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ABSTRACT

Recent studies have successfully shown that large language models (LLMs) can
be successfully used for generative error correction (GER) on top of the automatic
speech recognition (ASR) output. Specifically, an LLM is utilized to carry out a
direct mapping from the N-best hypotheses list generated by an ASR system to
the predicted output transcription. However, despite its effectiveness, GER intro-
duces extra data uncertainty since the LLM is trained without taking into account
acoustic information available in the speech signal. In this work, we aim to over-
come such a limitation by infusing acoustic information before generating the
predicted transcription through a novel late fusion solution termed Uncertainty-
Aware Dynamic Fusion (UADF). UADF is a multimodal fusion approach imple-
mented into an auto-regressive decoding process and works in two stages: (i) It
first analyzes and calibrates the token-level LLM decision, and (ii) it then dy-
namically assimilates the information from the acoustic modality. Experimental
evidence collected from various ASR tasks shows that UADF surpasses existing
fusion mechanisms in several ways. It yields significant improvements in word
error rate (WER) while mitigating data uncertainty issues in LLM and addressing
the poor generalization relied with sole modality during fusion. We also demon-
strate that UADF seamlessly adapts to audio-visual speech recognition.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have emerged as an epistemic beacon in the
field of natural language processing (NLP), endowing text-based tasks with substantial performance
gains through their extensive knowledge repository and remarkable generation capabilities (OpenAI,
2023; Anil et al., 2023; Touvron et al., 2023a;b). Additionally, the prowess of LLMs is not confined
to textual data alone. They have demonstrated the capability to perceive and process non-textual
information (Li et al., 2023; Lyu et al., 2023; Han et al., 2023; Wu et al., 2023b), bridging the gap
between various modalities. This multifaceted understanding allows LLMs to serve as a universal
interface, facilitating an intricate fusion amidst disparate data modalities for multi-modal tasks, e.g.
image description (Wang et al., 2023) and speech translation (Zhang et al., 2023a).

Compared to the semantic-level fusion between images and texts, perceiving speech signals for
LLMs remains a complex endeavor. The challenge stems from the inherent high sampling rate of
acoustic data and the substantial modality gap that exists when transitioning between audio and tex-
tual data. Furthermore, prompting LLMs for automatic speech recognition (ASR) tasks presents
a particular barrier as ASR requires learning precisely frame-level alignment instead of utterance-
level understanding. Previously, the realm of ASR predominantly employed n-grams or neural lan-
guage models (Yang et al., 2021a) (LMs) to rescore an N-best hypothesis list, culminating in the
selection of the 1-best sentence. A recent development in this field, Chen et al. (2023b) introduce
a generative error correction (GER) benchmark and prompting methods for LLM-enhanced ASR
wherein the N-best hypotheses list provides informative elements to directly predict output tran-
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scription. Notwithstanding its innovation, this methodology inadvertently introduces an enhanced
level of data uncertainty, primarily because the inherent acoustic information remains agnostic dur-
ing LLMs learning. This quandary is further compounded by existing fusion strategies.

Methods such as semantic token-based early fusion (Fathullah et al., 2023; Deshmukh et al., 2023)
or representation post-encoding through cross-attention (termed as mid fusion) (Lei et al., 2023;
Radhakrishnan et al., 2023a) offer potential solutions. However, the early fusion approach tends to
bias the model’s learning towards a specific modality quite easily, and the mid fusion suffers from
the typically longer sequence length of speech signals compared to text sequences (Wu et al., 2023a).
In addition, their efficacy is often circumscribed by inherent modality disparity. Furthermore, pre-
maturely fusing two modalities may give rise to modality laziness problem (Du et al., 2023a), which
describes the neural network’s tendency to excessively rely on a specific modality that even multi-
modal performance does not surpass that of unimodal performance. This paper tries to shed light
upon multimodal fusion for LLM-enhanced ASR tasks. Based on the GER-empowered Hypotheses-
to-transcription (H2T) paradigm, LLMs acquire the capacity to provide an independent probability
distribution based on text-only modality, allowing us to explore a fundamental fusion strategy for
auto-regressive token prediction. In particular, we devise a novel framework named Uncertainty-
Aware Dynamic Fusion (UADF) that performs step-wise late fusion in the auto-regressive decoding
process. Key to our framework, we leverage the token-level uncertainty estimation to dynamically
determine the fusion weight allocated to each modality in each decoding step. This mechanism is
consistent with human multimodal perception: when the primary modality is equivocal, then we
spontaneously seek compensatory information from another modality.

In summary, we make several salient contributions. Firstly, we underscore the challenges inherent
in fusing acoustic information into LLMs for ASR and implement several feasible fusion strate-
gies for comparative analysis. Secondly, we introduce a novel uncertainty-aware dynamic fusion
technique, UADF, which dynamically allocates modality weights in the auto-regressive decoding
process, thus significantly reducing the likelihood of the occurrence of the modality laziness phe-
nomenon. Thirdly, experimental evidence shows UADF achieves remarkable performance gain in
terms of word error rate (WER), outperforming a bunch of established GER baselines. Lastly, UADF
demonstrates strong generalization on other multimodal auto-regressive tasks that are seamlessly in-
corporated as a plug-in for audio-visual speech recognition.

