
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Understanding Effectiveness of Learning Behavioral
Metrics in Deep Reinforcement Learning

Anonymous authors
Paper under double-blind review

Keywords: behavioral metrics, bisimulation metrics, representation learning, evaluation

Summary
A key approach to state abstraction is approximating behavioral metrics (notably, bisimula-

tion metrics) in the observation space, and embed these learned distances in the representation
space. While promising for robustness to task-irrelevant noise shown in prior work, accurately
estimating these metrics remains challenging, requiring various design choices that create gaps
between theory and practice. Prior evaluations focus mainly on final returns, leaving the quality
of learned metrics and the source of performance gains unclear. To systematically assess how
metric learning works in deep RL, we evaluate five recent approaches. We unify them under
isometric embedding, identify key design choices, and benchmark them with baselines across
20 state-based and 14 pixel-based tasks, spanning 250+ configurations with diverse noise set-
tings. Beyond final returns, we introduce the denoising factor to quantify the encoder’s ability
to filter distractions. To further isolate the effect of metric learning, we propose an isolated
metric estimation setting, where the encoder is influenced solely by the metric loss. Our results
show that metric learning improves return and denoising only marginally, as its benefits fade
when key design choices, such as layer normalization and self-prediction loss, are incorpo-
rated into the baseline. We also find that commonly used benchmarks (e.g., grayscale videos,
varying state-based Gaussian noise dimensions) add little difficulty, while Gaussian noise with
random projection and pixel-based Gaussian noise remain challenging even for the best meth-
ods. Finally, we release an open-source, modular codebase to improve reproducibility and
support future research on metric learning in deep RL.

Contribution(s)
1. We analyze five metric learning approaches under the isometric embedding framework to

identify key design choices.
Context: Metric learning methods often diverge significantly between theory and imple-
mentation.

2. We introduce the denoising factor to quantify an encoder’s ability to filter distractions.
Context: Metric learning is often motivated by denoising ability but is rarely evaluated
directly, with prior work relying mainly on qualitative analysis (Zhang et al., 2020).

3. We benchmark five metric learning approaches across diverse distracting domains and find
that common benchmarks add little difficulty to clean tasks, while certain noise settings
remain challenging even for the best methods.
Context: Prior work primarily uses IID Gaussian noise with varied dimensions (Ni et al.,
2024) and grayscale video backgrounds (Zhang et al., 2020).

4. Through ablation studies, we identify layer normalization and self-prediction loss as key
design choices across all methods.
Context: Prior work in metric learning does not isolate the effect of self-prediction loss
and only shows the benefits of normalization in specific methods (Zang et al., 2022).

5. We show that the benefits of metric learning diminish in both return and denoising factor
when key design choices are incorporated into the baseline.
Context: Prior work does not report this limitation of metric learning.

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

Understanding Effectiveness of Learning Behavioral
Metrics in Deep Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

A key approach to state abstraction is approximating behavioral metrics (notably, bisim-1
ulation metrics) in the observation space, and embed these learned distances in the rep-2
resentation space. While promising for robustness to task-irrelevant noise shown in3
prior work, accurately estimating these metrics remains challenging, requiring various4
design choices that create gaps between theory and practice. Prior evaluations focus5
mainly on final returns, leaving the quality of learned metrics and the source of perfor-6
mance gains unclear. To systematically assess how metric learning works in deep RL,7
we evaluate five recent approaches. We unify them under isometric embedding, identify8
key design choices, and benchmark them with baselines across 20 state-based and 149
pixel-based tasks, spanning 250+ configurations with diverse noise settings. Beyond10
final returns, we introduce the denoising factor to quantify the encoder’s ability to fil-11
ter distractions. To further isolate the effect of metric learning, we propose an isolated12
metric estimation setting, where the encoder is influenced solely by the metric loss.13

Our results show that metric learning improves return and denoising only marginally,14
as its benefits fade when key design choices, such as layer normalization and self-15
prediction loss, are incorporated into the baseline. We also find that commonly used16
benchmarks (e.g., grayscale videos, varying state-based Gaussian noise dimensions)17
add little difficulty, while Gaussian noise with random projection and pixel-based Gaus-18
sian noise remain challenging even for the best methods. Finally, we release an open-19
source, modular codebase to improve reproducibility and support future research on20
metric learning in deep RL.121

1 Introduction22

Real-world environments often present high-dimensional, noisy observations, posing challenges for23
RL. For instance, in image-based settings, task-irrelevant variations in background, lighting, and24
viewpoint introduce distractions. Yet, despite this observational complexity, system dynamics are25
typically governed by a compact, task-relevant state. State abstraction (Li et al., 2006; Konidaris,26
2019) provides a framework for extracting such latent representations from raw observations, fil-27
tering out irrelevant information while preserving task-critical structure. A key principle of state28
abstraction is that behaviorally similar states should have similar representations. Traditionally, this29
is enforced through state aggregation (Singh et al., 1994; Givan et al., 2003), grouping states into30
discrete abstract classes based on equivalence relations. However, state aggregation lacks a measure31
of how different states are across classes and struggles with continuous representations, requiring32
infinitely many discrete classes.33

To address this, bisimulation metrics (Ferns et al., 2004; 2011) and their scalable variants (Castro,34
2020; Zhang et al., 2020) have been proposed to define meaningful distances between observations.35
These fall under the broader class of behavioral metrics (Castro et al., 2023), which quantify state36

1The artifact is available at https://anonymous.4open.science/r/understanding_metric-3C44

1

https://anonymous.4open.science/r/understanding_metric-3C44

Under review for RLC 2025, to be published in RLJ 2025

similarity based on differences in immediate rewards and transition probabilities. By learning a met-37
ric alongside deep RL, prior work (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021;38
Chen & Pan, 2022; Zang et al., 2022) has shown progress in tackling high-dimensional, noisy tasks.39

Nevertheless, the role of behavioral metric learning in deep RL (metric learning for short) remains40
unclear due to the lack of systematic evaluation. First, its effectiveness relies on accurately estimat-41
ing these metrics, which is challenging in complex tasks. However, prior work primarily measures42
performance through returns, without directly assessing the quality of the learned metrics. Second,43
metric learning is often combined with multiple losses (e.g., self-prediction (Zhang et al., 2020), in-44
verse dynamics (Kemertas & Aumentado-Armstrong, 2021)), as well as architectural choices (e.g.,45
normalization, ensembles (Zang et al., 2022)), making it difficult to isolate the contribution of metric46
learning to performance gains. Third, most studies evaluate only OOD generalization in environ-47
ments with grayscale natural videos as distractions (Zhang et al., 2020), conflating robustness with48
generalization. Lastly, prior evaluations (Tomar et al., 2021; Li et al., 2022) report inconsistent49
results for the same algorithms, raising concerns about reproducibility.50

In this paper, we provide a understanding of how metric learning works in deep RL through51
a systematic evaluation of five recent approaches alongside two baselines. First, we unify these52
metric learning objectives under a common framework using the notion of isometric embedding,53
identifying key design choices for our investigation. Next, to ensure a rigorous and comprehensive54
evaluation, we introduce diverse distraction benchmarks by varying difficulty levels, from Gaussian55
noise to colored natural videos, across both state-based and pixel-based domains, tested under both56
ID and OOD generalization. Then, we quantify the denoising capability – the encoder’s ability to57
filter out distractions. We introduce the denoising factor, which numerically measures how well the58
encoder distinguishes similar from dissimilar observations.2 Finally, we propose an isolated metric59
estimation setting to assess metric learning’s contribution to denoising, independent of other losses.60

Contributions. Our main contributions are as follows:61

1. Conceptual: We analyze five recent metric learning approaches using the isometric embedding62
framework to identify key design choices. In addition, we propose denoising factor to quantify63
an agent’s denoising capability in distracting tasks.64

2. Comprehensive benchmarking: We benchmark these five metric learning methods and base-65
lines on diverse distracting variants of the DeepMind Control (DMC) suite (Tassa et al., 2018).66
In state-based domains, across 20 DMC tasks with 10 IID Gaussian noise settings, SimSR (Zang67
et al., 2022), originally evaluated in pixel-based domains, significantly outperforms other meth-68
ods in both return and denoising factor. In pixel-based domains, across 14 DMC tasks with 6 im-69
age background settings, RAP (Chen & Pan, 2022) performs generally best. SAC (Haarnoja et al.,70
2018) and DeepMDP (Gelada et al., 2019) remain competitive baselines but are often overlooked.71

3. Reevaluating benchmark difficulty: Surprisingly, common distracting benchmarks – varying72
Gaussian noise dimensions in state-based domains and grayscale videos in pixel-based domains73
– add little difficulty. However, Gaussian noise with random projection in state-based domains74
and Gaussian noise in pixel-based domains remain challenging, even for the best methods.75

4. Identifying key design choices: We find self-prediction loss is crucial to SimSR’s success.76
Notably, (layer) normalization, used in SimSR, consistently improves return and denoising77
across all metric learning methods and baselines.78

5. Marginal impact of metric learning (a bitter lesson): The benefits of metric learning diminish79
when key design choices are incorporated into the baseline.80

6. Open-source codebase: We open-source a modular and efficient codebase to improve81
reproducibility in the RL community.82

2Prior work (Zhang et al., 2020) qualitatively analyzes denoising by visualizing representations with t-SNE.

2

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

2 Background83

2.1 Problem Formulation84

We consider a setting where observations contain distractions and focus on a special class of Markov85
decision processes – exogenous block MDPs (EX-BMDPs) (Efroni et al., 2021; Islam et al., 2022).86
Before introducing EX-BMDPs, we first define block MDPs as a prerequisite.87

Block MDPs (Du et al., 2019). A block MDP (BMDP) is a tuple ⟨X ,Z,A, q, p, R, γ⟩, where X88
is the observation space, Z is the latent state space, A is the action space, p : Z × A → ∆(Z) is89
latent transition function, R : Z ×A → R is (latent) reward function, and γ ∈ [0, 1) is the discount90
factor. The emission function q : Z → ∆(X) generates observation x ∼ q(· | z) from latent91
state z. Crucially, BMDP assumes the block structure: ∀ z1, z2 ∈ Z, z1 ̸= z2 =⇒ supp(q(· |92
z1)) ∩ supp(q(· | z2)) = ∅. This ensures that each observation uniquely determines its latent state,93
enabling the existence of the oracle encoder q−1 : X → Z such that q−1(x) = z whenever94
x ∼ q(· | z). The goal of RL in BMDP is to find a policy π : X → ∆(A) that maximizes the95
rewards: maxπ Eπ

[∑∞
t=0 γ

tR(q−1(xt), at)
]
. The policy only receives the observation x without96

access to the latent state z, the latent space Z , or the oracle encoder q−1. While the class of BMDPs97
is equivalent to the class of MDPs (Du et al., 2019), they capture the underlying state from a high-98
dimensional observation. However, BMDPs do not differentiate between task-relevant (endogenous)99
state and task-irrelevant (exogenous) noise in the latent space.100

Exogenous BMDPs (Efroni et al., 2021). An EX-BMDP extends BMDP by factorizing a latent101
state into z = (s, ξ), where s ∈ S is the task-relevant state and ξ ∈ Ξ is the task-irrelevant noise,102
representing distraction. The latent state transition p(s′, ξ′ | s, ξ, a) factorizes as p(s′ | s, a)p(ξ′ | ξ),103
where the noise ξ evolves independently and does not affect the reward function. To simplify nota-104
tion, we denote the reward function as as R(s, a). EX-BMDPs guarantee the existence of a denoising105
map D : Z → S extracts the task-relevant state s from latent state z ∈ Z . Combined with the oracle106
encoder in BMDPs, this enables recovery of the task-relevant state directly from observations: s =107
D(q−1(x)). We define this composite function ϕ∗ = D ◦ q−1 as the oracle encoder of EX-BMDP.108

2.2 Representation Learning in RL109

In actor-critic methods (Konda & Tsitsiklis, 1999), representation learning is commonly used to110
handle complex MDPs such as EX-BMDPs. The idea is to learn an encoder that maps a raw obser-111
vation to a representation, which is then shared by both actor and critic. Formally, an actor-critic112
algorithm employs an encoder ϕ : X → Ψ, a (latent) actor πθ : Ψ → ∆(A), and a (latent) critic113
Qω : Ψ×A → R, where Ψ is the representation space. In this work, we focus on end-to-end actor-114
critic methods based on the soft actor-critic (SAC) algorithm (Haarnoja et al., 2018). These methods115
jointly optimize the encoder and actor-critic using the RL loss in SAC, denoted as JSAC(ϕ, θ, ω).116

Learning state representations solely from reward signals (i.e., RL loss) is challenging in complex117
tasks. To address this, various state abstraction frameworks and representation objectives have118
been proposed (see Ni et al. (2024) for a literature review). Among these, model-irrelevance119
abstraction (Li et al., 2006) defines two conditions for an effective encoder using bisimulation120
relation (Givan et al., 2003). The first condition, known as reward prediction (RP)3, requires that121
the representation preserves reward information. The second condition, known as self-prediction122
(ZP)4 (Ni et al., 2024), requires that the representation preserves latent dynamics information.123
Model-irrelevance abstraction thus defines compact yet informative encoders that retain sufficient124
information for optimal decision-making (Subramanian et al., 2022). By definition, the RP and ZP125
conditions hold when ϕ = ϕ∗ and Ψ = S.5 This implies that the oracle encoder ϕ∗ serves as a126
model-irrelevance abstraction.127

3Formally, in an EX-BMDP, RP condition is ∃Rκ : Ψ×A → R, s.t.R(ϕ∗(x), a) = Rκ(ϕ(x), a), ∀x, a.
4Formally, in an EX-BMDP, ZP condition is ∃Pν : Ψ×A → ∆(Ψ), s.t.P (ψ′ | x, a) = Pν(ψ′ | ϕ(x), a), ∀x, a, ψ′.
5In this case, Rκ(s, a) = R(s, a) and Pν(s′ | s, a) = p(s′ | s, a).

