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1. Introduction
Field-circuit coupled problems are fundamental

in electrical engineering applications (e.g., electrical
machines, actuators, sensors, power electronics),
where Maxwell’s equations at the component scale
interactwith circuit equations at the system scale [1].
This coupling results innonlinear, high-dimensional
Differential-Algebraic Equations (DAEs) [2], posing
computational challenges. We propose a hybrid
model that combines a linear state-space formula-
tion with a Koopman-based machine-learning com-
ponent for efficient field-circuit dynamics predic-
tion. Using an extended non-intrusive algorithm,
our approach achieves 1% prediction error, outper-
forms traditional models, and provides a 3-order-of-
magnitude speedup over time-stepping volume inte-
gral methods, making it ideal for real-time and re-
peated simulations.

2. Time-Stepping Volume Integral Method For
Nonlinear Field-ciruit Coupled Problems
Field-circuit coupling arises in applications such

as current sensors, where Maxwell’s magnetostatic
equations in a nonlinear magnetic region must
be solved alongside external circuit equations for
coils [1, 3]. A time-stepping volume integral ap-
proach discretizes the magnetic field via volume el-
ements, incorporates circuit currents, and enforces
continuity through a mesh-current analysis. This
yields a high-dimensional, ODE-algebraic coupled
system:

[Rm + Pm]Φ+ LmbIb = ∆φr,

d

dt

(
LbmΦ

)
+ Rb Ib +

d

dt

(
Lb Ib

)
= ∆Vb.

(1)

Here,Φ ∈ RNf represents the flux unknowns across
Nf finite-element faces, while Ib ∈ RNb is the
coil current vector. The terms ∆φr ∈ RNf and
∆Vb ∈ RNb denote magnetic potential differences
and coil voltages, respectively. Matrices Rm and Pm

arise from discretized reluctivity and boundary in-
tegral contributions, both being nonlinear functions
of Φ. Coupling matrices Lmb ∈ RNf×Nb and Lbm ∈
RNb×Nf link the field and circuit variables, while Rb

and Lb are diagonal resistance and mutual induc-
tance matrices of sizeNb ×Nb.
In practice, the coupled system is solved by Kirch-

hoff’smesh rule ensuring the free divergence ofB in
the magnetic region mesh and the current conser-
vation in each coil [3]. Exploiting the electric circuit
interpretation of the global problem, amesh current
analysis is made on themesh of themagnetic region
and in the circuit coils. This analysis makes it possi-
ble to express an incidencematrix that linksΦ to in-
duction flux on closed loopsΦloop in themesh. Con-
sequently, the coupled system can be represented as
a general dynamical systemwith x as state variable :

R(x)x+
d

dt
L(x)x = Usc(Ip), (2)

where x = [Φloop; Is], i.e. the concatenation of mag-
netic flux loops flowing in the mesh of the magnetic
region and the current flowing in the secondary coil
Is, and Usc(Ip) is a vector term which depends on
the problem input Ip. The loop resistance R(x)
and the loop inductance L(x) are nonlinear func-
tions of the variable x. R(x) and L(x) are linked to
matrix Rm, Pm, Lmb and Lb, Lmb respectively by a
change of basis involving the incidence matrix com-
ing from the mesh current analysis. This is a high-
dimensional input-output system with state x and
time-dependent inputs Ip.

3. Framework and Training Strategy for the
Physics-Data CombinedModel

3.1 Physical-Data Combined Model
Physics-integrated machine learning models are

built upon an analysis of the physical system. A
simple or incomplete physical model can describe
the general behavior of the system, while a data-
driven model learns the corrections to the physical
model [4, 5, 6].
To construct such combined models, the key ob-

servation is as follows: the nonlinearity of the target
system (2) originates from themagnetic reluctivity ν.
The magnetic field H is a nonlinear function of the
induction B, which, in turn, depends on the mag-
netic flux flowing through the mesh. If the reluctiv-
ity ν is constant, the system (2) can be expressed as
a linear system:

Rx+
d

dt
Lx = Usc(Ip). (3)