2 RELATED WORK

Language Modeling in ASR. To improve linguistic acceptability, there has been considerable prior
efforts in applying Language Models (LMs) within ASR system (Jelinek, 1976; Ljolje et al., 1999;
Mohri et al., 2008; Sak et al., 2010; Chorowski & Jaitly, 2016; Chen et al., 2019; Hu et al., 2020;
Wang et al., 2022; Liu et al., 2023a). ASR designs have been firstly explored as an acoustic model
(AM) and a language model (LM), independently trained, within a noisy channel framework (Je-
linek, 1976; Dixon & Silverman, 1975). The LM could be integrated in an efficient first-pass decod-
ing (Kuo et al., 2002; Mohri et al., 2008; Liu et al., 2023b) and in second-pass rescoring to manage
larger LMs (Ljolje et al., 1999; Sak et al., 2010). Despite the shift to hybrid HMM-DNN models, the
basic decoding/rescoring structure persisted and led to new fusion approaches for LM integration un-
der the emergence of end-of-end (E2E) ASR models (Chorowski & Jaitly, 2016; Sriram et al., 2017).
Further advancements included a two-pass E2E ASR combining streaming and full-context decod-
ing (Sainath et al., 2019), and a deliberation network that enhanced output generation by attending
to both acoustic representations and first-pass hypotheses (Hu et al., 2020), showcasing the ongoing
evolution and integration of LMs in ASR. With recent advancements in pre-trained language models
(PLMs), language models have been playing versatile roles within ASR systems, e.g., bi-directional
rescoring (Xu et al., 2022), knowledge distillation (Futami et al., 2020), and error correction (Leng
et al., 2023; Chen et al., 2023a). More recently, Chen et al. (2023b); Yang et al. (2023); Radhakrish-
nan et al. (2023a) proposed an LLM-enhanced ASR benchmark called generative error correction,
which learns a hypotheses-to-transcription mapping by LLMs with a LoRA adapter. In particular,
since GER enables LLMs to predict transcription based on text-only modality, this work leverages
this capacity and considers integrating audio modality into LLMs.

Fusion based Multimodal Learning. Multimodal fusion is one of the most fundamental topics in
multimodal learning, which aims to integrate available modalities into a uniform learning frame-
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Figure 1: Different fusion strategies: early, mid and late fusions. The the green area indicates where
the fusion strategies happened. N-best List is generated by ASR engine with beam search decoding.
Left: the speech tokens extracted from the acoustic encoder are directly concatenated with the cor-
responding word embeddings of the N-best list before feeding into the LLMs; Middle: the acoustic
features from the last layer of the acoustic encoder are integrated into the LLMs decoding process
using the cross-attention mechanism; Right: the step-wise fusion happens in the auto-regressive
decoding process by integrating both decision-level information.

work (Xu et al., 2021; Yang et al., 2021b; Zhang et al., 2023b; Peng et al., 2023; Yi et al., 2023).
However, due to inter-modal disparities, a unified learning framework often results in imbalances of
modalities. This phenomenon is defined as modality laziness, referring to situations where multi-
modal performance is worse than single-modal performance (Du et al., 2023a). A common solution
is to utilize late fusion to preserve uni-modal learning (Hessel & Lee, 2020; Yao & Mihalcea, 2022),
or to employ knowledge distillation prior to modality fusion (Wang et al., 2020; Peng et al., 2022). In
the ASR task, most efforts on multimodal fusion focus on audio-visual speech recognition (Afouras
et al., 2018a; Hsu & Shi, 2022). However, although the modality laziness phenomenon is also re-
ported in (Du et al., 2023a), limited research focuses on addressing it.

Uncertainty Estimation in Auto-regressive Task. The motivation of uncertainty estimation is to
evaluate the reliability of a neural model’s predictions, which is typically measured by Bayesian
neural networks (BNNs) (Neal, 2012) and its varieties (Gal & Ghahramani, 2016; Han et al., 2022).
(Malinin & Gales, 2020) first develop an ensemble-based uncertainty estimation framework for auto-
regressive prediction. In the ASR task, uncertainty estimation is also explored for improving noise-
robustness (Tran et al., 2014; Stouten et al., 2006), knowledge distillation (Kim et al., 2021), and
intelligibility prediction (Tu et al., 2022). Furthermore, Zhang et al. (2023c) theoretically proves
that uncertainty estimation can also be applied to modality fusion, where an energy score is utilized
to determine a dynamic weight for each modality. This work extends the theory to the context of
autoregressive decoding, which performs step-wise late fusion based on the uncertainty of LLMs’
predictions.

2.1 A GENERATIVE FRAMEWORK OF ASR ERROR CORRECTION

Given the speech signal X ∈ Rl, the ASR task aims to predict its textual transcription with T sequen-
tial tokens YT = (y1, y2, · · · , yT ) with a neural network. HyPoradise dataset (Chen et al., 2023b)
provides an informative N-best list consisting of n hypotheses candidates Ŷn = {Ŷ1, Ŷ2, · · · , Ŷn}
using beam search, and then learn a hypotheses-to-transcription (H2T) mapping in a auto-regressive
manner:

YT = MH2T (Ŷn, θl), P (YT |Ŷn, θl) =

T∏
t=0

P (yt|Y<t, Ŷn, θl) (1)

where θl denotes a pre-trained LLM with LoRA adapter, and Y<t denotes the history sequence
(y1, y2, · · · , yt−1). It is worth noting that such a learning paradigm is text-only, as X is not directly
involved in the calculation of P (Yt). Consequently, it introduces extra expected data uncertainty
when predicting transcription. In this work, we focus on integrating X or its hidden representation
into H2T mapping, which can be written as:

P (YT |Ŷn, θl, X) =

T∏
t=0

P (yt|Y<t, Ŷn, θl, X) (2)
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More details about the HyPoradise dataset and relevant H2T learning are attached in Appendix A.1.

