Table 6: ManiSkill2 and MimicGen results (%) on 50 demonstrations with mean and standard devi-
ation.

Avg. Open Open Water Toilet Phone Put Take Out Open
Method Success ↑ Microwave Door Plants Seat Up On Base Books Umbrella Fridge
SGRv2 53.2 27.2 76.8 38.0 89.6 84.1 63.7 74.5 13.2
SGRv2 w/o decoder 21.3 4.4 68.4 12.4 38.8 32.8 27.2 35.6 6.8
SGRv2 w/ absolute pos prediction 21.0 8.0 57.6 21.2 17.2 14.8 21.2 44.4 4.4
SGRv2 w/ uniform point weight 44.2 21.6 82.4 28.8 32.0 60.4 68.0 44.0 14.0
SGRv2 w/o dense supervision 40.0 6.4 59.2 6.8 54.4 78.4 60.8 68.0 6.0

Open Slide Sweep To Meat Off Turn Put In Close Drag Stack
Method Drawer Block Dustpan Grill Tap Drawer Jar Stick Blocks
SGRv2 81.3 100.0 61.5 96.5 87.9 75.9 25.6 94.9 17.5
SGRv2 w/o decoder 14.0 78.8 15.6 40.8 46.8 4.0 18.8 0.8 0.0
SGRv2 w/ absolute pos prediction 20.4 99.2 50.8 10.8 68.8 4.0 6.4 54.8 1.2
SGRv2 w/ uniform point weight 92.8 100.0 72.8 90.8 67.6 74.0 43.6 97.6 1.6
SGRv2 w/o dense supervision 75.2 92.8 19.2 72.0 84.0 42.0 28.8 59.6 43.2

Screw Put In Place Put In Sort Push Insert Stack Place
Method Bulb Safe Wine Cupboard Shape Buttons Peg Cups Cups
SGRv2 24.1 55.6 53.1 20.3 1.9 93.2 4.1 21.3 1.6
SGRv2 w/o decoder 3.2 16.4 27.6 0.0 0.0 56.8 0.4 0.8 1.6
SGRv2 w/ absolute pos prediction 0.4 1.6 3.2 0.0 0.0 35.2 1.6 0.0 0.0
SGRv2 w/ uniform point weight 1.6 32.8 50.4 1.2 0.8 64.4 0.0 5.2 0.8
SGRv2 w/o dense supervision 0.0 30.4 52.0 0.4 0.0 100.0 0.0 0.0 2.4

Table 7: Ablations results (%) for SGRv2 on RLBench with metrics for each task.

18


	Introduction
	Related Work
	Method
	Background
	Locality Aware Action Modeling
	Training

	Experiments
	Simulation Setup
	Simulation Results
	Real-Robot Results

	Discussion
	Simulation Task Details
	RLBench Tasks
	ManiSkill2 Tasks
	MimicGen Tasks

	SGRv2 Details
	Architecture Details
	SGR Details
	Training Details

	Real-Robot Details
	Real-Robot Setup
	Real-Robot Tasks

	Additional Results

