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Learning to Handle Large Obstructions in Video Frame
Interpolation
Anonymous Authors

ABSTRACT
Video frame interpolation based on optical flow has made great
progress in recent years. Most of the previous studies have focused
on improving the quality of clean videos. However, many real-world
videos contain large obstructions which cause blur and artifacts
making the video discontinuous. To address this challenge, we pro-
pose our Obstruction Robustness Framework (ORF) that enhances
the robustness of existing VFI networks in the face of large ob-
structions. The ORF contains two components: (1) A feature repair
module that first captures ambiguous pixels in the synthetic frame
by a region similarity map, then repairs them with a cross-overlap
attention module. (2) A data augmentation strategy that enables the
network to handle dynamic obstructions without extra data. To the
best of our knowledge, this is the first work that explicitly addresses
the error caused by large obstructions in video frame interpola-
tion. By using previous state-of-the-art methods as backbones, our
method not only improves the results in original benchmarks but
also significantly enhances the interpolation quality for videos with
obstructions.

CCS CONCEPTS
• Computing methodologies → Reconstruction.

KEYWORDS
Video Frame Interpolation, Obstruction Handling, Cross-attention

1 INTRODUCTION
Video frame interpolation (VFI) synthesizes intermediate images
from given image sequences. Related algorithms are widely imple-
mented in real-world applications, such as video super-resolution [13,
38], slowmotion generation [1, 10, 26], novel view synthesis [11, 43]
and video compression [21].

Deep learning-based methods have achieved remarkable results
on VFI benchmarks. Previous methods utilize kernels [2, 5, 20] or
optical flow [9, 15, 22, 25, 28, 29, 41] to align each object with its
location in the neighboring frames.

Progress so far mainly focuses on interpolation quality [22, 28]
and efficiency [7, 15]. Most existing video frame interpolation meth-
ods assume that scene objects are in clear viewwithout any external
interference. However, in many real-world applications, complex
obstructions are often present due to various factors. For example,
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Figure 1: Predictions in real-world obstruction scenes, stan-
dard approaches (i.e., IFRNet [15], EMA [41]) fail due to oc-
clusions and motion error, our method makes the models
robust in those conditions.

video captured when driving, during sports and in outdoor settings
may involve obstructions caused by fences, raindrops or reflec-
tions. Obstructions can cause large blurred areas and artifacts in
the interpolated frames degrading the visual quality and temporal
consistency of the output [1, 25]. As a result, applying previous VFI
methods directly on videos with obstructions leads to subpar per-
formance. Calculating the motion field in a video with obstructions
is difficult, as pixels of an object often lack matches between two
input frames.

Previous methods [3, 9, 15, 30, 42] directly feed the input frames
into the network and hope the network can fix the occlusions as
shown in Figure 2 (a). Some recent methods apply attention-based
mechanisms [22], which could globally match features to better
handle occlusions as depicted in Figure 2 (b). However, those meth-
ods still generate blur and artifacts in scenes with large occlusions
caused by obstructions (see examples in Figure 1). This shows that
mere awareness of occlusions is insufficient for reconstructing large
occlusions caused by obstructions.

A more explicit approach is needed to identify blurred regions
within the features and subsequently recover them. To achieve this
goal, we propose an Obstruction Robustness Framework to handle
videos with obstructions. First, we observe that a majority of errors
caused by large obstructions are dense and localized around the
respective obstruction. Intuitively, this issue can be addressed by
identifying the error-prone region and selectively rectifying only
this specific area. Thus, we propose a feature repair module which
identifies the potentially ambiguous pixels or regions by a Region
Similarity Map (RSM). The RSM assesses pixel similarity across
warped adjacent input frames to indicate dissimilar regions that
are prone to errors. We specifically repair these dissimilar regions
utilizing a cross-overlap attention (COA) module. The key insight
of the COA is that we can directly restore the erroneous regions
within the synthetic frame by examining analogous areas within the

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 2: Comparison between current VFI methods and our
approach. (a) the basic VFI model structure (i.e., IFRNet [15],
and ABME [30]). (b) the VFI model with global attention
for long-range feature matching(i.e., VFIformer [22]). (c) our
explicit feature repaired framework first identifies the error
region, and then fix it by feature repair.

input image. The COA effectively matches and aggregates semantic
information of objects from the input frames into the synthesized
frame. We then employ these semantic features to correct the am-
biguous regions in the synthesized frame, as previously delineated
by the RSM (see in Figure 2 (c)).