3 ACOUSTIC INFORMATION FUSION

In this part, we first illustrate different fusion strategies including early, mid, and late fusion. Then
we concentrate on late fusion, and introduce the relevant techniques in the proposed UADF.

3.1 FUSION STRATEGY

Considering the long-range character of the raw speech signals X , we employ neutral network θa to
extract its hidden representation. In this work, we investigate three common speech representations
in a Transformer-based ASR model named: (i) Xtok: Speech tokens extracted by self-supervised
learning, e.g., Wave2Vec (Schneider et al., 2019). (ii)Xenc: acoustic features in the last layer of
the acoustic encoder, and (iii) Xdec: acoustic features in the last layer of the ASR decoder. These
three kinds of representations range from shallow to deep, which corresponds to different fusion
approaches shown in Figure 1.

Early Fusion with Speech Tokens and Language Embedding: An early fusion approach directly
concatenates the speech tokens Xtok and word embeddings Ytok before feeding into the first self-
attention layer of LLM decoder, where Xtok requires to be projected to the dimension of the Ytok

to ensure compatibility. In practice, we follow the stacking approach introduced in (Fathullah et al.,
2023) to reduce the length of Xtok. Subsequently, the Xtok serves as prompt tokens that are fed into
the LLM decoder, and perform auto-regressive decoding as follows:

P (YT ) =

T∏
t=0

P (yt|Concat(Xtok, Y<t), Ŷn, θl) (3)

Considering the Xtok and Ŷn are from distinct modalities, prematurely fusing them may lead to
modality laziness (Du et al., 2023b) due to modality gap, as LLMs can proficiently handle Ŷn while
remains entirely unacquainted with Xtok.

Mid-Fusion thorough Model Attention Merging: model attention merging is one recent neural
adapter-based techniques (Lin et al., 2023; Radhakrishnan et al., 2023a) (i.e., Whispering-LLaMa)
that utilizes the cross-attention mechanism in the LLM decoder to integrate Xenc into the decoding
process. Specifically, we utilize Xenc as key K(Xenc) and value V (Xenc) matrices, then perform
cross-attention using query Qllm in LLM decoder layer. The final layer output is obtained by sum-
ming Ĉ and original self-attention representation C with a fixed weight λ:

Ĉ = softmax(
Qllm · (K(Xenc))

T

√
dk

) V (Xenc) C = softmax(
Qllm · (Kllm)T√

dk
) Vllm) (4)

Two considerations should be addressed when applying mid fusion in LLMs: 1) the Xenc requires to
be aligned with Qllm, as the latent dimensions are usually mismatched between the acoustic model
and LLMs. A typical solution is adding a trainable adapter to ensure dimensional compatibility,
which also serves as a modality converter from audio to text (Chen et al., 2023d; Yang et al., 2023).
2) Since mid fusion happens in each layer of LLMs, the tuning approach is expected to balance the
perception of new modality with the retention of pre-trained knowledge.

In this paper, we employ a residual adapter with a down-up internal structure for modality transfer
and dimension alignment. Furthermore, we keep most LLMs parameters frozen for the retention of
pre-trained knowledge, and conduct both prompt-tuning and LoRA adapter (Yu et al., 2023) in each
decoder layer to perceive acoustic representations Xenc. More details and discussion are attached in
the Appendix A.3 and Appendix A.5.

Late Fusion in Auto-regressive Decoding: A step-wise late-fusion happens in the auto-regressive
decoding process that integrates decision-level information to predict the current token. Therefore,
we decompose the Xdec into fasr

t (X) according to step t, which is sequentially calculated by an
independent encoder-decoder ASR model. Moreover, fasr

t (X) can be viewed as logits that indi-
cates the probability distribution on the vocabulary space V . Although no feature-level alignment
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is needed, late fusion requires a consistent decoding space between the ASR model and LLMs, and
then performing weighting fusion to obtain t-step logits ft:

ft = wllmf llm
t (Ŷn) + wasrfasr

t (X), and f llm
t , fasr

t ∈ RV . (5)

Specifically, considering the pre-existence of fusion techniques between ASR and LM, we herein
elucidate the connection between our work and several existing approaches. Both mid fusion and
deep fusion (Gulcehre et al., 2015) involve integration at the level of hidden features. However,
mid fusion further capitalizes on the cross-attention mechanism of the LLM decoder. Late fusion
and shallow fusion (Kannan et al., 2018) exhibit similarities, yet LLM in late fusion scheme can
uniquely leverage the GER to independently predict transcriptions without the assistant of ASR
model. Additionally, unlike cold fusion (Sriram et al., 2017), late fusion avoids the subsequent
training process after fusing the information in auto-regressive decoding.

Considering late fusion fuses information in the decision-level stage, it maximally mitigates the
emergence of modality laziness problems. The upcoming two chapters will be dedicated to the
exploration of two key challenges in late fusion: (i) how to calibrate the token-level logits ft, and
(ii) how to determine the fusion weights wllm and wasr.