3

Under review for RLC 2025, to be published in RLJ 2025

To learn a model-irrelevance abstraction, DeepMDP (Gelada et al., 2019) introduces RP and ZP128
losses to approximate the RP and ZP conditions, respectively. Given a data tuple (x, a, r, x′), these129
losses jointly optimizes the encoder ϕ, the reward model Rκ, and the latent transition model Pν :130

JRP(ϕ, κ) = (Rκ(ϕ(x), a)− r)2, JZP(ϕ, ν) = − logPν(ϕ̄(x
′) | ϕ(x), a), (1)

where ϕ̄ detaches the encoder from gradient back-propagation. The overall objective JDeepMDP(ϕ)131
for the encoder in DeepMDP combines SAC loss with RP and ZP losses (Eq. 1).132

3 Conceptual Analysis on Behavioral Metrics Learning in RL133

This section establishes a conceptual framework linking behavioral metrics to representations in134
deep RL (Sec. 3.1), and then summarizes how related work instantiates it (Sec. 3.2).135

3.1 Isometric Embedding: Between Behavioral Metrics and Representation136

We aim to find an encoder that maps noisy observations into a structured representation space,137
where distances reflect differences in rewards and transition dynamics smoothly. This representa-138
tion should facilitate RL by ensuring that task-relevant variations are captured. A natural way to139
formalize this goal is through the concept of an isometric embedding (isometry)6:140

Definition 1 (Isometric Embedding) An encoder ϕ : X → Ψ is an isometric embedding if the141
distances in the original space (X , dX) are preserved in the representation space (Ψ, dΨ). Formally,142

dX (x1, x2) = dΨ(ϕ(x1), ϕ(x2)), ∀x1, x2 ∈ X , (2)

where dX is the target metric (“desired” metric) and dΨ is the representational metric. See Ap-143
pendix Sec. B.1 for background on metric definitions.144

3.2 Design Choices in Metric Learning145

Table 1: Summary of key implementation choices for the benchmarked methods.
Method dR dΨ dT Other Losses Transition Model Metric Loss Normalization Target Trick

SAC — — — — — — — —
DeepMDP — — — RP + ZP Probabilistic — — —
DBC Huber Huber W2 closed-form RP + ZP Probabilistic MSE — —
RDBC Huber Huber W2 closed-form RP + ZP Deterministic MSE Max norm —
MICo Abs. MICo Angular Sample-based — — Huber — ✓
SimSR Abs. Cosine Sample-based ZP Probabilistic Ensemble Huber L2 norm —
RAP RAP MICo Angular W2 closed-form RP + ZP Probabilistic Huber — —

Def. 1 provides a general conceptual framework instantiated by several works in deep RL through146
distinct design choices. Rather than delving into theoretical implications, we focus on practical147
implementations reflected in their publicly available codebases, summarized in Table 1.148

Choices of Target Metric dX . The target metric, which captures differences in rewards and tran-149
sition dynamics, is typically formulated as (Castro et al., 2023): for x1, x2 ∈ X ,150

dX (x1, x2) = cRdR(r1, r2) + cT dT (dX)(P (· | x1), P (· | x2)), (3)

which is inspired by bisimulation metrics (Ferns et al., 2004; 2011).7151

• dR, representing immediate state similarity, measures the closeness of sampled immediate rewards152
r1, r2 ∈ R based on x1, x2. Common choices include absolute difference dR(r1, r2) = |r1 − r2|153
(“Abs.” in Table 1) (Zang et al., 2022; Castro et al., 2021), “Huber” distance8 dR(r1, r2) =154
1
2 (r1 − r2)

2 1{|r1−r2|<1} +
(
|r1 − r2| − 1

2

)
1{|r1−r2|≥1} (Huber in Table 1), or other specific155

forms (Chen & Pan, 2022).156
6https://en.wikipedia.org/wiki/Isometry
7See Appendix Sec. B.2 for the full formal definition and discussion of the variants of bisimulation metrics.
8https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

4

https://en.wikipedia.org/wiki/Isometry
https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

• dT , a probabilistic measure of long-term state similarity, typically avoids expensive 1-Wasserstein157
computations in bisimulation metrics. Methods such as (Zhang et al., 2020; Kemertas &158
Aumentado-Armstrong, 2021; Chen & Pan, 2022) approximate transitions using a Gaussian tran-159
sition model with a 2-Wasserstein metric. In contrast, Castro et al. (2021); Zang et al. (2022) rely160
on sample-based distance approximations.161

Choices of Representational Metric dΨ. To approximate dΨ, methods employ either a Huber dis-162
tance (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021) (a surrogate for Lp-distance)163
or an angular distance (Castro et al., 2021; Zang et al., 2022; Chen & Pan, 2022).164

Metric Loss Function JM . To approximate an isometric embedding, metric learning methods165
optimize this general objective:166

JM (ϕ) = ℓ(dΨ(ϕ(x1), ϕ(x2))− dX (x1, x2)), (4)

where ℓ can be Huber loss (Chen & Pan, 2022; Castro et al., 2021; Zang et al., 2022), or mean square167
error (MSE) (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021).168

Self-prediction (ZP). As discussed, approximating dX often requires a transition model, methods169
adopt distinct approaches: probabilistic models (Zhang et al., 2020; Castro et al., 2021), ensembles170
of probabilistic models (Zang et al., 2022), and deterministic models (Kemertas & Aumentado-171
Armstrong, 2021). MICo, in contrast, employs a sample-based target metric that is free of ZP.172

Normalization. We discuss normalization in the representation space Ψ. RDBC (Kemertas &173
Aumentado-Armstrong, 2021) employs max normalization to enforce boundedness, leveraging prior174
knowledge of target metric constraints. SimSR (Zang et al., 2022) applies L2 normalization to175
enforce unit-length representations. LayerNorm (Ba et al., 2016) is widely used in pixel-based176
encoder across all methods except SimSR. In the broader context of deep RL, normalization has177
been extensively studied for its benefits in stabilizing training and generalization (Li et al., 2023;178
Fujimoto et al., 2023; Elsayed et al., 2024; Gallici et al., 2024).179

Target trick. MICo employs a target network ϕ̄ for encoding one observation in dΨ when approx-180
imating dX to ensure learning stability. See Castro et al. (2021, Appendix C.2) for further details.181

3.3 Candidate Methods182

We present the design choices of methods to be benchmarked in our work in Table 1. Note that183
RDBC (Kemertas & Aumentado-Armstrong, 2021) incorporates additional components – such as184
intrinsic rewards and inverse dynamics – that enhance performance. However, since these elements185
are orthogonal to our study, they are not included in our implementation. For a fair comparison, our186
experiments employ a probabilistic transition model for all methods that require one.187

4 Study Design: Does Metric Learning Help with Denoising?188

The “denoising capability” of behavioral metric learning is often cited as a motivation in prior189
work (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021; Chen & Pan, 2022; Zang et al.,190
2022). However, most studies evaluate this indirectly by (1) combining metric learning with RL, (2)191
training only on grayscale natural video backgrounds, (3) testing on unseen videos in training, and192
(4) evaluating solely through return performance. This leaves a gap between motivation and actual193
denoising assessment.194

This section bridges that gap with a systematic study design. First, we introduce a diverse range195
of noise settings from IID Gaussian noise and random projections to natural video backgrounds196
(Sec. 4.1), enabling an analysis of how noise difficulty impacts metric learning. Second, we separate197
the noise distributions during training and testing to examine denoising under both ID and OOD198

5

Under review for RLC 2025, to be published in RLJ 2025

Figure 1: Examples of different noise settings in pixel-based domains (three consecutive timesteps each).
From left to right: original clean image, IID Gaussian image, grayscale natural image, colored natural image,
grayscale natural video, colored natural video. Three background images are different for video settings.

generalization settings (Sec. 4.2). Third, we introduce a direct evaluation measure, the denoising199
factor (Sec. 4.3). Finally, to disentangle metric learning from RL, we propose the isolated metric200
estimation setting, where metric learning affects only the encoder, not the RL agent (Sec. 4.4).201

4.1 Noise Settings202

We describe our noise settings using the EX-BMDP framework (Sec. 2.1), where observations fol-203
low x ∼ q(· | z) with z = (s, ξ).204

IID Gaussian Noise. The task-irrelevant noise ξt is sampled independently at each timestep from205
an m-dimensional isotropic Gaussian, ξt ∼ N (µ, σ2I). For state-based domains, the observation is206
exactly the latent state, i.e., xt = zt with q as the identity mapping. We adjust the noise dimension207
m or noise std σ to modulate difficulty, whereas prior work (Kemertas & Aumentado-Armstrong,208
2021; Ni et al., 2024) only varies m with a small σ. For pixel-based domains, noise is applied per209
pixel in the background and overlaid by the robot foreground’s pixels, with q as a rendering function.210

IID Gaussian Noise with Random Projection. This setting applies only to state-based do-211
mains where s ∈ Rn. Before interaction with the MDP, we construct a full-rank square matrix212
A ∈ R(n+m)×(n+m) with entries sampled as Aij ∼ N (µA, σ

2
A). At each time step, we generate213

m-dimensional IID Gaussian noise ξt ∼ N (0, σ2I) and then apply a linear projection to obtain214
observation xt = Azt where zt = (st, ξt). Since A is full rank, st can be recovered from xt using215
A−1. This setting is more challenging than IID Gaussian noise, as it linearly entangles st and ξt,216
with q as the linear projection.9217

Natural Images. This setting applies only to pixel-based domains, replacing the clean background218
with a randomly selected natural image. As in the original environment, the background remains219
fixed during training. Images can be grayscale or colored, introducing different levels of visual220
complexity. In EX-BMDP notation, ξt is stationary and q is a rendering function.221

Natural Videos. This setting also applies only to pixel-based domains, replacing the clean back-222
ground with with natural video. The underlying noise ξt ∈ N, representing the frame index, follows223
the update rule ξt = (ξt−1 + 1) mod N , where N is the total number of frames. These videos224
can be grayscale or colored, with the grayscale setting widely used in metric learning (Zhang et al.,225
2020; Kemertas & Aumentado-Armstrong, 2021; Zang et al., 2022; Chen & Pan, 2022).226

4.2 Denoising Involves ID and OOD Generalization227

In this work, “denoising” refers to a form of generalization that removes task-irrelevant noise from228
observations, enabling generalization to tasks with unseen noise. The evaluation settings differ based229
on whether the noise distribution remains unchanged or shifts between training and testing.230

9Voelcker et al. (2024) similarly projects observations using a random binary matrix in discrete domains.

6

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

In-distribution (ID) Generalization Evaluation. The training and testing environments (EX-231
BMDPs) are identical, meaning the same noise distribution is applied in both phases. For example,232
IID Gaussian noise remains unchanged throughout training and testing.233

Out-of-distribution (OOD) Generalization Evaluation. The training and testing EX-BMDPs234
share the same task-relevant parts (i.e., p(s′ | s, a), p(s0), R(s, a)) but differ in noise distributions235
(i.e., p(ξ′ | ξ), p(ξ0)). For instance, natural videos from a training dataset are employed during236
training, while videos from a distinct test dataset are used during evaluation. This evaluation setup237
is widely used in metric learning (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021;238
Zang et al., 2022; Chen & Pan, 2022).239

4.3 Quantifying Denoising via the Denoising Factor240

We introduce the denoising factor (DF), a measure that quantifies an encoder ϕ’s ability to filter241
out irrelevant details while retaining essential information.10 It also provides insight into how the242
behavioral metrics are approximated, given that exact behavioral metrics are nearly inaccessible243
via fixed-point iteration in high-dimensional state or action spaces. To compute DF, we define a244
positive score and a negative score for an encoder ϕ. Inspired by triplet loss (Schroff et al., 2015)245
in contrastive learning, we compute these scores by selecting an observation x as an anchor, then246
constructing a positive example x+ similar to x, and a negative example x− dissimilar to x.247

Definition 2 (Positive score) The positive score of an encoder ϕ w.r.t. the metric dΦ measures the248
average representational distance between anchors and their positive examples:249

PosdΦ
(ϕ) := Ex∼ρπ(x),ξ+∼ρ(ξ+),x+∼q(·|ϕ∗(x),ξ+)

[
dΦ(ϕ(x), ϕ(x

+))
]
, (5)

where ρπ(x) is the stationary state distribution under the policy π and ρ(ξ+) is a stationary noise250
distribution. The sampling x+ ∼ q(· | ϕ∗(x), ξ+) ensures that x+ shares the same task-relevant251
state s = ϕ∗(x) but has different noise ξ+.252

In the temporally-independent noise setting, ρ(ξ+) matches the noise transition; in the natural-video253
setting, ρ(ξ+) is a uniform distribution over frame indices {0, 1, . . . , N − 1}.254

Definition 3 (Negative score) The negative score of an encoder ϕ w.r.t. the metric dΦ measures the255
average representational distance between anchors and their negative examples:256

NegdΦ
(ϕ) := E

x,x−iid∼ρπ

[
dΦ(ϕ(x), ϕ(x

−))
]
, (6)

where x, x− are IID samples from ρπ .257

Definition 4 (Denoising factor (DF)) The denoising factor of an encoder ϕ w.r.t. the metric dΦ is258
defined as the normalized difference between the negative and positive scores. As a result, a higher259
DF indicates better denoising ability.260

DFdΦ
(ϕ) :=

NegdΦ
(ϕ)− PosdΦ

(ϕ)

NegdΦ
(ϕ) + PosdΦ

(ϕ)
∈ [−1, 1]. (7)

4.4 Decoupling Behavioral Metric Learning from RL261

In many behavioral metric learning methods, the encoder ϕ is optimized via a combination of262
losses: the RL loss (e.g., JSAC(ϕ)), the reward-prediction loss JRP(ϕ), the self-prediction loss JZP(ϕ)263
(Eq. 1), and a metric loss JM(ϕ) (3). This coupling makes it difficult to isolate the direct impact of264
metric learning on representation quality. Moreover, denoising factor (DF, Def. 4) depends on both265
the encoder and the data distribution induced by RL agent. Policies that frequently revisit similar266
task-relevant states under varying noise may inflate DF, making it an unreliable measure of denois-267
ing. Due to the above reasons, we propose to evaluate behavioral metric learning algorithms in an268
isolated metric estimation setting.269

10While the oracle encoder ϕ∗ achieves perfect denoising, direct comparison is impossible as ϕ lacks access to S.

7

Under review for RLC 2025, to be published in RLJ 2025

Isolated Metric Estimation Setting. To isolate the effect of metric learning, we introduce an iso-270
lated metric encoder ϕ̃ that is optimized solely via the metric loss JM(ϕ̃), while the agent encoder271
ϕ is updated using the remaining training objectives (e.g., JSAC(ϕ) or JDeepMDP(ϕ)). In our exper-272
iments, regardless of the metric learning method, a SAC agent interacts with the environment and273
collect data for learning the metrics. This allows for a fair comparison of DFdΦ(ϕ̃) across different274
metric learning methods. For methods that rely on self-prediction loss (Zhang et al., 2020; Kemertas275
& Aumentado-Armstrong, 2021; Zang et al., 2022), we learn an isolated transition model using ϕ̃276
while preventing gradient backpropagation to ϕ̃ to ensure isolation.277

5 Experiments278

Experiment Organization. We first conduct a comprehensive evaluation of all the methods (Ta-279
ble 1) across 20 state-based DeepMind Control (DMC) (Tassa et al., 2018; Tunyasuvunakool et al.,280
2020) tasks (listed in Table 5) and 14 pixel-based DMC tasks (listed in Table 6). Evaluations are281
performed under various noise settings using ID generalization. This study covers a significantly282
larger task set than prior works. Our results (Sec. 5.1) provide a broad assessment of agent per-283
formance and task difficulty, as reflected by return variations. Based on these findings, we select284
a subset of representative tasks for fine-grained analysis (Sec. 5.2) to examine the impact of key285
design choices (Sec. 3.2). We further investigate the isolated metric evaluation setting (Sec. 4.4) in286
Sec. 5.3, and assess OOD generalization following prior work in Sec. 5.4.287

Evaluation Protocol. We report the mean episodic reward rather than the IQM (Agarwal et al.,288
2021) to avoid ignoring tasks that are too easy or too challenging. For each run, the reported mean289
episodic reward, bounded within [0, 1000] for all tasks, is the average of 10 evaluation points within290
a 1.95M-2.05M step window and aggregated over seeds. Figures and tables display 95% confidence291
intervals over tasks. For state-based environments, we use 12 random seeds per configuration, where292
a configuration is defined as a (task, noise setting) pair. For pixel-based experiments, we use 5293
random seeds per configuration.294

Approximation of Denoising Factor (Eq. 7). All observations collected in the evaluation stage295
are regarded as anchors. We sample 16 positive samples and negative samples for each anchor using296
the strategy shown in Sec. 4.3. For consistency, we report DF∥·∥2