We represent this linearized system in state-space
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form:
x(tk+1) = Cx(tk) + Du(tk), (4)

whereu(tk) = [Ip(tk), Ip(tk+1)] represents the input.
This model captures key system behaviors but lacks
the flexibility to account for nonlinear effects.
To enhance accuracy, we introduce a data-driven

correction:

x(tk+1) = Cx(tk) + Du(tk) + f(x(tk),u(tk)). (5)

Using a Koopman-type model, f learns observables
that evolve linearly:

f(x(tk),u(tk)) = E(KΨ(x(tk)) + Lu(tk)), (6)

where E extracts field data from observablesΨ, and
K,L,Ψ are learned via data-driven optimization of
Neural Network [7].

3.2 Training Strategy with a Non-Intrusive Algorithm
The training strategy for the combined model ex-

tends from our previous work [8], maintaining non-
intrusiveness by training the two models separately.
The state-space model is optimized using a closed-
form least squares solution,while theKoopman-type
machine learning model is trained with the Adam
optimizer.
To ensure convexity and enable a closed-form

solution, the state-space model parameters are se-
lected via a one-step prediction optimization prob-
lem. Meanwhile, theKoopman-typemodel is trained
with amulti-step prediction loss function to enhance
long-term forecasting accuracy.
Given a dataset D = {(x,u)} containing se-

quences of states and inputs, the multi-step predic-
tion loss function is defined as:

L(x,u; f) = 1

|D|
∑

(x,u)∈D

L−1∑
k=0

∥x(tk)− x̂(tk)∥2,

x̂(tk+1) = Cx̂(tk) + Duk + f(x̂(tk),u(tk)),

x̂(t0) = x(t0),

(7)

where L is the prediction horizon, set to 10 in our
experiments. The full training algorithm is detailed
in Algorithm 1.

4. Experimental Results
4.1 Data generation and preprocessing
The dataset is generated by simulating a nonlin-

ear field-circuit coupled problem in a ferromagnetic
region with 6956 magnetic elements and 1 electri-
cal element, forming a 6957-dimensional state vec-
tor x. To reduce dimensionality, the Proper Or-
thogonal Decomposition (POD) method is applied,
compressing x to four principal components, de-
noted as xpca = Px. The input current follows
Ip(tk) = 200 sin( 2πf150 t) + 200 cos( 2πf250 t), where f1, f2
are sampled from [40, 60] Hz. The dataset consists
of 60 trajectories, each with 150 time steps at a

Algorithm 1 The iterative model combination algo-
rithm with multi-step loss function
Require: Dataset D

j ← 0
solve the state-space model
by least square: C0,D0 ←
argminC,D

1
|D|

∑
(x(tk),x(tk+1),u(tk))∈D ∥x(tk+1) −

(Cx(tk) + Du(tk))∥2
while stopping criterion is not satisfied do

j ← j + 1
solve the data-driven model by gradient-based

optimization: fj ← argminfL(x,u; f)
e← x(tk+1)− fj(x(tk),u(tk))
solve the state-space model by least square:

Cj ,Dj ← argminC,D
1

|D|
∑

(x(tk),x(tk+1),u(tk))∈D ∥e−
(Cx(tk) + Du(tk))∥2
end while
return parameters in the combined model
Cj ,Dj , fj

0.0004s interval, and is split into training and test-
ing sets with a 4:1 ratio. For training, sequences
of length 10 are extracted to construct the dataset
{(xpca,u)}, where u(tk) = [Ip(tk), Ip(tk+1)]. The
dictionary Ψ of Koopman-type model is build by
Ψ = [1,xpca,ΨNN (xpca), where ΨNN is a 6-layer
ResNet [9].

4.2 Prediction Results
Our combined model demonstrates high accu-

racy in predicting the electric mesh currents x =
[Φloop, Is], achieving a relative error of around 1%
with a stable relative differenceover prediction time:

Relative error =
1

|Deval|
∑

ztrue∈Deval

∥zpredict − ztrue∥
∥ztrue∥

,

(8)
It significantly outperforms baseline models, com-
pared to 80% for the linear state-space model and 3-
4% for the Koopman-type model.