3.2 CALIBRATION

The significance of the calibration in late fusion arises from the over-confidence phenomenon (Bai
et al., 2021) in neural networks, which indicates the confidence score of models is usually higher
than their accuracy. In the ASR task, the training process utilizes the Teacher-forcing technique
that the Y<t in E.q.( 2) are drawn from the ground-truth sequence. However, the trained model
has to rely on its own prediction during inference as ground truth is not available. This mismatch
leads to exposure bias that exacerbates the over-confidence when calculating the probability of the
current token Pyt

during auto-regressive decoding. Furthermore, prior study (Mukhoti et al., 2020)
demonstrates that over-confidence can seriously hurt the ensemble performance when integrating
the logits of classification models. To alleviate this issue, we adopt a temperature scaling approach
introduced in (Kumar et al., 2022). Specifically, we establish two temperatures τ to match up the
confidences of models with their average accuracies on a small validation set:

Conf(f, τ) =
1

ndec

ndec∑
i=1

max softmax(
fi
τ
) (6)

where ndec denotes all decoding steps accumulated from the samples in the validation set. When
τ → 0 we obtain a uniform distribution, and when τ → ∞ we obtain a Dirac distribution on the
most likely output. In practice, we determine the τ1 for LLMs and τ2 for ASR using a binary search
algorithm based on token error rate (TER):

Conf llm(f llm, τ1) ≈ 1− TERllm(f llm), Confasr(f
asr, τ2) ≈ 1− TERasr(f

asr) (7)
There are several alternative approaches for TER calculation, as the divergence between ASR and
LLMs inevitably leads to different history sequences Y<t. To unify it, we update the Y<t using
greedy strategy based on the calibrated probability ft for token yt, which is written as:

ft = wllm softmax(
f llm
t

τ1
) + wasr softmax(

fasr
t

τ2
) (8)

3.3 UNCERTAINTY-AWARE DYNAMIC FUSION

An intuitive method to measure wllm and wasr is to estimate two constants according to WER per-
formance on the validation set. However, such a static fusion strategy leads to a higher upper bound
of generalization error compared with dynamic fusion, which has been theoretically proven using
Rademacher complexity (Bartlett & Mendelson, 2002) in multi-modal classification (Zhang et al.,
2023c). More importantly, Zhang et al. (2023c) theoretically identifies the connection between dy-
namic multimodal fusion and uncertainty estimation. This connection is relevant to our motivation:
we focus on fusing acoustic information to tackle the data uncertainty in the H2T learning of LLMs.
Typically, the uncertainty of a yt by LLMs is given by the entropy of the predictive posterior:

U llm
t = −P (yt) · logP (yt), where P (yt) = softmax(

f llm
t

τ1
) (9)
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A large U llm
t means a large uncertainty when LLMs predict the current token, which requires more

acoustic compensation from fasr
t . Since late fusion incorporates only two modalities, and consid-

ering the predominant role of LLMs within them, we set the wllm
t as 1 and dynamically modulate

wasr
t in terms of U llm

t . Therefore, the uncertainty-aware dynamic fusion in auto-regressive decoding
can be written as:

P (YT ) =

T∏
t=0

softmax(softmax(
f llm
t

τ1
) + (sigmoid(U llm

t )− β) softmax(
fasr
t

τ2
)) (10)

where β is a hyper-parameter with a default value of 0.5. From E.q. 10 we observe that if the LLM is
extremely confident after calibration (U llm

t → 0+), then the final decision could completely rely on
its own decision (sigmoid(U llm

t )− 0.5 → 0+). Otherwise, the weight of the ASR model increases
with the increase of U llm

t .

4 EXPERIMENT

4.1 DATASET

HyPoradise1 (Chen et al., 2023b) is a generative error correction benchmark for LLM-enhanced
ASR task, which contains more than 316K hypotheses-transcription pairs collected from mainstream
ASR corpus. Specifically, each utterance is equipped with at least 5 hypotheses that are transcribed
by a Whisper-large-v2 model with beam search decoding. In this work, we employ WSJ and ATIS
as clean condition and CHiME-4 as noisy condition from HyPoradise, and more statistic details
are in Appendix A.1 and Table 4. In this paper, we select the WSJ (Paul & Baker, 1992; Garofalo
et al., 2007), ATIS (Hemphill et al., 1990), CHiME (Vincent et al., 2016), and LRS3 (Afouras et al.,
2018b) datasets to evaluation the proposed methods. More details can be found in Appendix A.2.

4.2 SETUP

H2T Learning. We employ LLaMA-7B2 from Huggingface as the foundation model for H2T learn-
ing. A low-rank adapter is inserted into each layer of LLaMA with the rank of 8. We use a uniform
prompt template to transform the N-best list into inputs suitable for LLMs. More training details
and hyper-parameters can be found in Appendix A.1. Additionally, we employ the GER method as
a baseline and report the results in the next section.

Early and Mid Fusion baselines. Xtok is extracted from raw speech signal by Wav2vec2-large and
HuBERT pre-trained models. They have both been trained by CTC loss on the LibriSpeech dataset.
Since the dimension of Xtok is 1024, we stack 4 Xtok to align with the dimension of LLaMA’s word
embedding and reduce the length of Xtok. Xenc is extracted by Whisper encoder.