Second, we introduce a data augmentation strategy Dynamic
Mask Distractions (DMD), which captures dynamic obstructions
from real scenes and integrates them into clean videos, thereby
generating extra training pairs. DMD differs from prior data aug-
mentation strategies in video frame interpolation, which typically
involves the artificial insertion of shapes [17] or low-level modifi-
cations [15, 22, 35]. Instead, DMD utilizes semantically meaningful
obstructions derived from real-world scenarios. Moreover, we ani-
mate these obstructions to mimic the movement in natural settings.
We demonstrate DMD can improve the robustness of existing meth-
ods on both videos with and without obstructions without any new
videos.

To prove the efficiency of ourmethod, we apply it to various state-
of-the-art VFI models. We then construct a special test set called
Real World Obstructions (RWO) dataset which contains various
real-word obstructions close to the camera. The experiments with
our RWO dataset shows that our approach significantly improves
the result compared to other methods.

Our main contributions are:

(1) We propose a novel repair feature module which contains
RSM and COA. RSM first marks possible blur regions in fea-
tures, then COA fixes the region by aggregating appearance
information of objects.

(2) We propose a new data augmentation strategy called DMD
which generates real semantic obstructions based on a dy-
namic binary mask. By applying DMD during training, mod-
els improve robustness to videos with large obstruction.

(3) By integrating ourmoduleswith previousmethods, we demon-
strate that our method achieves significant performance im-
provement on our RWO dataset and attains state-of-the-art
results on multiple large occlusion benchmarks. Our method
is the first to handle large obstructions in video frame inter-
polation.

2 RELATEDWORK
Existing VFI methods can be classified into three categories: kernel-
based, phase-based and flow-based approaches.

Kernel-based methods regard motion estimation as being joint
with motion compensation. AdaConv [26] proposes estimating a
pair of spatially-adaptive convolution kernels using a CNN and
predicting intermediate flow by convolving input frames with the
proposed kernels. A follow-up work [27] uses adaptive separable
convolutions to reduce the large computational memory demand.
Other alternatives improve it by estimating extra kernel offset vec-
tors [2, 16], integrating deformable convolution to increase the
receptive field [2], and proposing a multi-scale tailored loss func-
tion [31]. However, they are generally computationally expensive
and inefficient in dealing with occlusion.

Earlier phase-based approaches (e.g. [24]) use phase informa-
tion to learn the motion relationship, and they interpolate phase
across the levels of a multi-scale pyramid. This approach works well
with small motions but fails to handle challenging interpolation.
PhaseNet [23] proposes a neural network that directly estimates
the phase decomposition of the intermediate frame.