4.3 Computational efficiency
When solvingDAE systems, the time-stepping vol-

ume integral method is computationally expensive,
requiring approximately 28 minutes to generate 150
prediction steps, whereas the combinedmodel com-
pletes the same task in about 2 seconds with the
samemesh. Although the combined model requires
a one-time offline training cost of 14 hours on an
NVIDIA RTX 3090 GPU, its online prediction is three
orders of magnitude faster, with only a 1% error
trade-off. This efficiencymakes it highly suitable for
applications requiring repeated or real-time predic-
tions, especially as the problem size or prediction
horizon increases.
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Appendix A. Detailed Results in Long-time Pre-
diction

We evaluate the prediction performance using two
metrics: relative error, which measures overall ac-
curacy across the entire prediction horizon, and rel-
ative difference at time tk, whichassesses robustness
throughout the prediction process. Given an evalua-
tion dataset Deval for z, the relative error is defined
as:

Relative error =
1

|Deval|
∑

ztrue∈Deval

∥zpredict − ztrue∥
∥ztrue∥

,

(A1)
representing the mean relative error over a 150-step
prediction.
To evaluate robustness at each time step, we de-

fine the relative difference as:

Relative difference at time tk

=
1

|Deval|
∑

ztrue∈Deval

∥zpredict(tk)− ztrue(tk)∥
∥maxi ztrue(ti)∥

.
(A2)

Our model demonstrates strong predictive per-
formance for the electric mesh currents x =
[Φloop, Is]. Figure A1 compares the predicted and
ground truth values ofΦloop across training and vali-
dation datasets. The combinedmodel achieves a rel-
ative error of around 1% and a relative difference be-
low 1%, consistently capturing the dynamics of the
field-circuit coupled problem.
For the secondary coil current Is, figure A2 shows

that the combined model significantly outperforms
baseline models. The linear state-space model ex-
hibits high errors ( 80%), while the Koopman-type
model achieves 3-4% error. In contrast, our com-
bined model maintains a relative error around 1%
and a relative difference below 1%, demonstrating
both accuracy and robustness.
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(a) Relative error for training and validation
datasets.
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(b) Relative difference over prediction time.

0 50 100 150
Prediction Step

0.2

0.1

0.0

0.1

lo
op

Traj 2, All Models

0 50 100 150
Prediction Step

Traj 2, True Trajectory

0 50 100 150
Prediction Step

Traj 2, Combined Model

0 50 100 150
Prediction Step

0.10

0.05

0.00

0.05

lo
op

Traj 7, All Models

0 50 100 150
Prediction Step

Traj 7, True Trajectory

0 50 100 150
Prediction Step

Traj 7, Combined Model

0 50 100 150
Prediction Step

0.1

0.0

0.1

lo
op

Traj 8, All Models

0 50 100 150
Prediction Step

Traj 8, True Trajectory

0 50 100 150
Prediction Step

Traj 8, Combined Model

Legend
True Trajectory
Linear Model 1
Linear Model 2
Koopman-type Model
Combined Model

(c) Comparison of predictions for the 2829-th dimension from validation trajectories.

Fig. A1: Prediction of Φloop of the linear state-space models, the Koopman-type model, and the combined
model. The upper left panel shows the relative error for training and validation datasets. The upper right
panel displays the relative difference over prediction time. The lower panel compares predictions of the
2829-th dimension from the combined and baseline models for 3 validation trajectories.
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(a) Relative error for training and validation
datasets.
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(b) Relative difference over prediction time.
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(c) Comparison of predictions from validation trajectories.

Fig. A2: Prediction of the secondary coil current Is of the linear state-spacemodels, the Koopman-typemodel,
and the combinedmodel. The upper left panel shows the relative error for training and validation datasets.
The upper right panel displays the relative difference over prediction time. The lower panel compares
predictions from the combined and baseline models for 3 validation trajectories.
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