
Published in Transactions on Machine Learning Research (01/2025)

Road Map of Appendix Our appendix is organized into six sections. The notation table is in Appendix A,
which contains the mathematical notations for Algorithm 1, which outlines the pipeline of FedLGD. Ap-
pendix B provides a list of ablation studies to analyze FedLGD, including communication overhead, con-
vergence rate under di�erent random seeds, and hyper-parameter choices. Last but not least, Appendix C
lists the details of our experiments, including the data set information and model architectutres. Our code
and model checkpoints are available in this https://github.com/ubc-tea/FedLGD.

A Notation Table

Notations Description
d input dimension
dÕ feature dimension
f◊ global model
◊ model parameters
Â feature extractor
h projection head

Dg, Dc original global and local data
D̃g, D̃c global and local synthetic data
Ltotal total loss function for virtual federated training
LCE cross-entropy loss
LDist Distance loss for gradient matching

LMMD MMD loss for distribution matching
LCon Contrastive loss for local training regularization

⁄ coe�cient for local training regularization term
T total training iterations
· selected local global distillation iterations

Table 4: Important notations used in the paper.

B Additional Results and Ablation Studies for FedLGD

B.1 Communication overhead.

(a) ConvNet (b) ResNet18

Figure 8: Accumulated communication overhead compared to classical FedAvg.

The accumulated communication overhead for image size 28 ◊ 28 and 96 ◊ 96 can be found in Fig. 8. We
show the communication cost for both ConvNet and ResNet18. Note that the trade-o� of our design reflects
in the increased communication overhead, where the clients need to download the latest global virtual data
in the selected rounds (·). However, we argue that the |· | can be adjusted based on the communication
budget. Additionally, as the model architecture becomes more complex, the added communication overhead

19

https://github.com/ubc-tea/FedLGD

Published in Transactions on Machine Learning Research (01/2025)

turns out to be minor. For instance, the di�erence between the dashed and solid lines in Fig. 8(b) is less
significant than the di�erence observed in Fig. 8(a).

B.2 Di�erent random seeds

(a) (b) (c)

Figure 9: Averaged testing loss for (a) DIGITS with IPC = 50, (b) CIFAR10C with IPC = 50, and (c) RETINA
with IPC = 10 experiments.

(a) (b) (c)

Figure 10: Averaged testing accuracy for (a) DIGITS with IPC = 50, (b) CIFAR10C with IPC = 50, and
(c) RETINA with IPC = 10 experiments.

To show the consistent performance of FedLGD, we repeat the experiments for DIGITS, CIFAR10C, and
RETINA with three random seeds, and report the validation loss and accuracy curves in Figure 9 and 10 (The
standard deviations of the curves are plotted as shadows.). We use ConvNet for all the experiments. IPC is
set to 50 for CIFAR10C and DIGITS; 10 for RETINA. We use the default hyperparameters for each dataset,
and only report FedAvg, FedProx, Sca�old, VHL, which achieves the best performance among baseline as
indicated in Table 1, 2, and 3 for clear visualization. One can observe that FedLGD has faster convergence
rate and results in optimal performances compared to other baseline methods.

B.3 Di�erent heterogeneity levels of label shift

In the experiment presented in Sec 5.3, we study FedLGD under both label and domain shifts, where labels
are sampled from Dirichlet distribution. To ensure dataset distillation performance, we ensure that each class
at least has 100 samples per client, thus setting the coe�cient of Dirichlet distribution – = 2 to simulate
the worst case of label heterogeneity that meets the quality dataset distillation requirement. Here, we show
the performance with a less heterogeneity level (– = 5) while keeping the other settings the same as those in
Sec.5.3. The results are shown in Table 5. As we expect, the performance drop when the heterogeneity level
increases (– decreases). One can observe that when heterogeneity increases, FedLGD’s performance drop

20

Published in Transactions on Machine Learning Research (01/2025)

less except for VHL. We conjecture that VHL yields similar test accuracy for – = 2 and – = 5 is that it uses
fixed global virtual data so that the e�ectiveness of regularization loss does not improve much even if the
heterogeneity level is decreased. Nevertheless, FedLGD consistently outperforms all the baseline methods.

Table 5: Comparison of di�erent – for Drichilet distribution on CIFAR10C.

alpha 2 5
FedAvg 54.9 55.4
FedProx 54.9 55.4
FedNova 53.2 55.4
Sca�old 54.5 55.6
MOON 51.6 51.1
VHL 55.2 55.4
FedLGD 57.4 58.1

B.4 Analysis of batch size

Batch size is another factor for training the FL model and our distilled data. We vary the batch size
œ {8, 16, 32, 64} to train models for CIFAR10C with the fixed default learning rate. We show the e�ect
of batch size in Table 6 reported on average testing accuracy. One can observe that the performance is
slightly better with moderately smaller batch size which might due to two reasons: 1) more frequent model
update locally; and 2) larger model update provides larger gradients, and FedLGD can benefit from the
large gradients to distill higher quality virtual data. Overall, the results are generally stable with di�erent
batch size choices.