Previous flow-based works improve performance of occlusion
scenes by various techniques including by estimating more robust
optical flow for warping pixels [8, 10, 30, 39] or by determining
occlusions with a depth map [1]. Recently, flow-based approaches
have made good progress. CIAN [4] proposes to use channel at-
tention and PixelShuffle to replace the extra flow estimation net-
work. RIFE [8] proposes a sub-network IFNet that support arbitrary-
timestep frame interpolation with the temporal input. FILM [33]
proposes a multi-scale feature extractor that shares weights at all
scales for large motion videos. IFRNet [15] proposes a lightweight
encoder-decoder based network architecture for real-time appli-
cations. VFIformer [22] is a transformer-based U-net framework
which enlarges the receptive field for capturing long-range infor-
mation. Yoo et al. [40] proposed to use video object segmentation as
an auxiliary task to train VFI models, which can learn extra segmen-
tation information to interpolate frames with more precise object
boundaries. Kim et al. [14] proposed to use event voxel grids as an
additional input modality to capture the changes in pixel intensity
asynchronously and with high temporal resolution, which can han-
dle large and fast motions. Lee et al. [17] proposed a Figure-Text
Mixing data augmentation technique for handling discontinuities in
frames, which inserts static shapes and text. Unlike their approach,
our data augmentation adds real-world scenes as obstructions and
makes them move between frames. Plack et al. [32] propose en-
hancing frame rendering by estimating an error map and using it to
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refine the frame quality through a second forward pass. EMA [41]
proposed a transformer block that extracts motion and appearance
information separately to better capture global motions compared
with mixed feature map. BiFormer [28] proposed a transformer
based architecture including blockwise bilateral cost volumes, lo-
cal motion module and global motion refinement that handles 4K
video frame interpolation. However, those methods still face the
challenge of dealing with videos with large obstructions. In this
paper, we mainly focus on handling close camera obstruction for
real world frame interpolation.

3 METHOD
3.1 Overview
VFI is a technique to generate intermediate frames between two
consecutive video frames 𝐼0, 𝐼1 ∈ R𝐻×𝑊 ×3. Where 𝐻 and𝑊 are
the height and width, respectively. The general framework of flow-
based VFI usually contains two steps. First, the network calculates
intermediate optical flow𝑂𝑡→0 and𝑂𝑡→1 (t=0.5 in practice). Second,
it predicts a residual 𝛿𝐼𝑡 and aMaskH based on intermediate optical
flow and input frames. The intermediate frame 𝐼𝑡 is estimated as:

𝐼0, 𝐼1 = 𝑤𝑎𝑟𝑝 (𝐼0,𝑂𝑡→0),𝑤𝑎𝑟𝑝 (𝐼1,𝑂𝑡→1) (1)

𝐼𝑡 = 𝐼0 ∗ H + 𝐼1 ∗ (1 −H) + 𝛿𝐼𝑡 . (2)

Most of the existing VFI networks [12, 15, 30, 41] are designed
to deal with obstruction-free scenes. Our main goal is to develop
an efficient and robust method for both obstruction-free scenes
and scenes with obstructions. To achieve this, we propose an Ob-
struction Robustness Framework (ORF). The main idea is that we
first identify ambiguous regions, then we explicitly recover them
by looking at the structure of the original object in input images.
In Section 3.2, we discuss how to identify ambiguous regions by
the Region Similarity Map. Next, in Section 3.3, we propose a COA
module, which captures accurate structure information from input
frames and fills in the error regions. Finally, we propose a Dynamic
Mask Distractions data augmentation method to generate obstruc-
tions in the training data

Figure 3: Two examples of occlusions in a scene with obstruc-
tions. The first and second columns show the warped input
frames. The pixels in the red rectangle fail to warp to the
same position. Our Region Similarity Map clearly indicates
the error.

3.2 Region Similarity Map
Figure 3 shows two examples of warped frames with obstructions.
The first and second columns show the warped input frames 𝐼0 and
𝐼1, respectively. The red rectangles highlight the regions where 𝐼0
and 𝐼1 should be identical or similar. However, we observed that
those regions are not correctly aligned by optical flow which could
cause large artifacts and distortions in the intermediate frame. The
third column shows our proposed Region Similarity Map (RSM),
which successfully measures the error regions between the warped
frames. We define RSM 𝐶 as a 1-channel map, where the value
of each pixel is in (0, 1). Higher value indicates greater similarity
between the corresponding pixels, and vice versa. In practice, we
want to keep unambiguous pixels in warped frames, and only repair
ambiguous pixels in 1 −𝐶 .

Figure 4: A comparison of different similarity methods
for scenes with obstructions. The region cosine similarity
method is most stable.