Uncertainty Aware Dynamic Fusion (UADF). We employ a Whisper-tiny model to provide Xdec

for late fusion. Since it can independently calculate WER, we term it as ASR-only baseline in
the experiments. To align the decoding space with LLMs, we fix the encoder and finetune the
decoder using LLaMA’s word embeddings, Tokenizer, and special tokens. We randomly select a
small validation set with 200 training examples from the training set to determine τ1 and τ2 using
binary search, as well as selecting the best model. With the same validation set, we also utilize
the grid search to find out the best-fixed weight for LLMs and ASR models and perform static late
fusion as our baseline. Additionally, the β in E.q. 10 is set as default 0.5 for both ATIS and WSJ.

5 RESULT AND ANALYSIS

In this section, we conduct experiments and answer the following questions: (i) What is the perfor-
mance of different fusion strategies when integrating acoustic information into LLMs, (ii) Does the
proposed UADF method surpass its counterparts (static fusion) using late fusion, and (iii) How does
the generalization ability of UADF, and can it be seamlessly applied to other ASR-related tasks?

1https://huggingface.co/datasets/PeacefulData/HyPoradise-v0
2https://huggingface.co/decapoda-research/llama-7b-hf
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Table 1: WER (%) and WERR results of early, mid, and late fusion on ATIS and WSJ dataset.
“W2v.”, “Hub.” and “Whis.” indicate Wav2vec2-large, HuBERT and Whisper model, respectively.
“Conc.”, “Atten.”, and “Stat.” indicate concatenation, cross-attention and static fusion strategies
introduced in 3. “GER” denotes the H2T results of LLM that is consistent across the three fusion
methods.

Acoustic Info. Fusion GER ASR-only WER ↓ WERR ↑
where how ATIS WSJ ATIS WSJ ATIS WSJ ATIS WSJ

Xtok by W2v. early Conc. 1.61 2.83 - - 2.16 3.21 -34.2% -13.4%
by Hub. - - 2.02 3.11 -25.5% -9.9%

Xenc by Whis. mid Atten. 1.61 2.83 - - 1.75 2.59 -8.7% 8.5%

Xdec by ASR late Stat. 1.61 2.83 4.67 9.21 1.36 2.55 15.5% 9.9%
UADF 1.24 2.47 23.0% 12.7%

Table 2: Ablation study of WER (%) and WERR results on the ATIS dataset based on UADF using
late fusion. The difference between the system ID-1 to ID-3 is the different performance of ASR-
only model (Xdec), and the system ID-4 to ID-5 varies based on the different combination of “Cali.”
and “Dyn.”. “Static” does not utilize either “Cali.” and “Dyn.”.

System GER ASR-only ID-C Static UADF
ID (Xdec) WER WERR WER WERR Cali. Dyn. WER WERR

1
1.61

12.16 2.41 -49.7% 1.51 6.2% ✓ ✓ 1.52 5.6%
2 8.22 1.96 -21.7% 1.45 9.9% ✓ ✓ 1.39 13.7%
3 4.67 1.57 2.5% 1.36 15.5% ✓ ✓ 1.24 23.0%
4 1.61 4.67 1.57 2.5% 1.36 15.5% ✓ ✗ 1.33 17.4%
5 ✗ ✓ 1.39 13.7%

We employ the word error rate (WER) and word error rate reduction (WERR) to evaluate the per-
formance. A lower WER parameter signifies better performance, while a higher WERR indicates a
greater improvement relative to GER.

5.1 EFFECT OF FUSION STRATEGIES

We first report the WER performance on ATIS and WSJ for different fusion strategies in Table 1.
ASR-only is calculated by Xdec and thus only appears in late fusion. From Table 1, we observe that:
(i) Early fusion performs slightly below the GER baseline in terms of WER, regardless of using
Wav2vec2-large or HuBERT as a tokenizer. The underlying reason is intuitive: when we concatenate
Xtoken and Ŷn, the language model has no knowledge of Xtoken but is well-acquainted with the
Ŷn, leading to the occurrence of modal laziness. In other words, the acoustic information Xtoken

would be regarded as a form of linguistic “noise” if we treat the concatenated Xtoken and the n-best
list as prefix tokens. (ii) Mid fusion on the WSJ dataset shows better performance than WSJ due to
the larger data amount. It indicates that mid fusion requires more training examples to overcome
the modal disparities in cross-attention. (iii) Late fusion achieves considerable performance gains
compared with GER baseline, where UADF respectively reduces the relative WER by 23.0% and
12.7% on ATIS and WSJ datasets. Surprisingly, despite the ordinary performance of the ASR model,
a static weight sum approach yields better WER results than GER. Additionally, we observe that
when the ratios of wllm and wasr fall within a certain range (e.g., wllm / wasr = 4 ± 2 on ATIS),
the combination produces highly similar results.

To visualize the effect of UADF, we conducted a case study to show how the UADF performs late
fusion to correct LLM’s token-level decision. Figure 2 is a real case drawing from the decoding
process of ATIS test set. In this case, LLM predicts the current token as ID-5521 (“how”) but with
high uncertainty (U llm

t = 9.91). According to E.q. 10, UADF allocates a high weight (≈ 0.5) to
the ASR model, resulting in a token (“all”) with ID-484 as the final decision that is consistent with
ground truth token.

7



Published as a conference paper at ICLR 2024

Table 3: WER (%) and WERR results of Noise robust ASR results on Chime-4 dataset. The best
results are in bold.