(ϕ).297

5.1 Benchmarking Methods on Various Noise Settings298

Settings. For state-based DMC tasks, we apply IID Gaussian noise, varying either (a) standard de-299
viations σ ∈ {0.2, 1.0, 2.0, 4.0, 8.0} (with a fixed noise dimension m = 32), or (b) noise dimensions300
m ∈ {2, 16, 32, 64, 128} (with a fixed standard deviation σ = 1.0). For pixel-based DMC tasks,301
evaluation is conducted under 6 image background settings: (1) clean background (the original302
pixel-based DMC setting), (2) grayscale natural images, (3) colored natural images, (4) grayscale303
natural videos, (5) colored natural videos, and (6) IID Gaussian noise (with σ = 1.0). ID generaliza-304
tion evaluation is conducted in this subsection. The aggregated reward and DF for settings (a), (b),305
and (1)-(6) are shown in Fig. 2 and Fig. 3, respectively. Per-task results are listed in Appendix Sec. E.306

Implementation Details. For state-based tasks, the encoder is a three-layered MLP, as used by307
SAC (Haarnoja et al., 2018) and RDBC (Kemertas & Aumentado-Armstrong, 2021). For pixel-308
based tasks, the encoder is a CNN followed by LayerNorm (Ba et al., 2016), as used by SAC-309
AE (Yarats et al., 2021b). All the compared methods are implemented based on SAC. For a fair310
comparison, we adopt an identical probabilistic latent transition models and reward models used in311
DBC and RDBC, although some methods, such as SimSR (Zang et al., 2022), propose using an312
ensemble of latent transition models. We follow the exact hyperparameters specific to each metric313
learning method. Please see Appendix Sec. D for further details.314

Benchmarking Findings. We summarize the key findings from Fig. 2 and Fig. 3.315

8

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

300 450 600 750
SAC

DeepMDP
DBC

RDBC
MICo
RAP

SimSR
noise std: 0.2

300 450 600 750

noise std: 1.0

300 450 600 750

noise std: 2.0

300 450 600 750

noise std: 4.0

300 450 600 750

noise std: 8.0

DF

300 450 600 750
SAC

DeepMDP
DBC

RDBC
MICo
RAP

SimSR
noise dim: 2

300 450 600 750

noise dim: 16

300 450 600 750

noise dim: 32

300 450 600 750

noise dim: 64

300 450 600 750

noise dim: 128

DF

300 450 600 750
SAC

DeepMDP
DBC

RDBC
MICo
RAP

SimSR
Clean

300 450 600 750

Grayscale Images

300 450 600 750

Colored Images

300 450 600 750

Grayscale Video

300 450 600 750

Colored Video

300 450 600 750

IID Gaussian

Reward
Figure 2: Benchmarking results: performance of seven methods across diverse noise settings, aggregating
episodic rewards from 20 state-based (first two rows) and 14 pixel-based tasks (last row). “Noise std” denotes
the IID Gaussian noise’s standard deviation σ, while “noise dim” denotes its dimension m. Bars show 95% CI.

0 20 40 60 80 100 120
Noise Dim

300

400

500

600

700

800

900

M
ea

n
Re

wa
rd

SAC
DBC
DeepMDP
RDBC
MICo
RAP
SimSR

0 1 2 3 4 5 6 7 8
Noise Std

300

400

500

600

700

800

900

M
ea

n
Re

wa
rd

SAC
DBC
DeepMDP
RDBC
MICo
RAP
SimSR

0 20 40 60 80 100 120
Noise Dim

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

ea
n

De
no

isi
ng

 Fa
ct

or

SAC
DBC
DeepMDP
RDBC
MICo
RAP
SimSR

0 1 2 3 4 5 6 7 8
Noise Std

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
De

no
isi

ng
 Fa

ct
or

SAC
DBC
DeepMDP
RDBC
MICo
RAP
SimSR

Figure 3: Benchmarking results: reward (left) and denoising factor (right) of seven methods to IID Gaus-
sian noise dimension (Noise Dim) and standard deviation (Noise Std). Each point is aggregated by 20 state-
based tasks in Table 5.

• SimSR consistently achieves the highest performance in most state-based tasks, excelling in both316
return and denoising factor. RAP performs best in most pixel-based tasks but suffers a moderate317
performance drop in state-based tasks. Interestingly, both SimSR and RAP were evaluated only318
in pixel-based domains in their papers, making our state-based findings novel.319

• SAC and DeepMDP, as fundamental metric learning baselines, deliver decent performance on320
both pixel-based and state-based tasks. However, they are often overlooked in prior work.321

• In state-based domains, all methods are generally more robust to increased noise dimensions322
(when σ = 1.0), as commonly used in prior work, than to increased standard deviation (when323
m = 32), as shown in Fig. 3.324

• In pixel-based domains, grayscale natural video, widely used in prior work, is not significantly325
harder than clean background setting (e.g., for SAC and DeepMDP). Surprisingly, the IID Gaus-326
sian noise setting is the most challenging, warranting further study.327

• Different algorithms excel in different tasks (Table 5, Table 6), e.g., RAP in reacher/easy, MICo328
in point_mass/easy (Fig. 23). Broad task coverage is essential to ensure generalizable insights.329

• Adding objectives trades-off computation efficiency. As shown in Table 2, the time cost of opti-330
mizing of a metric loss is close to optimizing a ZP loss by comparing MICo with DeepMDP.331

5.2 What Matters in Metric and Representation Learning?332

To identify key factors in metric learning in state-based domains, we conduct case studies on the333
design choices outlined in Sec. 3.2. We select three medium-to-hard DMC tasks, finger/turn_easy,334
figure/turn_hard, quadruped/run for detailed analysis. First, a notable difference between our default335
encoder implementations for state-based and pixel-based tasks is the inclusion of normalization,336
which may significantly impact benchmarking outcomes. SimSR, the best-performing algorithm in337
state-based environments, employs L2 normalization in the representation space and discusses its338

9

Under review for RLC 2025, to be published in RLJ 2025

Table 2: Relative time spent on model updates on NVIDIA L40S GPUs under the same task (walker/walk,
with S = R24 and Ξ = R32). Values represent the multiple of SAC’s updating time. Key hyperparameters
affecting the speed are set identically to Table 7.

SAC DeepMDP DBC RDBC MICo RAP SimSR

Pixel-based 1.00 1.44 2.03 2.12 1.53 2.20 1.75
State-based 1.00 1.42 1.76 1.95 1.39 2.08 1.68

Figure 4: Case study on three DMC state-based tasks (IID Gaussian noise, noise dim=32, noise std=8.0),
examining the effects of including LayerNorm (left vs. right three columns), applying the target trick
(RDBC (T)), and using Huber loss (RDBC (H)) instead of MSE as the metric loss.

effectiveness (Zang et al., 2022). This inspires us to examine whether normalization benefits other339
metric learning methods. Second, several techniques used by the best-performing methods merit340
further analysis. For instance, SimSR, RAP, and MICo (which excels in colored natural video set-341
tings) utilize Huber metric loss instead of MSE, while MICo incorporates the target trick (Sec. 3.2).342
Third, we investigate the performance of methods with LayerNorm in a challenging setting: IID343
Gaussian noise with random projection (Sec. 4.1) with σ ∈ {0.2, 2.0, 4.0, 8.0} (with a fixed noise344
dimension m = 32), shown in Fig. 6. Important findings from Fig. 4 to Fig. 6 is as follows:345

• Most methods benefit from LayerNorm in the representation space, improving both reward346
and DF (Fig. 4). Notably, DeepMDP with LayerNorm performs comparably to SimSR.11 For347
RDBC, using Huber loss for the metric and using the target trick enhance performance (Fig. 4).12348

• ZP loss is crucial for SimSR’s success in noisy state-based tasks (Fig. 5).349

• A significant performance drop occurs for all agents when increasing the noise standard deviation350
in IID Gaussian with random projection setting (Fig. 6), even with normalization applied.351
Nevertheless, DeepMDP and SimSR remain relatively robust to the noise.352

5.3 Isolated Metric Evaluation Setting: Does Learned Metrics Denoise?353

We further analyze the proposed setting in Sec. 4.4 in both state-based (shown in Fig. 7) and pixel-354
based settings (shown from Fig. 25 to Fig. 29). We observe that:355

• Generally, metrics learned in isolation achieve some denoising but underperform compared to356
those co-learned with ZP and critic losses or even with ZP and critic losses alone in DeepMDP357
(first two rows of Fig. 7).358

• LayerNorm also works well with isolated metric estimation (last two rows of Fig. 7).359

• MICo’s DF remains relatively low, which aligns with its theoretical property that the metric for360
positive samples is non-zero (Fig. 7), as MICo does not enforce zero self-distance.361

11Our additional experiments reveal that removing LayerNorm in pixel-based environments causes a substantial perfor-
mance drop across all methods, highlighting the critical role of normalization.

12We observe that runs with superior design choices exhibit much more stable representation norms and gradient norms
for both the critic loss and metric loss. Thus, the performance gains shown in Fig. 4 are likely due to improved numerical
stability in extrapolating the metrics and Q values during generalization.

10

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0 1 2
1e6

0

250

500

750

1000
finger/turn_easy

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

quadruped/run

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 8.0, Noise dim: 32
SimSR (Basic) SimSR (Basic, No ZP) SimSR (Original)

Figure 5: Ablation study on ZP loss on SimSR. “SimSR (Original)” is the configuration benchmarked
in Sec. 5.1, where ZP is integral to the metric estimation. Therefore, we resort to “SimSR (Basic)” setting
(Theorem 2, Zang et al. (2022)), where the ZP component is independent from the metric estimation, and
“SimSR (Basic, No ZP)” is the setting that ZP is detached from SimSR (Basic). This ablation highlights the
impact of detaching ZP on the overall performance.

300 450 600 750
SAC

DeepMDP
DBC

RDBC
MICo
RAP

SimSR
noise std: 0.2

300 450 600 750

noise std: 2.0

300 450 600 750

noise std: 4.0

300 450 600 750

noise std: 8.0

DF

0.45 0.60 0.75
SAC

DeepMDP
DBC

RDBC
MICo
RAP

SimSR
noise std: 0.2

0.45 0.60 0.75

noise std: 2.0

0.45 0.60 0.75

noise std: 4.0

0.45 0.60 0.75

noise std: 8.0

DF
Figure 6: Aggregated reward (top row) and DF (bottom row) of seven agents on various IID Gaussian with
random projection settings in the 3 selected state-based tasks.

5.4 OOD Generalization362

While prior work has focused on OOD generalization in pixel-based settings, we extend this analysis363
by evaluating all 14 pixel-based tasks. The “grayscale video” setting (and similarly for other set-364
tings) in Fig. 8 denotes using grayscale videos for both training and evaluation, with distinct video365
samples in each phase. Takeaways in Fig. 8 and Fig. 9 are as follows:366

• Comparing Fig. 8 (OOD) with Fig. 2 (ID), all methods struggle to generalize in both grayscale367
and colored image settings. Unlike video backgrounds, which provide temporal variation, static368
images lack diverse cues, making adaptation to unseen backgrounds more challenging.369

• Even with OOD generalization evaluation, SAC and DeepMDP remain competitive baselines370
(Fig. 8).371

• OOD generalization is more challenging in the colored video setting than in the grayscale video372
setting (Fig. 9). Surprisingly, even baselines like SAC exhibit a low reward gap, questioning the373
necessity of incorporating a metric loss in the widely-used grayscale setting.374

200 400 600
SAC

DeepMDP
DBC

RDBC
MICo
RAP

SimSR
Grayscale Images

200 400 600

Colored Images

200 400 600

Grayscale Video

200 400 600

Colored Video

DF

0.0 0.2 0.4 0.6
SAC

DeepMDP
DBC

RDBC
MICo
RAP

SimSR
Grayscale Images

0.0 0.2 0.4 0.6

Colored Images

0.0 0.2 0.4 0.6

Grayscale Video

0.0 0.2 0.4 0.6

Colored Video

DF
Figure 8: Aggregated reward (top row) and DF (bottom row) of seven agents on various noise settings in 14
pixel-based tasks in Table 6 with OOD generalization evaluation.

11

Under review for RLC 2025, to be published in RLJ 2025

0 1 2
1e6

0.00

0.25

0.50

0.75

1.00 cartpole/balance

0 1 2
1e6

quadruped/walk

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/hop

0 1 2
1e6

walker/run

Environment Steps

M
ea

n
DF

 Noise setting: IID Gaussian, Noise std: 8.0, Noise dim: 32
SAC DeepMDP DBC RDBC MICo RAP SimSR

0 1 2
1e6

0.00

0.25

0.50

0.75

1.00 cartpole/balance

0 1 2
1e6

quadruped/walk

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/hop

0 1 2
1e6

walker/run

Environment Steps

M
ea

n
DF

 Noise setting: IID Gaussian, Noise std: 8.0, Noise dim: 32
SAC DeepMDP DBC RDBC MICo RAP SimSR

0 1 2
1e6

0.00

0.25

0.50

0.75

1.00 cartpole/balance

0 1 2
1e6

quadruped/walk

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/hop

0 1 2
1e6

walker/run

Environment Steps

M
ea

n
DF

 Noise setting: IID Gaussian, Noise std: 8.0, Noise dim: 32, with Layer Norm
SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 7: Top row: DF for the agent encoder ϕ (co-trained with RL in Sec. 5.1) without LayerNorm. Mid
row: DF for the isolated metric encoder ϕ̃ without LayerNorm. Bottom row: DF for ϕ̃ with LayerNorm. All
use ID generalization evaluation.

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
Re

wa
rd

eval/episode_reward
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
DF

eval_df/squashed_DF_L2
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
DF

eval_df/log_div_DF_L2
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
Re

wa
rd

eval_debug/episode_reward_training_env
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
Re

wa
rd

eval/generalization_reward_gap
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

Curves with Stratified Bootstrap CI
Filters: Noise setting: Natural Video (Grayscale)

Domains/Tasks (14): cartpole/balance, cartpole/balance_sparse, walker/stand, finger/spin, cartpole/swingup, ball_in_cup/catch, walker/walk, point_mass/easy, cartpole/swingup_sparse, reacher/easy
pendulum/swingup, cheetah/run, walker/run, hopper/hop

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
Re

wa
rd

eval/episode_reward
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
DF

eval_df/squashed_DF_L2
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
DF

eval_df/log_div_DF_L2
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
Re

wa
rd

eval_debug/episode_reward_training_env
SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

120

140

160

M
ea

n
Re

wa
rd

eval/generalization_reward_gap

SAC
DeepMDP
DBC
RDBC
MICo
RAP
SimSR

Curves with Stratified Bootstrap CI
Filters: Noise setting: Natural Video

Domains/Tasks (14): cartpole/balance, cartpole/balance_sparse, walker/stand, finger/spin, cartpole/swingup, ball_in_cup/catch, walker/walk, point_mass/easy, cartpole/swingup_sparse, reacher/easy
pendulum/swingup, cheetah/run, walker/run, hopper/hop

Figure 9: Reward gap (performance in ID evaluation minus OOD evaluation) in the grayscale video setting
(left) and the colored video setting (right), aggregated on 14 pixel-based tasks in Table 6.