To find the best measurement of RSM, we conducted experiments
with three different methods: pixel similarity, cosine similarity and
region cosine similarity. We extract feature maps 𝐹0 ∈ R𝑊 ×𝐻×𝑐

and 𝐹1 ∈ R𝑊 ×𝐻×𝑐 from 𝐼0 and 𝐼1, and warp 𝐹0 and 𝐹1 to 𝐹0 and
𝐹1 by using opitcal flow 𝑂𝑡→0 and 𝑂𝑡→1. We use 𝐹0 and 𝐹1 to cal-
culate the similarity map as shown in Figure 4. The first column
indicates the pixel similarity, which is computed by simply tak-
ing the pixel-wise difference between 𝐹0 and 𝐹1. Then averaging
along the channel dimension to obtain a 1-channel map. It fails to
highlight the most dissimilar regions. The second column is the
cosine similarity. We treat the channels of each pixel as a vector
with shape 1 × 𝑐 and calculate the cosine similarity between each
pair of corresponding vectors. Cosine similarity emphasize the re-
gions with large differences, but also introduces small scale noise
which may mislead the network to focus on unimportant areas.
Finally, we propose region cosine similarity. For each pixel in 𝐹0,
we calculate the similarity with its 𝑛 by 𝑛 neighbours and the corre-
sponding region in 𝐹1. The map only focuses on regions with large
differences and avoids to highlight pixels with small motion. More
visualizations of RSM can be found in the supplementary material.

3.3 Feature Repair
A naive way to reduce the artifacts and distortions in dissimilar
regions is to apply a lightweight residual CNN-based module and
hope that those errors at the feature level can be repaired by local
information. Let 𝐹𝑡 be the intermediate feature with artifacts. The
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recovered 𝐹𝑡 can be written as.

𝐹𝑡 = 𝐹𝑡 ∗𝐶 + 𝑐𝑜𝑛𝑣 (𝐹𝑡 ) ∗ (1 −𝐶) (3)

However, this method may not work well when dealing with
large obstructions, as local features may not provide sufficient
information. Therefore, we propose to use a transformer module
that can model long-range dependencies and learn global context.

Figure 5: The details of our COA: Each patch and its 8-
neighborhood in the structure feature map 𝐹𝑠 are projected
into one token. Attention is computed with the key 𝐾 from
the inter-frame feature 𝐹𝑡 . The correspondence will match if
the patch of 𝐹𝑡 is similar to the patch of 𝑓 and its neighbors.
The hidden features are calculated by the dot product of at-
tention and values 𝑉 , and repairs the inter-frame features in
the explicit region indicated by the Region Similarity Map𝐶.

Cross Overlap Attention. As humans, we can easily recover
a blurred object with a clear reference image that contains the
same non-blurred object. We hypothesize that by comparing non-
blurred objects from the original input features and blurred objects
in synthetic features, the network can extract clearer structure
information for blurred pixels. Our core idea is to allow the network
to globally match the same objects, and aggregate the accurate
structure information from input frame to synthetic features. Based
on this idea, we adopt a transformer block [19] that can model long-
range dependencies. Different from Inter-Frame Attention [41],
which employs attention between two input frames and aims to
enhance the extraction of appearance features. Our method applies
cross-attention between input frame and synthetic frame to indicate
accurate structure information only for the repair of blurred pixels.

The details are presented in Figure 5. We first extract structural
information 𝐹𝑠 by concatenating 𝐹0 and 𝐹1 with lightweight CNN
layers as most objects in an inter-frame can be found in neighboring

Figure 6: The architecture of our model, which uses any opti-
cal flow based network as the VFI model. We take the input
feature map from the encoder and use the feature repair
module to fix the feature in the decoder.

frames. We use 𝐹𝑠 to extract query vectors 𝑄𝑠 ∈ R𝑁𝑞×𝑑 , and inter-
frame features 𝐹𝑡 to extract key vectors 𝐾 ∈ R𝑁𝑘×𝑑 and value
vectors 𝑉 ∈ R𝑁𝑣×𝑑 , where d is the feature dimension.