Noise ASR-only GER Static UADF
Type WER WERR WER WERR

bus 12.45 8.67 8.05 7.2% 7.98 8.0%
caf 11.48 6.96 6.37 8.5% 6.22 10.6%
ped 11.36 5.49 4.96 9.8% 4.82 12.2%
str 12.28 5.86 5.28 9.9% 5.28 9.9%

Avg. 11.89 6.75 6.17 8.6% 6.08 9.9%

5.2 EFFECT OF UADF

We then conduct an ablation study to analyze the effectiveness of UADF in late fusion. There are
three primary factors that influence the performance of UADF, as shown in Table 2, which are: the
performance of ASR-only model (Xdec), the calibration operation (“Cali.”), and the uncertainty-
based dynamic fusion (“Dyn.”). “ID-C” is a late fusion-based baseline that only utilizes the same
calibration method with two same constants wllm and wasr for decision in classification (Kumar
et al., 2022). “Static” is to estimate the value of wllm and wasr according to WER on the validation
set without calibration.

In Table 2, we observe that: (i) As the ASR-only models (ID-1 to ID-3) exhibit progressively better
performance, the late fusion results become better in terms of WER. It is noteworthy that even a
modest-performing ASR-only model (12.16%) with UADF can yield substantial performance gains
(1.61% → 1.52%) compared with GER. (ii) From the performance of “ID-C”, it is evident that
performing calibration in isolation without weight searching does not enhance GER performance.
This is primarily due to the complexity of auto-regressive decoding. However, calibration plays
a crucial role in UADF, since it can mitigate the issue of overconfidence in our models, thereby
encouraging diversity in fusion decisions. (iii) UADF can achieve better WER performance than
static fusion, as it adaptively assimilates the decision of Xdec in terms of uncertainty. Furthermore,
compared with static fusion, UADF avoids searching the fusion weight on a validation set.

1.0

0

0.8

0.2

0.4

0.6

Prob.

Token ID

UADF
ASR

5521484

LLM

11906

('all')

('how')

('all') Decsion

Figure 2: Case study on a high uncertainty
(U llm

t is 9.91) example. Top-2 candidates
from LLM are displayed while the “how”
is a wrong prediction. UADF corrects the
results to “all” according to the decision of
the ASR model.

To support viewpoint (ii) and illustrate the importance
of calibration in UADF, we visualize the accuracy, con-
fidence, and token distribution on the ATIS test set in
Figure 3, where the histogram denotes the token dis-
tribution according to LLM’s confidence, and the “×”
denotes the actual average accuracy based on each con-
fidence interval. In the left part, LLM shows the ob-
vious over-confident phenomenon: more than 98.9%
of token predictions fall within the confidence interval
of 0.9 to 1.0, and their average confidence is 99.9%,
which is higher than the true accuracy of 96.5%. In
other intervals, the confidence is also higher than the
actual accuracy, since all “×” are below the dashed
line. After calibration, the overconfidence issue is sig-
nificantly alleviated, as shown in the right part of Fig-
ure 3. 93.7% tokens fall within the confidence interval
of 0.9 to 1.0, while the average confidence has dropped
to 97.03%, which is similar to the accuracy of 96.5%.
Additionally, calibration can affect subsequent uncer-
tainty estimation, enabling the identification of token
decisions where the LLM performs poorly (e.g., the
case in Figure 2), and facilitating the dynamic incor-
poration of decision information from the ASR model.
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Figure 3: The visualization of before (left) and after (right) calibration for LLM in UADF. The
dashed line represents the ideal relationship where confidence and accuracy are perfectly matched.
The blue bar indicates the token distribution under different LLM’s confidence intervals, and “×”
indicates the actual average accuracy based on each confidence interval.

5.3 GENERALIZATION OF UADF

We first consider examining the UADF’s generalization on noise-robust ASR task, as background
noise can increase the variability among hypotheses in the N-best list, thus leading to higher uncer-
tainty for LLMs when predicting transcription. The results of UADF on the CHiME-4 dataset are
reported in Table 3 in terms of noise categories. We observe that the performance of ASR-only GER
slightly drops due to noise interference compared with ATIS and WSJ. However, UADF approach
can yield significant performance gains across different noise environments. Furthermore, as same
in clean conditions, UADF outperforms the static baseline due to the sigmoid function, which can
normalize the high uncertainty of individual tokens, mitigating over-reliance on the ASR model.

We then validate the effect of UADF in the audio-visual speech recognition (AVSR) task, where
noise-invariant visual modality is utilized to provide compensation information for speech recog-
nition. It is worth noting that the modality laziness phenomenon is particularly in AVSR because
the system tends to overly rely on the audio modality due to its higher recognition ease. More in-
troduction and discussion about AVSR are attached in Appendix A.4. With the proposed UADF,
we perform late fusion on AV-HuBERT baseline (Shi et al., 2022b) and a pre-trained lip-reading
model (Shi et al., 2022a). Besides static fusion, we employ MSRL (Chen et al., 2023c) as a baseline,
which integrates two models in a reinforcement learning-based manner. In Table 6, we observe that
multimodal AV-HuBERT achieves worse performance than unimodal V-HuBERT due to modality
laziness. Accordingly, all three methods can effectively improve noise-robustness by reusing the in-
dependent visual modality. Furthermore, UADF surpasses static fusion in all conditions in terms of
WER and achieves comparable performance with MSRL. Notably, MSRL requires an extra training
process for reinforcement learning while our UADF is training-free.