6 Conclusion375

Takeaways. Based on our empirical studies on behavioral metric learning in deep RL, we highlight376
the following key insights for RL researchers:377

1. To gain a clearer understanding of RL algorithms, initial evaluations should be conducted on378
simple, controlled environments (e.g., varying Gaussian noise std, pixel-based Gaussian noise).379

2. Claims and motivations for metric learning should be supported by rigorous evaluation, including380
measures such as the denoising factor and comparisons between ID and OOD generalization.381

3. Self-prediction loss and LayerNorm are critical design choices that significantly impact metric382
and representation learning.383

4. The benefits of metric learning diminish when key design choices, such as self-prediction loss384
and LayerNorm, are integrated into SAC. This calls for a deeper investigation into when and how385
metric learning provides unique advantages beyond these existing techniques.386

Future work. Our study focuses on continuous control; future work should explore discrete do-387
mains and real-world tasks. The relationship between denoising and return performance remains388
unclear, requiring further investigation. Additionally, improved benchmarks are needed to better389
isolate the effects of metric learning.390

12

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

References391

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.392
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-393
tion processing systems, 34:29304–29320, 2021.394

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint395
arXiv:1607.06450, 2016.396

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov397
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,398
pp. 10069–10076, 2020.399

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico: Improved400
representations via sampling-based state similarity for markov decision processes. Advances in401
Neural Information Processing Systems, 34:30113–30126, 2021.402

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. A kernel perspective403
on behavioural metrics for markov decision processes. arXiv preprint arXiv:2310.19804, 2023.404

Jianda Chen and Sinno Pan. Learning representations via a robust behavioral metric for deep re-405
inforcement learning. Advances in Neural Information Processing Systems, 35:36654–36666,406
2022.407

Edmund M Clarke. Model checking. In Foundations of Software Technology and Theoretical Com-408
puter Science: 17th Conference Kharagpur, India, December 18–20, 1997 Proceedings 17, pp.409
54–56. Springer, 1997.410

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.411
Provably efficient rl with rich observations via latent state decoding. In International Conference412
on Machine Learning, pp. 1665–1674. PMLR, 2019.413

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Lang-414
ford. Provable rl with exogenous distractors via multistep inverse dynamics. arXiv preprint415
arXiv:2110.08847, 2021.416

Mohamed Elsayed, Gautham Vasan, and A Rupam Mahmood. Streaming deep reinforcement learn-417
ing finally works. arXiv preprint arXiv:2410.14606, 2024.418

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.419
In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 162–169, 2004.420

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov421
decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.422

Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang Shane Gu, Doina Precup, and David Meger.423
For sale: State-action representation learning for deep reinforcement learning. Advances in neural424
information processing systems, 36:61573–61624, 2023.425

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus426
Foerster, and Mario Martin. Simplifying deep temporal difference learning. arXiv preprint427
arXiv:2407.04811, 2024.428

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:429
Learning continuous latent space models for representation learning. In International conference430
on machine learning, pp. 2170–2179. PMLR, 2019.431

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in432
markov decision processes. Artificial intelligence, 147(1-2):163–223, 2003.433

13

Under review for RLC 2025, to be published in RLJ 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy434
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-435
ence on machine learning, pp. 1861–1870. Pmlr, 2018.436

Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipen-437
dra Misra, Xin Li, Harm Van Seijen, Remi Tachet des Combes, et al. Agent-controller represen-438
tations: Principled offline rl with rich exogenous information. arXiv preprint arXiv:2211.00164,439
2022.440

Mete Kemertas and Tristan Aumentado-Armstrong. Towards robust bisimulation metric learning.441
Advances in Neural Information Processing Systems, 34:4764–4777, 2021.442

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing443
systems, 12, 1999.444

George Konidaris. On the necessity of abstraction. Current opinion in behavioral sciences, 29:1–7,445
2019.446

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction447
for mdps. AI&M, 1(2):3, 2006.448

Lu Li, Jiafei Lyu, Guozheng Ma, Zilin Wang, Zhenjie Yang, Xiu Li, and Zhiheng Li. Normalization449
enhances generalization in visual reinforcement learning. arXiv preprint arXiv:2306.00656, 2023.450

Xiang Li, Jinghuan Shang, Srijan Das, and Michael Ryoo. Does self-supervised learning really im-451
prove reinforcement learning from pixels? Advances in Neural Information Processing Systems,452
35:30865–30881, 2022.453

Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma, Clement Gehring, Aditya Ma-454
hajan, and Pierre-Luc Bacon. Bridging state and history representations: Understanding self-455
predictive rl. arXiv preprint arXiv:2401.08898, 2024.456

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face457
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern458
recognition, pp. 815–823, 2015.459

Satinder Singh, Tommi Jaakkola, and Michael Jordan. Reinforcement learning with soft state ag-460
gregation. Advances in neural information processing systems, 7, 1994.461

Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate information462
state for approximate planning and reinforcement learning in partially observed systems. Journal463
of Machine Learning Research, 23(12):1–83, 2022.464

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-465
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv466
preprint arXiv:1801.00690, 2018.467

Manan Tomar, Utkarsh A Mishra, Amy Zhang, and Matthew E Taylor. Learning representations for468
pixel-based control: What matters and why? arXiv preprint arXiv:2111.07775, 2021.469

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom470
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for471
continuous control. Software Impacts, 6:100022, 2020.472

Claas Voelcker, Tyler Kastner, Igor Gilitschenski, and Amir-massoud Farahmand. When does473
self-prediction help? understanding auxiliary tasks in reinforcement learning. arXiv preprint474
arXiv:2406.17718, 2024.475

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-476
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021a.477

14

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-478
ing sample efficiency in model-free reinforcement learning from images. In Proceedings of the479
aaai conference on artificial intelligence, volume 35, pp. 10674–10681, 2021b.480

Hongyu Zang, Xin Li, and Mingzhong Wang. Simsr: Simple distance-based state representations481
for deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,482
volume 36, pp. 8997–9005, 2022.483

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning484
invariant representations for reinforcement learning without reconstruction. arXiv preprint485
arXiv:2006.10742, 2020.486

15

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials487

The following content was not necessarily subject to peer review.488
489

A Notation490

Table 3 and Table 4 show the glossary used in this paper.491

Table 3: Glossary of notations in EX-BMDP (Sec. 2.1).
The top section lists symbols related to the latent states,
while the bottom section defines symbols related to
grounded observations.

Symbol Description

z = (s, ξ) ∈ Z Environment’s latent state
p(z′ | z, a) Latent state transition
s ∈ S Task-relevant state
ξ ∈ Ξ Task-irrelevant noise
a ∈ A Action
R(s, a) Latent reward function
r ∈ R Reward

γ ∈ [0, 1) Discount factor
p(s′ | s, a) Task-relevant state transition
p(ξ′ | ξ) Task-irrelevant noise transition

x ∈ X Observation
q(x | z) Emission function

q−1 : X → Z Oracle encoder to Z
ϕ∗ : X → S Oracle encoder (to S)
R(x, a) Grounded reward function

P(x′ | x, a) Grounded transition function

Table 4: Glossary of notations in RL agents.

Symbol Description

ψ ∈ Ψ Agent’s representation
ϕ : X → Ψ Agent’s encoder

πθ : Ψ → ∆(A) (Latent) Actor
Qω : Ψ×A → R (Latent) Critic
Rκ : Ψ×A → R (Latent) Reward model

Pν : Ψ×A → ∆(Ψ) (Latent) Transition model
ϕ̃ : X → Ψ (Isolated) Metric encoder

B Background on Metrics492

B.1 Metric, Pseudometric, and Diffuse Metric493

Metric. A function d : X × X → R≥0 is called a metric on the space X if for all x, y, z ∈ X :494

(1) d(x, y) = 0 ⇐⇒ x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ d(x, y) + d(y, z).

Pseudometric13. A function d : X × X → R≥0 is a pseudometric if it satisfies (2) and (3) above,495
and for (1) we only require d(x, x) = 0 for all x ∈ X (i.e., d(x, y) = 0 does not imply x = y).496

Diffuse Metric (Definition 4.9 in Castro et al. (2021)). A function d : X × X → R≥0 is a diffuse497
metric if it satisfies properties (2) and (3) above, and for (1) we only require d(x, y) ≥ 0. That is,498
we do not demand d(x, x) = 0 or that d(x, y) = 0 ⇐⇒ x = y.499

B.2 Definitions of Various Behavioral Metrics500

In this section, we discuss the behavioral metrics for an EX-BMDP (Sec. 2.1). From the observation501
space X , the grounded transition function is defined as P(x′ | x, a) =

∑
z′∈Z q(x′ | z′)p(z′ |502

13Sometimes termed “semimetric” (Ferns et al., 2004).

16

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

q−1(x), a) and the grounded reward function as R(x, a) = R(ϕ∗(x), a). Let xi, xj ∈ X be two503
arbitrary observations.504

Bisimulation metric is a relaxation of bisimulation relation (Givan et al., 2003) by allowing a smooth505
variation based on differences in the reward function and transition dynamics. Originally rooted in506
the concept of identical future reward sequences, it is closely linked to model checking (Clarke,507
1997). The bisimulation metric thus quantifies the behavioral similarity between two states and is508
formally defined as follows:509

Definition 5 (Bisimulation metric d∼ (Ferns et al., 2004; 2011)) There exists a unique pseudo-510
metric d∼ : X × X → R, called the bisimulation metric (BSM)14, defined as:511

d∼(xi, xj) := max
a∈A

(cR|R(xi, a)−R(xj , a)|+ cTW1(d
∼)(P(· | xi, a),P(· | xj , a))) , (8)

where 1-Wasserstein distance W1(d
∼)(P,Q) = infδ E(x′

i,x
′
j)∼δ

[
d∼(x′

i, x
′
j)
]
, the coupling δ satifies512 ∑

x′
j
δ(x′

i, x
′
j) = P (x′

i), and
∑

x′
i
δ(x′

i, x
′
j) = Q(x′

j), cR and cT are coefficients for short-term and513

long-term behavioral differences.514

In practice, applying the max operator over actions is intractable in continuous action spaces and515
pessimistically accounts for behavioral similarity across all actions, including those leading to low516
rewards. Policy-dependent bisimulation metrics (Castro, 2020) address this limitation by restricting517
behavioral similarity to the current policy, eliminating the need to evaluate all actions.518

Definition 6 (Policy-dependent bisimulation metric dπ (Castro, 2020)) Given a policy π : X →519
∆(A), there exists a unique pseudometric dπ : X ×X → R, called a policy-dependent bisimulation520
metric (PBSM), defined as:521

dπ(xi, xj) := cR|Rπ(xi)−Rπ(xj)|+ cTW1(d
π)(Pπ(· | xi),Pπ(· | xj)), (9)

where Rπ(x) := Ea∼π[R(x, a)] and Pπ(· | x) := Ea∼π[Pπ(· | x, a)] are policy-dependent reward522
and transition, respectively.523

To approximate the 1-Wasserstein distance in PBSM, DBC (Zhang et al., 2020) assumes a Gaussian524
transition kernel and uses 2-Wasserstein distance which has a close-form solution under such as-525
sumption. To further circumvent the costly computation of the 1-Wasserstein distance, Castro et al.526
(2021) proposes MICo distance.527

Definition 7 (MICo distance uπ (Castro et al., 2021)) Given a policy π : X → ∆(A), there exists528
a unique diffuse metric uπ : X × X → R, called MICo distance:529

uπ(xi, xj) := cR|Rπ(xi)−Rπ(xj)|+ cTEx′
i∼Pπ(·|xi),x′

j∼Pπ(·|xj)

[
uπ(x′

i, x
′
j)
]
. (10)

Based on MICo, several improvements are made by SimSR (Zang et al., 2022) and RAP (Chen &530
Pan, 2022).531

Definition 8 (SimSR distance (Zang et al., 2022)) Given a policy π : X → ∆(A), there exists a532
unique distance uπ : X × X → R, called the Simple State Representation (SimSR) distance:533

uπ(xi, xj) := cR
∣∣Rπ(xi)−Rπ(xj)

∣∣ + cT E x′
i∼P̂π(·|xi), x′

j∼P̂π(·|xj)

[
uπ(x′

i, x
′
j)
]
, (11)

where uπ(xi, xj) = cos(ϕ(xi), ϕ(xj)) is the cosine distance and P̂π is an approximated transition534
dynamics model.535

Definition 9 (RAP distance (Chen & Pan, 2022)) Given a policy π : X → ∆(A), there exists a536
unique distance uπ : X × X → R, called the Robust Approximate (RAP) distance:537

uπ(xi, xj) := cR
∣∣Rπ(xi)−Rπ(xj)

∣∣ + cT Eai∼π, aj∼π

[
uπ

(
Ex′

i∼P̂(·|xi,ai)
[x′

i], Ex′
j∼P̂(·|xj ,aj)

[x′
j]
)]
.

(12)
14As noted by Ferns et al. (2004), BSM relates to the largest bisimulation relation, ∼. For brevity, we simplify the original

definition that uses the fixed-point of an operator and omit the proof for existence of such a fixed-point.

17

Under review for RLC 2025, to be published in RLJ 2025

C Difficulty Levels of the Tasks538

Difficulty levels for each task in state-based DMC are provided in Table 5. These levels are based539
on the average reward across all compared methods. In comparison with the difficulty assignment540
in pixel-based DMC within DrQ-v2 (Yarats et al., 2021a, Table 1), most tasks labeled as easy in our541
evaluation are also easy in DrQ-v2, and most tasks labeled as medium or hard in our evaluation are542
medium in DrQ-v2. However, finger spin and pendulum swingup shift from easy to medium, and543
hopper stand from easy to hard.544

Table 5: Difficulty levels for 20 state-based DMC tasks, as determined by the compared methods (Ta-
ble 1). “Avg Reward” stands for the average reward across all IID Gaussian noise settings in Sec. 5.1. For each
run, the reported reward is the average of 10 evaluation points collected around 2M steps. “Max (Min) Reward”
denotes the best (worst) agent’s average reward over 12 runs, while “Max/Min” is the ratio of the best to worst
performance, indicating a task’s ability to discriminate between agent performances.

Task Avg Reward Max Reward Min Reward Max/Min Difficulty

ball_in_cup catch 934.8 977.4 841.7 1.2 Easy
cartpole balance 919.4 997.3 791.2 1.3 Easy
cartpole balance_sparse 877.7 983.6 772.3 1.3 Easy
walker stand 834.6 979.0 437.8 2.2 Easy
cartpole swingup 818.1 874.1 707.6 1.2 Easy
walker walk 805.7 961.9 382.4 2.5 Easy

reacher easy 740.1 955.1 453.0 2.1 Medium
finger spin 728.8 923.6 498.5 1.9 Medium
quadruped walk 703.1 948.9 245.5 3.9 Medium
cartpole swingup_sparse 647.3 839.1 531.9 1.6 Medium
reacher hard 641.1 853.0 340.3 2.5 Medium
finger turn_easy 587.8 926.5 207.7 4.5 Medium
walker run 545.8 776.1 117.4 6.6 Medium
cheetah run 533.4 859.0 129.8 6.6 Medium
pendulum swingup 514.3 824.5 247.2 3.3 Medium

quadruped run 460.7 864.3 199.0 4.3 Hard
finger turn_hard 435.6 893.0 102.6 8.7 Hard
hopper stand 261.9 878.4 22.3 39.3 Hard
acrobot swingup 75.7 246.1 11.2 22.0 Hard
hopper hop 64.7 243.4 1.5 162.4 Hard

18

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

Table 6: Difficulty levels for 14 pixel-based DMC tasks, as determined by the compared methods (Ta-
ble 1). “Avg Reward” stands for the average reward across clean background, natural video (colored and
grayscale), natural image (colored and grayscale), and IID Gaussian noise settings described in Sec. 5.1. For
each run, the reported reward is the average of 10 evaluation points collected around 2M steps. “Max (Min)
Reward” denotes the best (worst) agent’s average reward over 5 runs, while “Max/Min” is the ratio of the best
to worst performance, indicating a task’s ability to discriminate between agent performances.