Table 6: Varying batch size in FedLGD on CIFAR10C. We report the unweighted accuracy. One can
observe that the performance increases when the batch size decreases.

Batch Size 8 16 32 64
CIFAR10C 59.5 58.3 57.4 56.0

B.5 Analysis of Local Epoch

Aggregating at di�erent frequencies is known as an important factor that a�ects FL behavior. Here, we
vary the local epoch œ {1, 2, 5} to train all baseline models on CIFAR10C. Figure 11 shows the result of
test accuracy under di�erent epochs. One can observe that as the local epoch increases, the performance
of FedLGD would drop a little bit. This is because doing gradient matching requires the model to be
trained to an intermediate level, and if local epochs increase, the loss of CIFAR10C models will drop signifi-
cantly. However, FedLGD still consistently outperforms the baseline methods. As our future work, we will
investigate the tuning of the learning rate in the early training stage to alleviate the e�ect.

B.6 Di�erent Initialization for Virtual Images

To validate our proposed initialization for virtual images has the best trade-o� between privacy and e�cacy,
we compare our test accuracy with the models trained with synthetic images initialized by random noise
and real images in Table 7. To show the e�ect of initialization under large domain shift, we run experiments
on DIGITS dataset. One can observe that our method which utilizes the statistics (µi, ‡i) of local clients as
initialization outperforms random noise initialization. Although our performance is slightly worse than the
initialization that uses real images from clients, we do not ask the clients to share real image-level information
to the server which is more privacy-preserving.

21

Published in Transactions on Machine Learning Research (01/2025)

Figure 11: Comparison of model performances under di�erent local epochs with CIFAR10C.

Table 7: Comparison of di�erent initialization for synthetic images DIGITS. Ours (N (µi, ‡i)) is shown in
the middle column.

DIGITS N (0, 1) N (µi, ‡i) Real Images
MNIST 96.3 97.1 97.7
SVHN 75.9 77.3 78.8
USPS 933 94.6 94.2
SynthDigits 72.0 78.5 82.4
MNIST-M 83.7 86.1 89.5
Average 84.2 86.7 88.5

C Experimental details

C.1 Visualization of the original images

(a) (b) (c) (d) (e)

Figure 12: Visualization of the original digits dataset. (a) visualized the MNIST client; (b) visualized the
SVHN client; (c) visualized the USPS client; (d) visualized the SynthDigits client; (e) visualized the MNIST-
M client.

The visualization of the original DIGITS, CIFAR10C, and RETINA images can be found in Figure 12,
Figure 13, and Figure 14, respectively.

C.2 Visualization of our distilled global and local images

The visualization of the virtual DIGITS, CIFAR10C, and RETINA images can be found in Figure 15, Fig-
ure 16, and Figure 17, respectively.

22

Published in Transactions on Machine Learning Research (01/2025)

(a) (b) (c)

(d) (e) (f)

Figure 13: Visualization of the original CIFAR10C. Sampled images from the first six clients.

(a) (b) (c) (d)

Figure 14: Visualization of the original retina dataset. (a) visualized the Drishti client; (b) visualized the
Acrima client; (c) visualized the Rim client; (d) visualized the Refuge client.

C.3 Visualization of the heterogeneity of the datasets

The visualization of the original distribution in histogram for DIGITS, CIFAR10C, and RETINA images can
be found in Figure 18, Figure 19, and Figure 20, respectively.

C.4 Model architecture

The two model architectures (ResNet18 and ConvNet) are detailed in Table 8 and Table 9, respectively.

23

Published in Transactions on Machine Learning Research (01/2025)

(a) (b) (c)

(d) (e) (f)

Figure 15: Visualization of the global and local distilled images from the digits dataset. (a) visualized the
MNIST client; (b) visualized the SVHN client; (c) visualized the USPS client; (d) visualized the SynthDigits
client; (e) visualized the MNIST-M client; (f) visualized the server distilled data.

(a) (b) (c)

(d) (e) (f) (g)

Figure 16: (a)-(f) visualizes the distailled images for the first six clients of CIFAR10C. (g) visualizes the
global distilled images.

24

Published in Transactions on Machine Learning Research (01/2025)

(a) (b)

(c) (d) (e)

Figure 17: Visualization of the global and local distilled images from retina dataset. (a) visualized the
Drishti client; (b) visualized the Acrima client; (c) visualized the Rim client; (d) visualized the Refuge client;
(e) visualized the server distilled data.