6 CONCLUSION

In this paper, we ask a basic yet well-discovered question: how can audio information be integrated
into Large Language Models (LLMs) for GER-based speech recognition tasks? After exploring
multiple fusion strategies at different levels, we present a simple yet effective solution UADF that
performs late fusion in the auto-regressive decoding process. Benefiting from uncertainty estimation
of LLM outputs, UADF dynamically assimilates information from the audio modality, leading to
more reasonable token-level decisions. Experimental evidence demonstrates that our method can
avoid modality laziness, yielding better WER performance gain to the GER compared with other
fusion strategies. Additionally, UADF seamlessly adapts to noise-robust ASR as well as AVSR.
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A APPENDIX

A.1 HYPORADISE AND H2T LEARNING

Hyporadise dataset provides more than 316k hypotheses-transcription pairs, and Table 4 shows the
statistic information of WSJ and ATIS we used in this paper. Each utterance is equipped with at
least 5 hypotheses that are transcribed by a Whisper-large-v23 model with beam search decoding.

Table 4: Statistics in terms of the number of hypotheses-transcription pairs and average utterance
length on WSJ and ATIS.

Domain Training Set # Pairs Length Test Set # Pairs LengthSource Category

WSJ Business news train-si284 37,514 17.5 dev93 503 16.7
eval92 333 17.3

ATIS Airline info. train 3,964 12.4 test 809 11.3

CHiME4 Noise train 8,738 17.0 test-real 1,320 16.4

H2T learning indicates learning the mapping relationship from the N-best hypotheses list to tran-
scription, which requires the linguistic information of LLMs. The motivation behind this method is
to harness the token-level information present within the N-best list, while mainstream ASR meth-
ods usually only output the first hypothesis and discard others. Take a Confermer-based ASR model
trained on LibriSpeech4 (WER 1.8) as an example, the second hypothesis has a 14% probability of
having a lower WER than the first hypothesis. Furthermore, given a wrong token in the first utter-
ance, there is a 34% probability of finding the correct token in the second utterance. Furthermore,
if we have an oracle re-ranking method to choose the best hypothesis, the WER would be 1.0. If we
have an oracle compositional method that uses token-level information to predict transcription, the
WER would be 0.6. Both 1.0 and 0.6 surpasses state-of-the-art performance by a large margin. To
perform H2T learning, we utilize an instruction-following prompt template shown as follows:

“Below is a best-hypotheses that is transcribed from an automatic speech recognition system.
Write a response to predict the true transcription using the tokens from other-hypotheses.### best-
hypothesis:{1st utterance}### other-hypothesis:{2nd ∼ 5th utterances} ###Response:”

We employ a LLaMA as a foundation model from huggingface, the learning rate is set as 1e−4, and
the batch size is 128. For the low-rank adapter, we implement by peft 5, where the rank configuration
of rank r is set as 8. For early fusion, Wav2vec2-large6 and HuBERT7 pre-trained models are used
to extract Xtok from raw speech signals, which have been trained by CTC loss on the LibriSpeech
dataset.

To show the effect of H2T learning, we report our reproduced GER results with LLaMA-7b in
Table 5. 1-best denotes the WER of the first hypothesis with highest probability in the given N-best
list. Notably, this probability is provided by the ASR beam search decoding. The onb: WER of the
“best hypothesis” in N-best hypotheses list, which can be viewed as the upper bound performance
of any reranking based methods. The compositional oracle method ocp is the achievable WER using
“all tokens” in N-best hypotheses list. We also attach the results of a rerank baseline “LMrank” and
proposed UADF for comparison.

A.2 INTRODUCTION OF DATASETS

WSJ (Wall Street Journal) (Paul & Baker, 1992; Garofalo et al., 2007) is a widely-used ASR corpus
that focuses on the domains of business news and financial data. The training set includes 37514

3https://huggingface.co/openai/whisper-large-v2
4https://www.openslr.org/12
5https://github.com/huggingface/peft
6https://huggingface.co/facebook/wav2vec2-large
7https://huggingface.co/facebook/hubert-large-ll60k
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Table 5: WER (%) results of GER and UADF with more baselines. “*” denoted the WER is repro-
duced in this paper.

Dataset 1-best LMrank GER UADF Oracle
onb ocp

ATIS 8.9 6.9 1.61∗ 1.29∗ 5.2 1.1
WSJ 4.5 4.3 2.83∗ 2.47∗ 4.1 1.2

CHiME 11.1 11.0 6.75∗ 6.08∗ 9.1 2.8

utterances from 101 speakers in a clean environment. The test set consists of dev93 (with 503
utterances) and eval92 (with 333 utterances) and we report the average WER results on them.

ATIS (Airline Travel Information System) (Hemphill et al., 1990) is an ASR dataset that concen-
trates on the domain of air travel information, such as flight times, prices, and availability. It contains
a training set with 3964 utterances and a test set with 809 utterances that are collected from more
than 500 different speakers.

ChiME-4 (Vincent et al., 2016) is a dataset that is widely used in noise-robust ASR task. It includes
real and simulated noisy recordings in four noisy environments, i.e., bus, cafe, pedestrian area, and
street junction. This work employ the test-real as test set that is recorded in real noisy conditions.

LRS3 (Lip Reading Sentences) (Afouras et al., 2018b) is the largest public multimodal dataset for
audio-visual speech recognition (AVSR) tasks. It contains more than 400 hours of speech data with
paired face images of speakers. We utilize LRS3 to demonstrate the generalization ability of UADF
on AVSR tasks.