Task Avg Reward Max Reward Min Reward Max/Min Difficulty

cartpole balance 949.3 986.7 905.5 1.1 Easy
cartpole balance_sparse 915.3 999.4 804.6 1.2 Easy
walker stand 887.7 959.1 633.7 1.5 Easy
finger spin 815.2 909.5 426.4 2.1 Easy

cartpole swingup 765.0 853.2 551.1 1.5 Medium
ball_in_cup catch 719.2 887.8 263.4 3.4 Medium
walker walk 718.9 909.1 360.8 2.5 Medium
point_mass easy 421.5 558.6 256.1 2.2 Medium
cartpole swingup_sparse 409.6 680.4 57.8 11.8 Medium

reacher easy 336.8 949.1 113.0 8.4 Hard
pendulum swingup 313.2 468.9 9.3 50.5 Hard
cheetah run 299.4 411.0 144.7 2.8 Hard
walker run 285.5 441.9 77.3 5.7 Hard
hopper hop 73.6 122.5 5.6 22.0 Hard

D Hyperparameters545

We align our hyperparameter settings with the agents we benchmark, referring to their open-source546
codebases and reported values in papers. Table 7 shows the general hyperparameter setting for most547
agents. For MICo (Castro et al., 2021)15, β in MICo distance parametrization is set to 0.1. For548
RAP (Chen & Pan, 2022)16, we use the same hyperparameter setting in their open-source code,549
where actor, critic, and encoder learning rate is set to 5× 10−4, β in MICo distance parametrization550
is set to 10−6, RP and ZP loss coefficients is set to 10−4, and encoder feature dimensionality is set551
to 100. For action repeat, we set it to 4 for most tasks, to 8 for cartpole (swingup, swingup_sparse),552
and to 2 for finger spin and walker (walk, run, stand) following the convention (Yarats et al., 2021a;553
Zang et al., 2022; Chen & Pan, 2022).554

15https://github.com/google-research/google-research/tree/master/mico
16https://github.com/jianda-chen/RAP_distance

19

https://github.com/google-research/google-research/tree/master/mico
https://github.com/jianda-chen/RAP_distance

Under review for RLC 2025, to be published in RLJ 2025

Table 7: Hyperparameter settings for most agents we benchmarked.

Hyperparameter Name Value

Replay buffer capacity 1× 106

Replay ratio 0.2
Batch size 128
Discount γ 0.99
Optimizer Adam
Encoder feature dimensionality 50
Hidden units in neural networks 256
Paralleled environments 10

Critic learning rate 1× 10−3

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.01
Actor learning rate 1× 10−3

Actor update frequency 2
Actor log stddev bounds [−10, 2]
Encoder learning rate 1× 10−3

Encoder soft-update rate τϕ 0.05
Reward model and transition model’s learning rate 1× 10−3

Reward model and transition model’s weight decay 1× 10−7

SAC temperature learning rate 1× 10−4

SAC initial temperature 0.1

Metric loss weight λM 0.5
Metric reward coefficient cR 1
Metric transition coefficient cT 0.99

Image size 84× 84× 3
Frame stack 3
Distracting video frames N (Per paralleled environment) 1000

20

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

E Additional Experiment Results555

E.1 Per-task Result for State-based DMC with IID Gaussian Noise Settings556

In the figures and tables shown in this section, the tasks are sorted by their difficulty levels shown in557
Table 5 and 6.558

Table 8: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=0.2, noise dim=32.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 958.0 ± 3.9 971.0 ± 4.0 883.5 ± 114.0 975.0 ± 1.8 974.2 ± 1.4 966.6 ± 8.2 978.3 ± 0.9

cartpole balance 912.7 ± 24.6 836.8 ± 155.5 870.9 ± 172.0 988.7 ± 7.4 968.8 ± 16.7 967.6 ± 9.9 995.0 ± 5.9

cartpole balance_sparse 790.2 ± 143.2 579.4 ± 282.6 760.3 ± 193.4 624.0 ± 217.8 815.9 ± 182.7 882.7 ± 167.7 991.9 ± 17.8

walker stand 621.9 ± 164.8 929.3 ± 30.3 842.7 ± 65.6 974.6 ± 5.0 959.2 ± 28.5 846.2 ± 90.2 977.4 ± 4.3

cartpole swingup 776.0 ± 95.9 790.1 ± 143.1 872.7 ± 2.3 582.5 ± 203.8 867.0 ± 3.9 839.4 ± 13.0 876.6 ± 5.2

walker walk 443.1 ± 133.0 819.2 ± 62.2 869.8 ± 63.7 963.8 ± 3.9 947.2 ± 6.4 780.6 ± 110.7 961.9 ± 7.0

reacher easy 474.1 ± 219.0 501.3 ± 262.0 768.0 ± 169.8 556.0 ± 221.6 861.5 ± 146.6 831.6 ± 153.3 957.0 ± 16.1

finger spin 813.5 ± 36.1 837.9 ± 20.5 629.6 ± 152.9 905.8 ± 43.3 951.4 ± 16.9 861.8 ± 45.0 980.8 ± 4.0

quadruped walk 209.4 ± 55.9 820.5 ± 53.7 890.3 ± 47.4 778.1 ± 135.0 614.2 ± 234.7 817.7 ± 98.6 948.3 ± 10.5

cartpole swingup_sparse 615.1 ± 188.8 729.4 ± 148.4 800.5 ± 32.9 661.6 ± 196.7 824.0 ± 14.1 575.9 ± 221.7 835.8 ± 8.7

reacher hard 675.8 ± 115.8 530.3 ± 237.7 322.6 ± 188.7 436.5 ± 234.7 874.2 ± 55.2 778.5 ± 200.7 651.3 ± 160.1

finger turn_easy 231.1 ± 44.4 759.3 ± 81.1 660.5 ± 140.5 806.7 ± 58.3 853.2 ± 124.2 772.3 ± 120.8 914.2 ± 18.7

walker run 219.5 ± 76.2 464.8 ± 28.6 730.4 ± 12.1 747.0 ± 8.0 668.0 ± 12.9 368.3 ± 123.1 794.9 ± 7.4

cheetah run 134.3 ± 107.7 462.9 ± 61.3 529.4 ± 102.4 668.4 ± 11.9 673.8 ± 23.0 667.2 ± 47.0 858.6 ± 16.4

pendulum swingup 389.6 ± 220.7 774.3 ± 128.6 165.3 ± 204.8 836.4 ± 5.4 380.8 ± 255.2 364.2 ± 265.2 841.2 ± 4.9

quadruped run 176.5 ± 41.0 446.3 ± 20.4 542.9 ± 39.3 462.3 ± 55.0 360.3 ± 71.1 435.6 ± 21.6 868.4 ± 29.1

finger turn_hard 102.2 ± 20.6 588.7 ± 158.8 242.6 ± 152.8 580.2 ± 133.3 774.9 ± 192.2 846.1 ± 35.6 880.9 ± 25.8

hopper stand 11.0 ± 9.4 255.0 ± 150.3 36.8 ± 14.0 411.6 ± 160.4 219.7 ± 61.4 517.2 ± 193.2 895.5 ± 24.8

acrobot swingup 33.2 ± 11.6 257.2 ± 28.4 9.5 ± 2.6 86.3 ± 42.5 68.6 ± 69.0 10.9 ± 2.2 214.2 ± 53.9

hopper hop 0.8 ± 0.2 5.3 ± 6.5 5.0 ± 2.5 107.2 ± 36.8 10.1 ± 9.0 144.6 ± 32.7 252.4 ± 8.0

Table 9: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=32.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 881.7 ± 157.0 969.1 ± 3.7 940.7 ± 56.6 974.0 ± 1.7 972.5 ± 2.2 972.7 ± 1.5 978.5 ± 0.8

cartpole balance 863.2 ± 31.4 972.7 ± 10.2 616.4 ± 262.2 982.3 ± 14.5 964.7 ± 22.2 948.6 ± 21.6 999.2 ± 0.8

cartpole balance_sparse 843.9 ± 93.4 953.7 ± 27.6 703.9 ± 136.3 908.6 ± 68.6 919.7 ± 59.9 934.1 ± 45.5 990.7 ± 11.7

walker stand 527.4 ± 166.8 956.6 ± 9.9 827.2 ± 114.0 974.6 ± 3.9 968.7 ± 5.1 781.8 ± 122.4 977.1 ± 3.6

cartpole swingup 824.7 ± 22.7 770.3 ± 100.2 829.9 ± 78.8 741.2 ± 99.6 865.7 ± 1.9 837.1 ± 9.1 865.3 ± 6.4

walker walk 561.2 ± 116.3 852.9 ± 50.4 895.6 ± 57.1 959.5 ± 8.2 949.3 ± 4.9 805.0 ± 44.4 959.6 ± 13.7

reacher easy 487.0 ± 143.6 650.4 ± 169.1 875.3 ± 57.9 547.4 ± 141.8 900.6 ± 79.7 900.0 ± 38.4 959.5 ± 9.3

finger spin 626.2 ± 202.6 826.6 ± 23.4 519.5 ± 170.5 904.8 ± 32.4 897.9 ± 22.1 851.5 ± 52.3 981.4 ± 3.6

quadruped walk 314.9 ± 151.6 753.4 ± 53.4 875.7 ± 61.5 922.6 ± 51.8 534.5 ± 201.9 752.1 ± 157.3 948.0 ± 10.0

cartpole swingup_sparse 703.6 ± 93.4 817.2 ± 8.6 566.6 ± 102.2 665.9 ± 121.6 753.3 ± 98.2 796.2 ± 11.9 836.6 ± 9.4

reacher hard 600.7 ± 118.0 607.6 ± 156.4 438.2 ± 135.5 640.7 ± 162.9 825.3 ± 108.1 882.5 ± 71.6 864.5 ± 131.0

finger turn_easy 201.1 ± 42.4 722.5 ± 94.8 404.3 ± 162.9 723.1 ± 104.7 830.1 ± 137.2 773.7 ± 84.9 928.4 ± 17.6

walker run 216.8 ± 69.5 432.9 ± 63.0 711.1 ± 15.0 725.3 ± 35.3 670.2 ± 16.5 416.5 ± 125.5 774.2 ± 12.9

cheetah run 21.3 ± 45.0 509.8 ± 21.5 435.9 ± 129.0 653.0 ± 22.0 646.1 ± 15.5 707.5 ± 23.8 863.2 ± 21.1

pendulum swingup 353.2 ± 257.3 827.5 ± 12.3 461.3 ± 243.1 770.3 ± 151.4 220.6 ± 238.5 284.9 ± 228.7 833.8 ± 12.6

quadruped run 267.3 ± 68.3 437.1 ± 18.7 492.2 ± 42.7 471.4 ± 13.8 416.1 ± 81.2 447.8 ± 16.5 846.3 ± 41.6

finger turn_hard 105.1 ± 17.2 603.1 ± 112.9 174.1 ± 61.9 728.5 ± 70.8 588.6 ± 178.1 513.3 ± 131.8 908.7 ± 13.9

hopper stand 33.8 ± 19.6 148.7 ± 76.6 34.7 ± 9.4 293.7 ± 152.9 109.7 ± 43.2 387.7 ± 196.9 848.0 ± 112.5

acrobot swingup 37.9 ± 10.0 137.2 ± 40.2 55.8 ± 35.9 76.5 ± 44.0 16.2 ± 3.7 12.5 ± 2.2 263.5 ± 51.9

hopper hop 2.8 ± 2.3 1.1 ± 0.3 6.4 ± 1.7 84.5 ± 18.7 9.4 ± 8.4 134.5 ± 26.5 245.8 ± 13.3

21

Under review for RLC 2025, to be published in RLJ 2025

Table 10: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=2, noise dim=32.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 938.0 ± 16.3 968.9 ± 3.0 908.7 ± 78.4 974.9 ± 1.4 973.9 ± 1.2 972.0 ± 2.0 978.2 ± 0.6

cartpole balance 892.5 ± 44.6 956.9 ± 28.5 768.2 ± 242.0 982.4 ± 11.8 962.1 ± 21.2 948.8 ± 25.3 997.8 ± 4.3

cartpole balance_sparse 684.2 ± 234.4 956.2 ± 48.1 755.7 ± 159.8 962.7 ± 45.4 973.1 ± 31.2 973.6 ± 24.0 990.5 ± 17.5

walker stand 416.2 ± 166.5 930.5 ± 32.5 853.4 ± 89.4 969.5 ± 15.1 965.2 ± 9.5 763.8 ± 116.7 977.9 ± 7.2

cartpole swingup 711.8 ± 144.2 852.4 ± 7.9 864.4 ± 9.6 523.6 ± 199.3 854.6 ± 6.6 829.4 ± 11.2 870.3 ± 8.6

walker walk 501.3 ± 105.7 858.9 ± 50.4 922.2 ± 140.2 947.2 ± 15.2 933.7 ± 17.9 742.6 ± 134.5 958.3 ± 10.3

reacher easy 463.1 ± 227.2 613.7 ± 277.7 841.3 ± 151.1 509.1 ± 249.7 936.3 ± 28.8 948.6 ± 14.1 957.7 ± 22.8

finger spin 521.1 ± 214.8 811.3 ± 15.6 512.7 ± 134.7 902.1 ± 26.2 850.5 ± 13.1 873.2 ± 36.1 973.3 ± 13.5

quadruped walk 320.5 ± 98.4 780.4 ± 39.8 804.2 ± 208.6 808.8 ± 172.7 626.0 ± 213.3 714.2 ± 148.5 954.2 ± 3.9

cartpole swingup_sparse 665.0 ± 100.0 786.7 ± 17.7 514.1 ± 149.1 780.9 ± 14.8 741.8 ± 148.9 706.9 ± 146.2 840.9 ± 6.4

reacher hard 690.7 ± 144.1 658.9 ± 219.9 358.0 ± 211.9 648.8 ± 207.0 824.6 ± 167.1 807.9 ± 187.3 923.8 ± 32.9

finger turn_easy 230.0 ± 56.4 697.0 ± 99.8 273.4 ± 56.4 727.2 ± 77.3 712.2 ± 143.6 657.5 ± 125.2 935.0 ± 14.5

walker run 80.3 ± 52.7 435.4 ± 56.5 696.2 ± 13.9 731.7 ± 16.4 666.0 ± 11.5 410.2 ± 83.1 777.6 ± 10.4

cheetah run 162.9 ± 100.0 483.2 ± 16.7 232.4 ± 181.0 615.7 ± 17.6 615.9 ± 26.9 665.7 ± 60.9 851.5 ± 15.2

pendulum swingup 256.6 ± 233.7 820.5 ± 14.3 557.6 ± 202.7 732.6 ± 167.0 199.7 ± 222.2 382.9 ± 254.0 835.1 ± 9.6

quadruped run 166.9 ± 42.6 440.8 ± 21.8 552.7 ± 52.1 439.6 ± 51.6 379.0 ± 77.1 414.8 ± 48.6 864.5 ± 40.2

finger turn_hard 91.6 ± 18.0 499.7 ± 157.5 228.8 ± 134.7 590.9 ± 87.0 427.8 ± 195.8 399.3 ± 146.5 897.2 ± 19.5

hopper stand 17.8 ± 12.9 77.0 ± 64.7 32.2 ± 12.1 346.3 ± 185.8 99.8 ± 63.1 544.8 ± 178.8 904.7 ± 20.4

acrobot swingup 23.5 ± 11.3 75.4 ± 30.1 36.1 ± 24.8 102.6 ± 46.4 18.8 ± 18.7 10.9 ± 3.0 244.1 ± 47.0

hopper hop 0.4 ± 0.3 2.8 ± 2.8 4.3 ± 4.1 79.1 ± 26.9 0.2 ± 0.2 129.9 ± 41.5 242.6 ± 15.6