𝑄𝑠 = 𝐹𝑠𝑊𝑞, 𝐾 = 𝐹𝑡𝑊𝑘 ,𝑉 = 𝐹𝑡𝑊𝑣 (4)

Where𝑊𝑞 ,𝑊𝑘 and𝑊𝑣 are projection matrices.
The attention matrix computed from the𝑄𝑠 and 𝐾 is most likely

to match the same object. However, the patch to patch matching
could be inefficient due to the blurring or artifacts in the synthetic
feature, which could mislead the matching. To reduce the mismatch
of the attention map, we project each patch 𝑞 and its 8-connected
neighbors in Query 𝑄𝑠 into one token, and then compute the at-
tention with the corresponding patch 𝑘 in Key 𝐾 . This implies
that if patch 𝑞 and its neighbors are similar to 𝑘 , they are more
likely to belong to the same object. Specifically, for each patch 𝑞 in
𝑄𝑠 , we aggregate its 8-connected neighbors patches into a tensor
�̂�𝑠 ∈ R𝑁𝑞×𝑑×9. We then treated each patch 𝑞𝑠 ∈ R𝑑×9 in �̂�𝑠 as a
vector, and project it back to R𝑑 by a linear projection to obtain
�̂�𝑖 ∈ R𝑁𝑞×𝑑 . Finally, we compute the similarity between �̂�𝑖 and 𝐾 .
The output ℎ̃ can be formulated as

ℎ̃ = Attention(�̂�𝑖 , 𝐾,𝑉 ) = Softmax
(
�̂�𝑖𝐾

𝑇

√
𝑑

+ 𝐵
)
·𝑉 (5)

where 𝐵 is the position bias [6]. We incorporate cross overlap at-
tention into the transformer block. Following [19], we also apply
normalization (LN) and a multi-layer perceptron (MLP) after atten-
tion as

ℎ = 𝐶𝑂𝐴(𝐹𝑡 , 𝐹𝑠 ) = 𝑀𝐿𝑃 (𝐿𝑁 (ℎ̃)) . (6)

Feature repair with RSM Figure 6 illustrates our proposed
method for repairing the intermediate feature with RSM and the
COA module. Given a baseline VFI network, it extracts the features
𝐹0 and 𝐹1 from the encoder. We calculate RSM in Section 3.2. Then,
we apply the COA module to refine the intermediate feature by
using Equation 6. We use the COA module to refine the features in
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dissimilar regions (1 −𝐶). The refined features 𝐹𝑡 are calculated as.

𝐹𝑡 = 𝐹𝑡 ∗𝐶 + ℎ ∗ (1 −𝐶) (7)

We choose the optimal intermediate feature layer for each network
based on the performance of the RSM and the COA module. The
details of our layer selection are provided in the supplementary
material.

Figure 7: Schematic View of our Dynamic Mask Distractions
(DMD) Data Augmentation.

3.4 Dynamic Mask Distractions
Most of previous studies applied low-level modifications such as
flip augmentation along spatial and temporal axes. Lee et al. [17]
propose a Figure-Text Mixing data augmentation technique that
artificially inserts static shapes and texts. However, those augmenta-
tions are not sufficient to handle videos with dynamic obstructions.
We propose a new data augmentation method for frame interpo-
lation, called Dynamic Mask Distractions (DMD). The main idea
of DMD is to generate obstructions on original video with real
scenes. It has been shown that synthesizing obstructions such as
reflections and fences can make the network adapt to real-world
scenes with obstructions [18, 34]. However, those methods need to
use extra dataset (e.g., fence data) and only fit specific obstructions.
In real-world settings, models frequently encounter unforeseen
obstructions. Rather than training the model to identify specific ob-
structions, our objective is to enable the model to recognize general

patterns of obstruction. Thus, we generate images with obstructions
by using real distractions.