A.3 DETAILS OF MID FUSION

To build cross-modal fusion during the intermediate transformer layers, we introduce a neural
adapter based mid-fusion, which inspired by multi-modal attention merging (Sung et al., 2023;
Hung et al., 2023; Radhakrishnan et al., 2023a). To fine-tune fused models, we integrate two resid-
ual adapter modules (Houlsby et al., 2019; Radhakrishnan et al., 2023b; Chen et al., 2023e) (Ai

L

and Ai
W ) subsequent to the self-attention modules (SAi

F ) of the stabilized LLaMA model within
each layer. The adapter Ai

L is the module in layer i assigned to refine the LLaMA model, employ-
ing a scaled dot product attention mechanism. Conversely, the adapter Ai

W is used in layer i for
the amalgamation of pre-trained Whisper features with the LLaMA model, adhering to a wise-layer
fused decoder approach. We employ the Adam optimizer and conduct experiments with learning
rates of 1e−2, 1e−3, and 5e−4, selecting the best development losses over 25 epochs for evaluation.
We select a batch size of 32 and apply a weight decay of 1e−2. For the residual adapter’s setup, we
fix bottleneck dimensions of 32 after ablation studies. A similar design in vision and acoustic-based
mid-fusion can also be referred to (Lin et al., 2023), where this baseline can be considered as its
language and acoustic-based variant.

A.4 DISCUSSION OF AUDIO-VISUAL SPEECH RECOGNITION

Audio-visual speech recognition (AVSR) represents a cutting-edge interdisciplinary task that inte-
grates principles from both auditory and visual processing domains to enhance speech recognition
capabilities. This task involves the synchronous analysis of audio signals and visual cues, particu-
larly lip movements and facial expressions, to accurately decipher spoken language. AVSR systems
leverage the complementary nature of audio and visual information to improve recognition accuracy,
especially in noisy environments where traditional audio-only systems might struggle. This tech-
nology not only holds promise for advancing human-computer interaction but also offers significant
improvements in accessibility for individuals with hearing impairments. Mainstream AVSR meth-
ods focus on learning modality-invariant representations by integrating audio and visual modalities
into a common subspace. Typically, they employ a separated encoder for speech and image input,
and then concatenate the hidden representation after alignment (Afouras et al., 2018a; Chen et al.,
2023f). This learning pattern can easily lead to modal laziness because the audio modality is much
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Table 6: WER (%) and WERR results of AVSR task on the LRS-3 by late fusion. “Babble” is the
noise drawn from (Snyder et al., 2015). “*” indicates the need for an additional training procedure.

SNR AV-HuBERT V-HuBERT Static w MSRL∗ UADF
(Babble) audio-visual visual-only WER WERR WER WERR WER WERR

-10 30.3

+ 26.9

23.4 22.8% 22.3 26.4% 21.8 28.1%
-5 13.5 11.4 15.6% 11.3 16.3% 10.7 20.7%
0 4.9 4.8 2.0% 4.5 8.2% 4.6 6.1%
5 2.5 2.8 -12.0% 2.3 8.0% 2.6 -4.0%

Avg. 12.8 10.6 17.2% 10.1 21.1% 9.9 22.7%
Clean 1.45 26.9 1.42 2.1% 1.33 8.3% 1.36 6.2%

easier to recognize than visual information, causing neural networks to gradually ignore the role of
the visual modality.
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Figure 4: Modality laziness reported in (Chen
et al., 2023c), where SNR level denotes the qual-
ity of speech.

Recently, Shi et al. (2022a) proposes a self-
supervised learning approach to learn bet-
ter modality-invariant representation for AVSR
task. With large amount of pre-training data,
the AV-HuBERT achieves remarkable perfor-
mance on LRS-3 dataset. However, based on
AV-HuBERT, Chen et al. (2023c) still report
the modality laziness problem for modality-
invariant representation as shown in Figure 4:
the modality-invariant representation (green
line) exhibits a susceptibility to noise interfer-
ence. More importantly, when SNR is smaller
than a threshold α, the multimodal representa-
tion perform worse than visual-only represen-
tation. To address it, Chen et al. (2023c) pro-
poses a reinforcement learning based-method
to reuse the visual modality representation in
auto-regressive decoding process. It construct a
trainable policy network to predict the final to-
ken probability distribution. We add MSRL for
comparison results in Table 6. For static fusion baseline, the w of AV-HuBERT is {0.5, 0.65, 0.7,
0.75, 0.85} for SNR {-10, -5, 0, 5, clean}, and the wight of AV-HuBERT is 1 − w. For UADF
implementation, we observe though WER is high, the AV-HuBERT still exhibit over-confidence
tendency that is higher than actual accuracy. We replace LLM using AV-HuBERT and estimate the
uncertainty after calibration, and the β is set as {0, 0.4, 0.5, 0.5, 0.5} respectively.

A.5 DISCUSSION OF N-BEST LIST

For a fair comparison, we involve the N-best list in early fusion and mid fusion. However, this
operation may introduce a potential issue in early fusion, where the LLM learns that it can predict
the answer solely based on the n-best list, thus overlooking the acoustic tokens Xtok. To this end,
we try to remove the n-best list and only employ Xtok as prefix tokens in decoding. However, we
found that the LLM is unable to identify Xtok through low-rank tuning, and this might be attributed
to the limited amount of training data. We leave it as our future work.
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