Table 11: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=4, noise dim=32.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 918.6 ± 41.8 967.0 ± 3.5 723.9 ± 139.3 972.2 ± 4.3 973.9 ± 1.8 960.3 ± 15.7 977.2 ± 1.1

cartpole balance 815.1 ± 91.9 957.9 ± 13.2 901.4 ± 171.1 977.8 ± 19.4 969.2 ± 11.5 931.9 ± 29.9 996.4 ± 5.7

cartpole balance_sparse 831.1 ± 158.1 917.9 ± 50.4 830.1 ± 131.0 932.6 ± 103.1 996.2 ± 3.6 899.8 ± 86.1 991.1 ± 17.2

walker stand 394.7 ± 180.1 929.3 ± 28.9 875.1 ± 57.7 971.1 ± 6.4 951.9 ± 19.4 641.9 ± 146.9 978.8 ± 5.8

cartpole swingup 770.4 ± 34.2 850.4 ± 5.4 856.4 ± 21.9 684.2 ± 176.0 858.5 ± 5.6 823.9 ± 15.7 881.2 ± 0.5

walker walk 323.7 ± 131.3 834.2 ± 56.4 925.5 ± 30.6 954.7 ± 5.1 925.2 ± 26.5 778.4 ± 119.8 965.8 ± 4.5

reacher easy 312.9 ± 184.3 732.4 ± 244.1 616.1 ± 234.2 579.6 ± 269.9 950.6 ± 23.8 828.8 ± 110.3 951.3 ± 18.1

finger spin 220.8 ± 190.4 719.2 ± 68.4 528.9 ± 134.6 917.6 ± 22.1 681.0 ± 144.3 862.5 ± 50.0 875.1 ± 46.6

quadruped walk 204.0 ± 65.6 700.7 ± 105.9 768.2 ± 206.0 709.7 ± 147.2 506.2 ± 209.1 878.9 ± 27.7 953.6 ± 9.1

cartpole swingup_sparse 468.4 ± 219.8 562.2 ± 180.6 459.9 ± 198.6 617.6 ± 182.8 65.2 ± 143.5 385.4 ± 256.0 841.4 ± 9.2

reacher hard 369.3 ± 239.1 615.5 ± 221.1 389.7 ± 203.8 624.0 ± 230.1 580.1 ± 280.0 923.0 ± 32.1 942.7 ± 12.6

finger turn_easy 184.8 ± 28.4 503.9 ± 88.5 229.7 ± 41.4 724.5 ± 57.0 584.0 ± 171.8 491.6 ± 80.8 927.2 ± 10.9

walker run 57.6 ± 46.2 462.2 ± 43.1 674.3 ± 15.2 730.9 ± 19.1 646.4 ± 20.1 432.1 ± 118.4 766.5 ± 13.0

cheetah run 185.9 ± 79.0 459.6 ± 24.6 386.2 ± 154.2 575.5 ± 25.8 607.8 ± 13.2 657.4 ± 41.2 857.6 ± 20.8

pendulum swingup 123.2 ± 159.2 831.8 ± 9.2 577.4 ± 196.0 777.4 ± 130.4 72.3 ± 151.5 162.9 ± 194.8 838.7 ± 4.0

quadruped run 208.0 ± 48.5 452.7 ± 16.6 495.4 ± 92.6 476.3 ± 46.3 322.6 ± 86.0 434.1 ± 24.7 850.7 ± 25.8

finger turn_hard 100.5 ± 19.7 312.6 ± 92.0 135.7 ± 45.0 537.5 ± 117.1 371.1 ± 152.8 215.3 ± 83.6 904.8 ± 20.6

hopper stand 5.3 ± 0.6 30.3 ± 25.9 25.2 ± 11.0 179.1 ± 101.0 21.9 ± 25.2 332.9 ± 200.1 828.0 ± 114.3

acrobot swingup 19.4 ± 10.4 43.2 ± 28.5 16.6 ± 13.8 78.4 ± 45.2 11.4 ± 2.7 10.7 ± 2.1 267.3 ± 49.5

hopper hop 0.2 ± 0.2 0.7 ± 0.3 1.3 ± 1.0 75.0 ± 22.7 0.1 ± 0.0 51.8 ± 28.0 255.7 ± 13.1

22

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

Table 12: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=8, noise dim=32.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 924.7 ± 20.2 965.2 ± 3.9 760.4 ± 142.3 969.3 ± 4.8 924.8 ± 95.5 957.7 ± 22.7 977.0 ± 1.0

cartpole balance 814.1 ± 86.6 966.6 ± 9.2 950.3 ± 71.2 973.7 ± 12.4 967.5 ± 12.3 928.7 ± 32.3 999.5 ± 0.5

cartpole balance_sparse 646.6 ± 200.8 935.6 ± 34.8 784.0 ± 139.7 982.3 ± 29.3 984.7 ± 11.4 823.5 ± 160.2 985.0 ± 15.4

walker stand 265.4 ± 118.4 932.2 ± 13.8 796.8 ± 63.3 975.8 ± 5.1 968.6 ± 8.1 522.5 ± 154.5 978.5 ± 5.5

cartpole swingup 778.1 ± 28.9 851.9 ± 8.6 865.1 ± 21.4 838.7 ± 9.4 858.1 ± 5.7 828.6 ± 11.5 878.8 ± 4.9

walker walk 115.8 ± 60.1 834.5 ± 78.2 817.5 ± 111.6 954.6 ± 8.8 919.9 ± 23.6 537.1 ± 133.7 966.7 ± 3.0

reacher easy 306.0 ± 135.1 585.7 ± 274.6 552.9 ± 232.2 605.0 ± 201.1 896.6 ± 70.9 906.6 ± 22.3 945.9 ± 44.7

finger spin 174.4 ± 171.0 560.1 ± 50.3 408.0 ± 54.1 841.9 ± 88.1 226.0 ± 155.0 767.5 ± 115.8 849.3 ± 53.8

quadruped walk 255.5 ± 75.2 777.8 ± 61.2 805.9 ± 134.0 804.2 ± 113.3 407.6 ± 237.5 690.5 ± 142.0 953.0 ± 4.8

cartpole swingup_sparse 526.6 ± 169.5 526.0 ± 202.3 199.2 ± 150.1 613.2 ± 181.5 0.0 ± 0.0 318.3 ± 250.6 844.0 ± 1.8

reacher hard 395.4 ± 245.3 367.7 ± 231.4 157.7 ± 100.0 578.9 ± 163.3 630.9 ± 247.0 808.4 ± 173.4 950.8 ± 8.1

finger turn_easy 201.9 ± 38.5 419.0 ± 75.9 240.6 ± 36.4 619.0 ± 35.1 592.9 ± 176.6 327.3 ± 88.5 926.8 ± 10.9

walker run 23.9 ± 2.6 455.9 ± 41.3 649.4 ± 11.1 628.9 ± 25.7 635.3 ± 19.8 347.8 ± 84.0 760.6 ± 19.4

cheetah run 185.6 ± 86.7 433.8 ± 34.2 335.0 ± 87.5 553.2 ± 26.4 578.8 ± 22.0 628.9 ± 49.6 866.3 ± 10.1

pendulum swingup 124.1 ± 155.1 753.1 ± 148.5 462.9 ± 222.3 736.8 ± 243.9 4.0 ± 3.2 10.9 ± 2.7 840.6 ± 5.2

quadruped run 219.5 ± 63.5 417.9 ± 44.2 441.1 ± 93.7 433.3 ± 47.3 233.8 ± 59.0 381.1 ± 64.9 847.4 ± 21.7

finger turn_hard 97.9 ± 11.8 207.2 ± 53.8 110.8 ± 17.0 414.7 ± 49.5 177.6 ± 66.1 168.3 ± 50.4 885.4 ± 24.5

hopper stand 5.8 ± 0.5 29.1 ± 21.1 25.1 ± 14.4 198.1 ± 103.0 11.4 ± 10.7 116.6 ± 45.1 899.1 ± 18.4

acrobot swingup 11.1 ± 5.8 19.8 ± 10.9 17.0 ± 9.8 72.5 ± 43.9 14.3 ± 5.6 9.8 ± 3.6 280.8 ± 32.6

hopper hop 0.3 ± 0.3 0.4 ± 0.3 0.8 ± 0.5 51.1 ± 13.4 0.1 ± 0.0 31.3 ± 16.7 233.9 ± 22.6

Table 13: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=2.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 935.1 ± 19.2 973.5 ± 2.1 973.2 ± 3.2 973.5 ± 2.7 975.4 ± 1.2 970.1 ± 5.3 978.0 ± 1.0

cartpole balance 894.1 ± 36.9 648.2 ± 248.1 934.6 ± 56.1 983.9 ± 22.2 950.5 ± 18.7 935.2 ± 27.7 990.8 ± 18.6

cartpole balance_sparse 890.2 ± 81.4 548.1 ± 204.1 885.9 ± 48.8 861.6 ± 124.5 932.6 ± 80.2 976.8 ± 19.6 949.6 ± 85.3

walker stand 737.8 ± 123.8 951.9 ± 9.4 907.9 ± 31.3 970.3 ± 8.3 957.6 ± 17.1 903.4 ± 38.6 976.6 ± 9.3

cartpole swingup 806.9 ± 42.5 835.2 ± 36.0 874.8 ± 1.6 757.6 ± 118.0 862.9 ± 10.2 844.1 ± 14.8 873.9 ± 5.5

walker walk 635.2 ± 123.5 847.0 ± 76.0 833.6 ± 135.6 961.6 ± 5.1 946.4 ± 4.3 821.9 ± 99.4 964.7 ± 4.2

reacher easy 637.4 ± 186.6 660.9 ± 262.6 714.6 ± 214.8 361.8 ± 201.3 858.6 ± 114.2 701.9 ± 212.0 929.2 ± 18.6

finger spin 789.3 ± 41.8 875.8 ± 28.6 440.7 ± 151.8 922.9 ± 33.5 969.0 ± 6.6 903.1 ± 29.2 979.5 ± 7.1

quadruped walk 270.3 ± 131.4 787.2 ± 56.5 851.2 ± 96.3 783.7 ± 150.7 760.2 ± 178.3 807.6 ± 129.3 950.5 ± 11.0

cartpole swingup_sparse 387.3 ± 250.8 813.4 ± 15.9 685.2 ± 100.0 718.1 ± 146.1 787.0 ± 87.2 643.8 ± 191.9 834.8 ± 9.8

reacher hard 430.6 ± 206.5 467.3 ± 225.3 185.3 ± 104.2 516.1 ± 249.5 784.3 ± 106.5 837.9 ± 127.6 592.1 ± 165.2

finger turn_easy 226.9 ± 46.8 705.8 ± 118.6 691.6 ± 185.4 753.7 ± 123.1 934.9 ± 10.0 829.5 ± 98.3 912.3 ± 16.3

walker run 245.5 ± 86.2 467.9 ± 23.5 733.7 ± 14.4 751.9 ± 10.0 681.1 ± 10.3 458.9 ± 84.5 781.6 ± 13.9

cheetah run 167.6 ± 98.0 493.7 ± 45.9 484.8 ± 106.5 662.6 ± 24.8 699.0 ± 13.2 688.6 ± 52.0 851.4 ± 25.4

pendulum swingup 513.3 ± 232.5 840.2 ± 4.9 39.7 ± 55.0 767.2 ± 151.8 565.5 ± 259.6 412.3 ± 262.0 770.2 ± 152.5

quadruped run 170.7 ± 52.5 448.3 ± 13.0 571.1 ± 60.6 472.0 ± 59.4 356.0 ± 90.1 396.8 ± 59.3 882.9 ± 24.5

finger turn_hard 131.0 ± 72.2 702.8 ± 118.4 329.1 ± 223.8 516.0 ± 175.0 689.5 ± 198.0 755.5 ± 113.1 864.5 ± 47.5

hopper stand 22.8 ± 18.7 199.8 ± 140.6 39.0 ± 13.0 363.7 ± 180.1 218.6 ± 59.1 351.6 ± 145.5 901.3 ± 25.4

acrobot swingup 25.6 ± 7.7 280.6 ± 21.2 9.2 ± 3.0 83.0 ± 34.8 46.3 ± 41.4 11.2 ± 2.3 183.4 ± 66.7

hopper hop 1.5 ± 2.0 2.4 ± 2.2 4.4 ± 2.3 83.2 ± 29.2 52.6 ± 39.9 110.0 ± 45.2 250.5 ± 15.2

23

Under review for RLC 2025, to be published in RLJ 2025

Table 14: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=16.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 956.9 ± 4.9 971.9 ± 2.3 966.5 ± 10.6 975.5 ± 1.3 974.4 ± 1.8 966.5 ± 14.1 978.1 ± 0.8

cartpole balance 865.9 ± 56.5 932.1 ± 58.2 768.3 ± 210.6 990.9 ± 5.0 958.0 ± 31.8 933.1 ± 17.9 996.4 ± 5.6

cartpole balance_sparse 764.4 ± 120.6 820.0 ± 134.4 830.0 ± 79.4 727.8 ± 135.0 962.2 ± 31.3 937.8 ± 38.4 987.1 ± 12.8

walker stand 514.7 ± 122.9 940.2 ± 14.5 887.8 ± 58.6 976.5 ± 3.3 968.9 ± 6.8 819.0 ± 142.4 981.3 ± 2.8

cartpole swingup 756.9 ± 139.8 729.5 ± 185.0 869.9 ± 7.0 794.8 ± 113.9 865.3 ± 5.2 827.4 ± 20.2 870.0 ± 7.1

walker walk 586.1 ± 146.6 808.7 ± 67.5 887.8 ± 64.4 959.2 ± 6.8 927.3 ± 32.6 822.6 ± 49.6 954.2 ± 10.4

reacher easy 526.6 ± 224.1 766.1 ± 204.1 916.4 ± 45.5 600.0 ± 203.9 851.8 ± 160.0 942.1 ± 27.9 962.1 ± 7.1

finger spin 807.3 ± 67.2 798.6 ± 81.6 565.8 ± 169.4 919.1 ± 25.6 951.3 ± 14.6 837.0 ± 26.9 982.9 ± 0.8

quadruped walk 199.1 ± 52.4 790.1 ± 66.4 865.7 ± 93.9 762.7 ± 142.0 764.3 ± 125.4 883.0 ± 17.7 943.3 ± 20.4

cartpole swingup_sparse 617.0 ± 164.0 693.7 ± 182.5 728.9 ± 104.1 735.7 ± 139.5 829.8 ± 9.1 723.6 ± 145.9 837.5 ± 9.3

reacher hard 628.9 ± 169.2 574.4 ± 233.5 362.2 ± 162.2 375.9 ± 236.3 870.5 ± 38.1 853.9 ± 170.0 817.5 ± 136.7

finger turn_easy 204.0 ± 31.8 766.0 ± 86.4 381.7 ± 152.1 742.7 ± 131.9 847.8 ± 89.8 765.1 ± 92.6 920.8 ± 23.9

walker run 143.7 ± 54.3 450.5 ± 42.2 722.7 ± 14.8 743.5 ± 17.2 669.3 ± 17.8 446.7 ± 91.5 795.2 ± 5.0

cheetah run 69.3 ± 104.1 508.0 ± 30.6 522.6 ± 99.1 669.8 ± 13.4 662.9 ± 19.1 670.3 ± 64.1 874.6 ± 14.5

pendulum swingup 332.5 ± 251.6 835.9 ± 5.6 291.1 ± 198.8 766.7 ± 150.9 372.0 ± 264.5 283.6 ± 238.8 765.3 ± 151.3

quadruped run 193.9 ± 73.4 457.0 ± 11.7 537.0 ± 63.3 486.9 ± 29.8 421.8 ± 79.0 414.1 ± 59.0 889.8 ± 41.5

finger turn_hard 108.4 ± 16.3 702.2 ± 104.5 211.5 ± 143.4 637.6 ± 85.1 707.7 ± 159.4 649.8 ± 134.5 879.2 ± 20.5

hopper stand 97.2 ± 126.9 191.7 ± 128.6 41.4 ± 12.7 292.9 ± 123.9 209.6 ± 148.6 515.7 ± 183.8 843.0 ± 82.2

acrobot swingup 30.1 ± 12.6 222.6 ± 17.9 40.9 ± 27.3 59.8 ± 33.4 25.8 ± 13.7 12.6 ± 2.6 245.9 ± 37.0

hopper hop 3.7 ± 4.5 5.5 ± 5.5 6.8 ± 3.5 93.8 ± 35.2 18.4 ± 13.2 122.4 ± 37.4 238.5 ± 28.4