(a) MNIST (b) SVHN

(c) USPS (d) SynthDigits (e) MNIST-M

Figure 18: Histogram for the frequency of each RGB value in original DIGITS. The red bar represents the
count for R; the green bar represents the frequency of each pixel for G; the blue bar represents the frequency
of each pixel for B. One can observe the distributions are very di�erent. Note that figure (a) and figure (c)
are both greyscale images with most pixels lying in 0 and 255.

25

Published in Transactions on Machine Learning Research (01/2025)

(a) (b) (c)

(d) (e) (f)

Figure 19: Histogram for the frequency of each RGB value in the first six clients of original CIFAR10C. The
red bar represents the count for R; the green bar represents the frequency of each pixel for G; the blue bar
represents the frequency of each pixel for B.

(a) Drishti (b) Acrima (c) RIM (d) REFUGE

Figure 20: Histogram for the frequency of each RGB value in original RETINA. The red bar represents the
count for R; the green bar represents the frequency of each pixel for G; the blue bar represents the frequency
of each pixel for B.

26

Published in Transactions on Machine Learning Research (01/2025)

Table 8: ResNet18 architecture. For the convolutional layer (Conv2D), we list parameters with a sequence
of input and output dimensions, kernel size, stride, and padding. For the max pooling layer (MaxPool2D),
we list kernel and stride. For a fully connected layer (FC), we list input and output dimensions. For the
BatchNormalization layer (BN), we list the channel dimension.

Layer Details
1 Conv2D(3, 64, 7, 2, 3), BN(64), ReLU
2 Conv2D(64, 64, 3, 1, 1), BN(64), ReLU
3 Conv2D(64, 64, 3, 1, 1), BN(64)
4 Conv2D(64, 64, 3, 1, 1), BN(64), ReLU
5 Conv2D(64, 64, 3, 1, 1), BN(64)
6 Conv2D(64, 128, 3, 2, 1), BN(128), ReLU
7 Conv2D(128, 128, 3, 1, 1), BN(64)
8 Conv2D(64, 128, 1, 2, 0), BN(128)
9 Conv2D(128, 128, 3, 1, 1), BN(128), ReLU
10 Conv2D(128, 128, 3, 1, 1), BN(64)
11 Conv2D(128, 256, 3, 2, 1), BN(128), ReLU
12 Conv2D(256, 256, 3, 1, 1), BN(64)
13 Conv2D(128, 256, 1, 2, 0), BN(128)
14 Conv2D(256, 256, 3, 1, 1), BN(128), ReLU
15 Conv2D(256, 256, 3, 1, 1), BN(64)
16 Conv2D(256, 512, 3, 2, 1), BN(512), ReLU
17 Conv2D(512, 512, 3, 1, 1), BN(512)
18 Conv2D(256, 512, 1, 2, 0), BN(512)
19 Conv2D(512, 512, 3, 1, 1), BN(512), ReLU
20 Conv2D(512, 512, 3, 1, 1), BN(512)
21 AvgPool2D
22 FC(512, num_class)

Table 9: ConvNet architecture. For the convolutional layer (Conv2D), we list parameters with a sequence
of input and output dimensions, kernel size, stride, and padding. For the max pooling layer (MaxPool2D),
we list kernel and stride. For a fully connected layer (FC), we list the input and output dimensions. For the
GroupNormalization layer (GN), we list the channel dimension.

Layer Details
1 Conv2D(3, 128, 3, 1, 1), GN(128), ReLU
2 AvgPool2d(2,2,0)
3 Conv2D(128, 118, 3, 1, 1), GN(128), ReLU
4 AvgPool2d(2,2,0)
5 Conv2D(128, 128, 3, 1, 1), GN(128), ReLU
6 AvgPool2d(2,2,0)
7 FC(1152, num_class)

27

	Introduction
	Related Work
	Dataset Distillation
	Heterogeneous Federated Learning
	Datasets Distillation for FL

	Method
	Setup for Federated Virtual Learning
	Overall Pipeline
	FL with Local-Global Dataset Distillation
	Local Data Distillation for Federated Virtual Learning
	Global Data Distillation for Heterogeneity Harmonization

	Theoretical Analysis
	Experiment
	Training and Evaluation Setup
	DIGITS Experiment
	CIFAR10C Experiment
	RETINA Experiment
	Ablation studies for FedLGD

	Conclusion
	Notation Table
	Additional Results and Ablation Studies for FedLGD
	Communication overhead.
	Different random seeds
	Different heterogeneity levels of label shift
	Analysis of batch size
	Analysis of Local Epoch
	Different Initialization for Virtual Images

	Experimental details
	Visualization of the original images
	Visualization of our distilled global and local images
	Visualization of the heterogeneity of the datasets
	Model architecture