Table 15: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=64.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 810.6 ± 189.0 965.1 ± 2.7 903.0 ± 78.8 974.7 ± 1.4 853.7 ± 176.4 970.6 ± 3.1 978.2 ± 1.0

cartpole balance 889.0 ± 37.5 967.2 ± 11.1 506.0 ± 259.4 980.5 ± 16.9 978.8 ± 18.9 932.7 ± 29.9 999.8 ± 0.1

cartpole balance_sparse 885.8 ± 36.0 938.5 ± 35.3 741.4 ± 120.5 965.1 ± 37.6 875.1 ± 117.6 927.2 ± 79.9 989.9 ± 13.1

walker stand 384.4 ± 117.1 923.9 ± 29.8 776.7 ± 63.6 970.7 ± 9.7 965.9 ± 4.4 698.4 ± 163.0 980.9 ± 3.3

cartpole swingup 726.1 ± 142.4 853.0 ± 5.7 874.1 ± 9.2 770.9 ± 108.4 855.8 ± 3.9 836.5 ± 12.7 870.7 ± 6.0

walker walk 408.2 ± 89.8 828.3 ± 71.3 915.6 ± 42.6 944.7 ± 31.5 940.4 ± 7.5 802.7 ± 72.2 964.8 ± 3.7

reacher easy 538.6 ± 155.7 761.9 ± 211.0 778.9 ± 193.9 751.9 ± 148.1 950.7 ± 13.3 798.1 ± 209.1 962.3 ± 9.2

finger spin 460.5 ± 197.1 776.3 ± 45.8 496.9 ± 107.2 915.5 ± 28.1 837.1 ± 15.0 802.9 ± 54.3 964.4 ± 17.7

quadruped walk 233.6 ± 65.9 799.8 ± 52.6 824.5 ± 134.6 825.9 ± 77.3 795.8 ± 154.0 797.5 ± 117.1 945.6 ± 12.2

cartpole swingup_sparse 739.4 ± 67.3 793.7 ± 28.5 611.0 ± 162.1 777.3 ± 28.8 814.0 ± 20.4 798.8 ± 20.7 838.2 ± 8.9

reacher hard 493.5 ± 176.6 594.9 ± 266.4 508.8 ± 181.3 654.3 ± 209.1 904.2 ± 41.1 771.1 ± 197.9 944.4 ± 14.2

finger turn_easy 204.4 ± 21.4 708.6 ± 108.3 336.0 ± 116.2 718.1 ± 103.7 548.0 ± 204.3 500.6 ± 133.6 929.3 ± 25.8

walker run 138.3 ± 54.1 443.9 ± 43.2 706.2 ± 15.5 727.3 ± 22.7 646.4 ± 23.2 495.6 ± 82.7 765.0 ± 15.7

cheetah run 42.4 ± 63.3 487.7 ± 30.1 340.3 ± 121.6 616.1 ± 19.8 598.4 ± 19.9 696.8 ± 28.9 841.1 ± 20.8

pendulum swingup 203.6 ± 211.9 803.3 ± 43.7 455.6 ± 254.6 839.1 ± 5.3 494.2 ± 269.3 497.8 ± 257.4 838.9 ± 6.6

quadruped run 195.3 ± 69.0 438.4 ± 26.7 526.2 ± 72.2 456.8 ± 38.4 420.0 ± 80.5 419.9 ± 31.0 863.6 ± 39.4

finger turn_hard 102.0 ± 18.7 294.7 ± 87.1 174.0 ± 67.9 597.3 ± 58.8 279.0 ± 159.5 344.3 ± 142.0 908.2 ± 16.3

hopper stand 9.6 ± 8.7 35.3 ± 28.5 29.4 ± 10.5 351.2 ± 175.7 94.4 ± 53.1 580.2 ± 165.3 903.7 ± 19.2

acrobot swingup 17.3 ± 9.1 67.4 ± 22.3 29.5 ± 24.6 94.9 ± 55.1 13.9 ± 4.4 12.7 ± 3.5 275.4 ± 32.1

hopper hop 2.6 ± 4.3 1.4 ± 0.9 3.4 ± 2.4 92.9 ± 29.0 2.1 ± 3.8 120.8 ± 44.6 245.9 ± 14.1

24

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

Table 16: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=128.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

ball_in_cup catch 602.4 ± 260.0 964.0 ± 2.3 793.0 ± 143.8 969.4 ± 7.6 817.5 ± 216.7 966.6 ± 8.1 973.7 ± 1.5

cartpole balance 868.8 ± 55.3 818.9 ± 203.4 768.9 ± 222.2 982.9 ± 10.4 926.5 ± 47.6 943.7 ± 23.0 998.9 ± 1.7

cartpole balance_sparse 631.0 ± 158.5 972.9 ± 19.2 671.7 ± 147.7 956.1 ± 33.5 962.6 ± 46.1 865.8 ± 128.5 990.4 ± 11.7

walker stand 315.8 ± 91.8 925.4 ± 18.7 863.1 ± 72.6 972.1 ± 9.2 953.3 ± 18.0 765.7 ± 128.3 980.8 ± 2.1

cartpole swingup 779.2 ± 27.6 849.1 ± 8.6 864.6 ± 4.8 641.8 ± 194.5 854.4 ± 8.7 835.5 ± 8.2 874.0 ± 5.0

walker walk 239.1 ± 112.6 879.3 ± 46.0 899.3 ± 69.0 954.8 ± 6.0 910.8 ± 29.5 754.4 ± 158.0 962.0 ± 6.1

reacher easy 297.5 ± 157.4 621.3 ± 254.4 704.9 ± 288.4 799.6 ± 147.2 935.3 ± 31.1 859.9 ± 160.6 954.5 ± 13.1

finger spin 394.5 ± 194.0 666.3 ± 55.8 433.7 ± 78.0 852.5 ± 64.3 657.3 ± 53.4 842.4 ± 64.8 934.7 ± 38.2

quadruped walk 209.5 ± 49.9 789.1 ± 53.4 803.6 ± 117.2 708.7 ± 125.6 567.7 ± 222.2 822.5 ± 100.1 944.7 ± 14.4

cartpole swingup_sparse 665.0 ± 104.9 0.6 ± 0.7 212.2 ± 172.6 517.7 ± 225.3 397.2 ± 264.0 650.1 ± 194.3 836.3± 9.5

reacher hard 712.8 ± 152.2 263.2 ± 213.3 242.2 ± 177.5 747.7 ± 158.7 693.0 ± 223.5 899.3 ± 85.7 944.9 ± 10.6

finger turn_easy 210.6 ± 46.1 477.5 ± 105.4 237.6 ± 62.4 655.3 ± 53.6 459.0 ± 118.5 374.4 ± 104.9 936.8 ± 7.5

walker run 26.2 ± 2.9 449.9 ± 62.1 703.9 ± 15.7 710.6 ± 28.9 643.3 ± 14.8 507.0 ± 97.3 766.6 ± 12.6

cheetah run 219.5 ± 80.4 441.5 ± 42.3 297.7 ± 142.4 508.5 ± 39.8 577.4 ± 23.6 648.1 ± 35.9 862.4 ± 11.9

pendulum swingup 85.8 ± 78.0 764.4 ± 122.2 741.3 ± 140.4 706.9 ± 176.5 349.4 ± 271.1 166.2 ± 197.5 839.5 ± 5.6

quadruped run 181.8 ± 52.9 446.5 ± 21.8 508.2 ± 61.6 408.6 ± 73.9 315.3 ± 72.3 409.5 ± 50.1 867.3 ± 37.0

finger turn_hard 94.3 ± 24.0 213.2 ± 60.2 126.2 ± 21.1 497.7 ± 49.4 278.4 ± 110.5 290.4 ± 140.9 899.2 ± 27.3

hopper stand 15.1 ± 12.4 28.7 ± 23.2 15.2 ± 8.7 261.3 ± 153.5 50.6 ± 35.8 524.3 ± 197.3 874.0± 42.3

acrobot swingup 16.1 ± 8.7 24.9 ± 8.5 29.1 ± 14.5 101.9 ± 50.1 14.0 ± 3.0 10.5 ± 2.5 243.2 ± 41.1

hopper hop 0.4 ± 0.2 0.9 ± 0.1 1.8 ± 2.3 69.5 ± 26.3 0.1 ± 0.2 119.9 ± 28.8 245.2 ± 16.9

Table 17: Performance of pixel-based DMC tasks for the compared methods with original clean
background.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

cartpole balance 963.7 ± 21.7 984.4 ± 9.1 981.9 ± 27.0 945.0 ± 27.8 990.1 ± 5.1 943.2 ± 67.7 986.8 ± 5.8

cartpole balance_sparse 617.1 ± 629.2 984.0 ± 29.1 992.7 ± 16.2 995.1 ± 6.1 997.9 ± 3.9 916.3 ± 81.8 972.0 ± 47.9

walker stand 923.8 ± 63.4 968.3 ± 7.7 971.1 ± 6.3 963.2 ± 8.6 968.6 ± 9.0 961.1 ± 20.0 875.2 ± 219.7

finger spin 837.5 ± 197.7 845.5 ± 231.1 967.1 ± 40.7 913.5 ± 179.2 918.2 ± 173.4 973.9 ± 29.9 918.6 ± 181.1

cartpole swingup 841.9 ± 35.7 856.1 ± 7.0 859.5 ± 2.5 815.6 ± 21.8 852.3 ± 16.0 856.2 ± 15.6 838.6 ± 45.7

ball_in_cup catch 311.0 ± 450.8 950.2 ± 20.4 970.0 ± 1.9 843.5 ± 180.9 789.1 ± 481.4 793.9 ± 499.4 969.8 ± 6.8

walker walk 658.8 ± 184.6 764.3 ± 18.9 936.6 ± 32.3 941.9 ± 25.7 785.8 ± 129.8 955.9 ± 16.0 957.2 ± 4.1

point_mass easy 830.1 ± 69.4 512.5 ± 579.2 715.1 ± 495.6 418.7 ± 490.5 287.4 ± 506.9 490.4 ± 558.9 246.4 ± 483.4

cartpole swingup_sparse 732.8 ± 18.8 780.7 ± 49.3 758.6 ± 42.0 745.0 ± 74.7 766.7 ± 45.5 800.8 ± 30.6 655.2 ± 455.3

reacher easy 148.5 ± 107.9 228.3 ± 50.2 924.1 ± 44.5 212.7 ± 99.3 583.0 ± 147.5 129.9 ± 39.2 84.6 ± 19.7

pendulum swingup 19.3 ± 4.7 814.8 ± 26.3 841.6 ± 8.2 835.3 ± 11.0 424.5 ± 513.2 839.3 ± 6.7 668.9 ± 463.2

cheetah run 223.9 ± 270.5 583.6 ± 98.3 683.4 ± 221.2 302.2 ± 215.1 586.9 ± 154.5 403.7 ± 343.3 672.7 ± 465.3

walker run 142.9 ± 111.1 480.6 ± 32.8 530.1 ± 225.6 578.2 ± 47.8 304.3 ± 74.3 503.2 ± 171.3 550.5 ± 74.8

hopper hop 18.8 ± 21.4 178.1 ± 21.2 108.5 ± 61.6 129.2 ± 90.0 160.9 ± 21.6 203.1 ± 52.5 113.3 ± 136.8

Table 18: Performance of pixel-based DMC tasks for the compared methods in colored images
background.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

cartpole balance 977.8 ± 15.4 975.8 ± 14.2 932.5 ± 97.6 933.3 ± 28.1 979.3 ± 16.8 982.1 ± 12.6 980.5 ± 16.8

cartpole balance_sparse 781.5 ± 484.3 987.1 ± 25.3 998.2 ± 3.5 825.9 ± 480.1 985.1 ± 14.6 998.2 ± 4.2 990.8 ± 18.9

walker stand 883.3 ± 166.4 938.8 ± 57.4 963.4 ± 8.1 958.7 ± 9.7 941.3 ± 53.9 949.7 ± 47.8 948.4 ± 26.4

finger spin 489.8 ± 583.7 981.8 ± 2.9 786.8 ± 546.2 670.4 ± 504.0 975.3 ± 17.4 902.4 ± 207.2 984.4 ± 4.0

cartpole swingup 827.5 ± 25.7 827.5 ± 37.6 856.6 ± 9.8 799.6 ± 11.9 851.0 ± 7.9 844.1 ± 32.5 707.1 ± 373.0

ball_in_cup catch 119.9 ± 38.9 775.3 ± 454.1 967.7 ± 6.3 613.6 ± 573.5 605.6 ± 599.0 918.8 ± 146.8 459.9 ± 579.6

walker walk 635.0 ± 37.4 799.8 ± 162.9 907.9 ± 19.0 828.2 ± 125.8 701.7 ± 158.9 570.0 ± 620.9 938.2 ± 23.8

point_mass easy 258.2 ± 440.5 710.3 ± 493.0 544.9 ± 602.0 527.0 ± 406.0 156.3 ± 424.4 524.1 ± 592.5 670.8 ± 468.6

cartpole swingup_sparse 717.7 ± 49.0 787.5 ± 48.0 770.3 ± 59.1 551.3 ± 386.5 611.6 ± 429.4 804.3 ± 51.0 797.2 ± 54.1

reacher easy 129.0 ± 58.2 188.5 ± 46.0 952.0 ± 7.6 164.6 ± 73.9 673.9 ± 125.1 195.8 ± 41.1 83.0 ± 20.9

pendulum swingup 1.1 ± 0.7 622.7 ± 650.5 414.1 ± 473.9 174.1 ± 466.3 70.4 ± 128.8 168.7 ± 452.5 336.1 ± 570.1

cheetah run 212.8 ± 227.5 368.1 ± 31.9 373.6 ± 58.2 284.8 ± 196.5 362.2 ± 40.7 377.3 ± 59.0 207.5 ± 376.6

walker run 140.9 ± 96.7 385.2 ± 33.5 514.1 ± 68.3 531.3 ± nan 269.1 ± 45.2 368.6 ± 268.3 543.1 ± 43.0

hopper hop 9.2 ± 20.5 63.9 ± 77.2 71.2 ± 83.4 37.4 ± 117.6 110.7 ± 126.1 174.0 ± 42.6 118.3 ± 133.4

25

Under review for RLC 2025, to be published in RLJ 2025

Table 19: Performance of pixel-based DMC tasks for the compared methods in grayscale images
background.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

cartpole balance 788.0 ± 343.4 883.6 ± 221.3 986.4 ± 13.3 845.4 ± 262.1 986.8 ± 6.3 943.3 ± 81.8 985.3 ± 6.9

cartpole balance_sparse 791.7 ± 540.5 998.2 ± 2.3 997.6 ± 6.1 761.2 ± 751.8 999.4 ± 0.9 999.4 ± 1.0 985.9 ± 16.6

walker stand 822.1 ± 189.7 952.6 ± 13.5 961.4 ± 10.0 922.8 ± 84.9 955.7 ± 23.0 950.5 ± 38.0 952.0 ± 20.2

finger spin 558.5 ± 632.9 906.8 ± 210.6 955.1 ± 66.0 705.9 ± 499.9 972.2 ± 16.6 926.4 ± 155.9 982.8 ± 4.8

cartpole swingup 830.6 ± 24.5 839.9 ± 19.3 861.5 ± 11.7 749.2 ± 115.1 855.9 ± 12.1 838.9 ± 21.3 507.9 ± 409.3

ball_in_cup catch 205.1 ± 276.5 782.8 ± 396.7 797.6 ± 484.3 568.6 ± 623.2 739.3 ± 483.9 761.1 ± 440.6 585.2 ± 580.9

walker walk 502.5 ± 224.8 712.2 ± 137.8 922.1 ± 13.1 739.5 ± 495.3 640.0 ± 46.6 931.5 ± 66.0 938.6 ± 26.4

point_mass easy 518.8 ± 587.9 535.4 ± 604.8 536.7 ± 605.3 201.0 ± 435.0 172.7 ± 477.7 324.6 ± 545.9 465.7 ± 414.0

cartpole swingup_sparse 670.5 ± 65.7 794.4 ± 20.3 354.8 ± 476.7 596.8 ± 358.2 610.0 ± 647.6 629.0 ± 437.1 785.0 ± 51.5

reacher easy 141.6 ± 81.7 203.3 ± 70.9 962.4 ± 19.4 179.4 ± 111.2 590.2 ± 152.4 150.7 ± 73.8 88.1 ± 23.6

pendulum swingup 4.9 ± 5.7 549.5 ± 572.5 199.7 ± 435.7 337.2 ± 553.5 59.3 ± 148.8 339.0 ± 569.5 346.2 ± 576.4

cheetah run 202.0 ± 161.9 369.4 ± 56.0 410.0 ± 29.6 217.3 ± 244.0 376.8 ± 31.9 286.5 ± 198.8 253.4 ± 285.4

walker run 74.7 ± 209.4 416.2 ± 33.1 469.4 ± 144.8 310.3 ± 327.2 281.3 ± 52.4 267.1 ± 313.3 404.5 ± 269.8

hopper hop 11.5 ± 30.9 120.9 ± 88.7 79.9 ± 54.9 73.5 ± 82.4 147.0 ± 19.8 100.2 ± 117.5 78.8 ± 134.1

Table 20: Performance of pixel-based DMC tasks for the compared methods in colored video back-
ground.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

cartpole balance 924.7 ± 54.5 956.1 ± 45.7 961.8 ± 27.4 760.6 ± 386.2 979.4 ± 8.7 985.6 ± 22.1 984.1 ± 8.9

cartpole balance_sparse 677.1 ± 212.8 986.0 ± 22.6 958.2 ± 93.6 990.7 ± 14.0 986.8 ± 13.7 997.5 ± 6.4 993.6 ± 20.2

walker stand 534.5 ± 347.5 943.3 ± 17.7 960.0 ± 12.1 951.0 ± 5.3 961.8 ± 10.8 916.2 ± 128.5 957.7 ± 5.6

finger spin 163.9 ± 521.6 978.8 ± 12.7 860.1 ± 331.9 905.2 ± 177.5 962.1 ± 27.0 982.2 ± 4.6 908.8 ± 212.0

cartpole swingup 770.6 ± 40.8 850.5 ± 7.6 847.6 ± 33.3 301.0 ± 347.0 847.0 ± 11.9 861.8 ± 33.1 832.9 ± 72.4

ball_in_cup catch 95.7 ± 57.6 885.1 ± 119.2 800.5 ± 533.7 766.6 ± 412.8 935.9 ± 55.0 365.6 ± 262.3 885.4 ± 94.9

walker walk 100.6 ± 144.0 845.3 ± 83.9 921.6 ± 30.3 651.9 ± 458.0 684.6 ± 151.0 667.6 ± 452.6 912.6 ± 26.2

point_mass easy 2.2 ± 3.8 889.8 ± 5.7 25.2 ± 31.6 281.4 ± 670.6 889.6 ± 10.1 365.6 ± 592.9 178.3 ± 477.2

cartpole swingup_sparse 0.0 ± 0.0 731.2 ± 91.1 10.3 ± 14.5 92.1 ± 292.3 734.0 ± 97.4 573.0 ± 429.4 675.7 ± 240.7

reacher easy 203.8 ± 84.7 188.6 ± 26.2 949.2 ± 45.9 175.2 ± 76.3 249.6 ± 66.1 183.3 ± 59.1 86.4 ± 18.0

pendulum swingup 6.3 ± 8.1 733.2 ± 351.4 452.2 ± 453.2 334.7 ± 549.6 85.3 ± 93.9 519.2 ± 419.7 654.8 ± 447.6

cheetah run 53.0 ± 59.8 341.2 ± 34.0 395.4 ± 21.2 220.3 ± 49.8 348.8 ± 8.4 306.7 ± 37.8 315.7 ± 21.0

walker run 54.9 ± 23.3 367.0 ± 33.4 492.7 ± 135.4 148.5 ± 153.7 244.1 ± 70.8 115.8 ± 103.8 168.8 ± 170.5

hopper hop 0.2 ± 0.4 108.2 ± 80.7 41.2 ± 45.3 27.6 ± 46.0 136.1 ± 18.9 23.0 ± 37.0 27.5 ± 50.0

Table 21: Performance of pixel-based DMC tasks for the compared methods in grayscale video
background.

Task DBC MICo RAP RDBC SAC DeepMDP SimSR

cartpole balance 951.9 ± 36.1 977.2 ± 6.6 983.2 ± 12.6 882.2 ± 271.8 973.3 ± 17.5 990.7 ± 6.7 962.9 ± 57.5

cartpole balance_sparse 875.0 ± 134.2 996.3 ± 2.2 956.8 ± 67.6 803.4 ± 545.8 991.0 ± 15.2 996.4 ± 8.9 990.4 ± 23.0

walker stand 643.8 ± 253.2 947.8 ± 25.7 971.0 ± 3.9 961.1 ± 3.1 961.5 ± 3.7 946.6 ± 64.9 957.0 ± 8.7

finger spin 0.0 ± 0.0 979.9 ± 7.7 971.4 ± 21.4 974.8 ± 13.1 976.9 ± 11.8 982.7 ± 2.9 902.6 ± 261.3

cartpole swingup 849.1 ± 17.5 854.3 ± 11.1 861.7 ± 8.0 389.8 ± 388.4 858.0 ± 14.2 863.4 ± 12.3 854.7 ± 51.0

ball_in_cup catch 118.0 ± 39.2 930.5 ± 28.0 958.9 ± 23.3 865.0 ± 144.5 962.0 ± 3.6 693.5 ± 259.7 907.4 ± 70.0

walker walk 146.5 ± 84.5 763.3 ± 258.4 913.6 ± 33.1 885.0 ± 46.9 650.4 ± 191.3 869.2 ± 25.5 907.8 ± 48.7

point_mass easy 156.8 ± 428.7 893.0 ± 11.0 439.9 ± 356.9 70.8 ± 195.6 885.1 ± 28.4 709.9 ± 492.9 541.6 ± 596.3

cartpole swingup_sparse 0.0 ± 0.0 803.0 ± 26.9 387.9 ± 440.7 339.2 ± 400.9 643.4 ± 447.7 643.8 ± 449.4 490.0 ± 555.5

reacher easy 162.8 ± 115.3 171.1 ± 69.7 968.2 ± 14.7 166.9 ± 42.4 268.3 ± 83.7 209.2 ± 53.8 84.9 ± 16.5

pendulum swingup 33.9 ± 90.5 695.5 ± 391.8 708.2 ± 290.2 269.1 ± 596.6 207.5 ± 459.2 836.2 ± 17.7 835.6 ± 15.4

cheetah run 77.4 ± 62.4 366.9 ± 12.9 404.8 ± 20.8 170.2 ± 194.0 359.9 ± 25.5 343.2 ± 69.7 343.4 ± 18.5

walker run 63.1 ± 17.1 393.4 ± 16.2 544.0 ± 26.3 180.3 ± 109.5 244.8 ± 45.7 175.8 ± 106.2 270.5 ± 190.6

hopper hop 0.1 ± 0.1 117.3 ± 81.9 77.3 ± 53.2 38.2 ± 66.9 121.1 ± 84.2 18.3 ± 49.4 0.9 ± 0.9

26

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 0.2, Noise dim: 32

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 10: Individual state-based task performance.

27

Under review for RLC 2025, to be published in RLJ 2025

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 1.0, Noise dim: 32

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 11: Individual state-based task performance.

28

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 2.0, Noise dim: 32

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 12: Individual state-based task performance.

29

Under review for RLC 2025, to be published in RLJ 2025

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 4.0, Noise dim: 32

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 13: Individual state-based task performance.

30

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 8.0, Noise dim: 32

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 14: Individual state-based task performance.

31

Under review for RLC 2025, to be published in RLJ 2025

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 1.0, Noise dim: 2

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 15: Individual state-based task performance.

32

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 1.0, Noise dim: 16

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 16: Individual state-based task performance.

33

Under review for RLC 2025, to be published in RLJ 2025

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 1.0, Noise dim: 64

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 17: Individual state-based task performance.

34

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0

200

400

600

800

1000
ball_in_cup/catch cartpole/balance cartpole/balance_sparse walker/stand cartpole/swingup

0

200

400

600

800

1000
walker/walk reacher/easy finger/spin quadruped/walk cartpole/swingup_sparse

0

200

400

600

800

1000
reacher/hard finger/turn_easy walker/run cheetah/run pendulum/swingup

0 1 2
1e6

0

200

400

600

800

1000
quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/stand

0 1 2
1e6

acrobot/swingup

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian, Noise std: 1.0, Noise dim: 128

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 18: Individual state-based task performance.

35

Under review for RLC 2025, to be published in RLJ 2025

0

200

400

600

800

1000
cartpole/balance cartpole/balance_sparse walker/stand finger/spin cartpole/swingup

0

200

400

600

800

1000
ball_in_cup/catch walker/walk point_mass/easy cartpole/swingup_sparse reacher/easy

0 1 2
1e6

0

200

400

600

800

1000
pendulum/swingup

0 1 2
1e6

cheetah/run

0 1 2
1e6

walker/run

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: No Distraction

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 19: Individual pixel-based task performance.

36

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0

200

400

600

800

1000
cartpole/balance cartpole/balance_sparse walker/stand finger/spin cartpole/swingup

0

200

400

600

800

1000
ball_in_cup/catch walker/walk point_mass/easy cartpole/swingup_sparse reacher/easy

0 1 2
1e6

0

200

400

600

800

1000
pendulum/swingup

0 1 2
1e6

cheetah/run

0 1 2
1e6

walker/run

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: Natural Image (Grayscale)

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 20: Individual pixel-based task performance.

37

Under review for RLC 2025, to be published in RLJ 2025

0

200

400

600

800

1000
cartpole/balance cartpole/balance_sparse walker/stand finger/spin cartpole/swingup

0

200

400

600

800

1000
ball_in_cup/catch walker/walk point_mass/easy cartpole/swingup_sparse reacher/easy

0 1 2
1e6

0

200

400

600

800

1000
pendulum/swingup

0 1 2
1e6

cheetah/run

0 1 2
1e6

walker/run

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: Natural Images

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 21: Individual pixel-based task performance.

38

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0

200

400

600

800

1000
cartpole/balance cartpole/balance_sparse walker/stand finger/spin cartpole/swingup

0

200

400

600

800

1000
ball_in_cup/catch walker/walk point_mass/easy cartpole/swingup_sparse reacher/easy

0 1 2
1e6

0

200

400

600

800

1000
pendulum/swingup

0 1 2
1e6

cheetah/run

0 1 2
1e6

walker/run

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: Natural Video (Grayscale)

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 22: Individual pixel-based task performance.

39

Under review for RLC 2025, to be published in RLJ 2025

0

200

400

600

800

1000
cartpole/balance cartpole/balance_sparse walker/stand finger/spin cartpole/swingup

0

200

400

600

800

1000
ball_in_cup/catch walker/walk point_mass/easy cartpole/swingup_sparse reacher/easy

0 1 2
1e6

0

200

400

600

800

1000
pendulum/swingup

0 1 2
1e6

cheetah/run

0 1 2
1e6

walker/run

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: Natural Video

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 23: Individual pixel-based task performance.

40

Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

0

200

400

600

800

1000
cartpole/balance cartpole/balance_sparse walker/stand finger/spin cartpole/swingup

0

200

400

600

800

1000
ball_in_cup/catch walker/walk point_mass/easy cartpole/swingup_sparse reacher/easy

0 1 2
1e6

0

200

400

600

800

1000
pendulum/swingup

0 1 2
1e6

cheetah/run

0 1 2
1e6

walker/run

0 1 2
1e6

hopper/hop

Environment Steps

M
ea

n
Re

wa
rd

 Noise setting: IID Gaussian

SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 24: Individual pixel-based task performance.

0 1 2
1e6

0.00

0.25

0.50

0.75

1.00 hopper/hop

0 1 2
1e6

pendulum/swingup

0 1 2
1e6

walker/stand

0 1 2
1e6

walker/walk

0 1 2
1e6

cartpole/balance

0 1 2
1e6

ball_in_cup/catch

Environment Steps

M
ea

n
DF

 Noise setting: Natural Video
SAC DeepMDP DBC RDBC MICo RAP SimSR

Figure 25: Denoising factor (ODD evaluation setting) on agent encoder ϕ.

0 1 2
1e6

0.0

0.5

1.0 hopper/hop

0 1 2
1e6

pendulum/swingup

0 1 2
1e6

walker/stand

0 1 2
1e6

walker/walk

0 1 2
1e6

cartpole/balance

0 1 2
1e6

ball_in_cup/catch

Environment Steps

M
ea

n
DF

 Noise setting: Natural Video (Grayscale)
RDBC MICo SimSR DBC

Figure 26: Denoising factor (ID evaluation setting) on isolated metric encoder ϕ̃.

41

Under review for RLC 2025, to be published in RLJ 2025

0 1 2
1e6

0.0

0.5

1.0 hopper/hop

0 1 2
1e6

pendulum/swingup

0 1 2
1e6

walker/stand

0 1 2
1e6

walker/walk

0 1 2
1e6

cartpole/balance

0 1 2
1e6

ball_in_cup/catch

Environment Steps

M
ea

n
DF

 Noise setting: Natural Video (Grayscale)
RDBC MICo SimSR DBC

Figure 27: Denoising factor (OOD evaluation setting) on isolated metric encoder ϕ̃.

0 1 2
1e6

0.0

0.5

1.0 hopper/hop

0 1 2
1e6

pendulum/swingup

0 1 2
1e6

walker/stand

0 1 2
1e6

walker/walk

0 1 2
1e6

cartpole/balance

0 1 2
1e6

ball_in_cup/catch

Environment Steps

M
ea

n
DF

 Noise setting: Natural Video
RDBC MICo SimSR DBC

Figure 28: Denoising factor (ID evaluation setting) on isolated metric encoder ϕ̃.

0 1 2
1e6

0.0

0.5

1.0 hopper/hop

0 1 2
1e6

pendulum/swingup

0 1 2
1e6

walker/stand

0 1 2
1e6

walker/walk

0 1 2
1e6

cartpole/balance

0 1 2
1e6

ball_in_cup/catch

Environment Steps

M
ea

n
DF

 Noise setting: Natural Video
RDBC MICo SimSR DBC

Figure 29: Denoising factor (OOD evaluation setting) on isolated metric encoder ϕ̃.

42