Create Binary Mask.We first collect random shapes such as
circles, rectangles, fences, etc. Then, we generate a binary mask 𝑀
based on the random positions of these shapes, as shown in Figure 7
(a). Given an image 𝐼𝑡 , an image 𝐼𝑑 from a different scene and a
randomly selected binary mask 𝑀 . The new obstructed image 𝐼𝑏
can be presented as

𝐼𝑏 = 𝐼𝑡 ∗𝑀 ∗ 𝜆 + 𝐼𝑑 ∗𝑀 ∗ (1 − 𝜆) + 𝐼𝑡 ∗ (1 −𝑀), (8)

where 𝜆 ∈ (0, 1) is a random ratio.
Previous methods [18, 34] synthesize obstructions in a single

image. In a video, obstructions usually move. The motion may be
continuous or discontinuous depending on the physical properties
of the obstruction and the imaging setup. Thus, we propose a simple
but effective way to simulate the motion of obstructions.

Add Motion. We simulate three categories of motions for ob-
structions: translation, deformation, and discontinuous motion.
Translation refers to the movement of rigid obstructions in a ran-
dom direction, e.g., motion of fences close to the camera. Deforma-
tion occurs when non-rigid obstructions change their shape, e.g.,
dirt on a window or the lens itself. Discontinuous motion describes
the sudden appearance or disappearance of obstructions, e.g., from
raindrops on a lens, or due to specular reflection.

As shown in Figure 7 c), given the binary mask in Equation 8, we
generate masks for the other frames by applying different motions
to the first mask. For translation, we randomly add an offset to
the position of the obstruction and move the mask for the second
and third images. For deformation, we use elastic deformation [36],
which modifies the shape of the obstruction by applying random
displacements to a grid of pixels. The mask is then interpolated to
fit the deformed grid, creating a distorted version of the obstruc-
tion. For discontinuous motion, we generate a random number of
obstructions of a certain shape, and then randomly add or delete
obstructions in the mask for the second and third image consecu-
tively.

In practice, let (𝐼𝑡−1, 𝐼𝑡 , 𝐼𝑡+1) be a triple of subsequent images from
a video. Then the obstructed version of this triple is (𝐼𝑏−1, 𝐼𝑏 , 𝐼𝑏+1).
Figure 7 d) is an example of training data.

4 EXPERIMENTS
4.1 Datasets and Implementation Details
Training and Evaluation. Our model is trained on the Vimeo90K
[39] training set. For hyperparameters, such as learning rates, batch
sizes, and optimizers, we follow the settings reported in the original
papers of each baseline network. For the data augmentation, we
apply random cropping and flipping to the input frames along the
horizontal, vertical, and temporal dimensions. We also incorporate
the proposed data augmentation DMD, which has been described
in Section 3.2.

We evaluate our method on four recent state-of-the-art (SOTA)
flow-based VFI methods: RIFE [8], IFRNet [15], VFIFormer [22], and
EMA [41]. To demonstrate the effectiveness of each component of
our method, We first conducted an ablation study on each DMD,
RSM and COA. Then, we compare our method with the previous
SOTA methods on following three benchmark datasets:
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Figure 8: Qualitative results on SNU test dataset.

Vimeo90K. It contains 3782 triplets for testing.
SUN-Film. It contains 1240 triplets for testing. It is spilt into

four different parts, Easy, Medium, Hard and Extreme. The latter
two categories are characterized by large motion and increased
occlusions.

RWO. It is a real-world obstruction dataset, which is a new
dataset that we construct from real-world obstructions. It contains
61 triples for testing. More detail can be found in supplementary
material. We measure the performance of each algorithm by com-
paring Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) [37].

4.2 Comparison with the State-of-the-Art
We compare our methods with previous state-of-the-art VFI meth-
ods, including AdaCof [16], CAIN [4], RIFE [8], ABME [30], IFR-
Net [15], VFIformer [22] and EMA [41]. We add our methods to
the two highest performing previous methods: VFIformer-ORF and
EMA-ORF. As shown in Table 1, our methods outperform the pre-
vious algorithms on the RWO dataset by a considerable margin.
Although, VFIformer has a lower performance than ABME and
EMA on the RWO dataset, our VFIformer-ORF improves the results
and outperforms all previous methods. The results clearly demon-
strate the limitations of previous methods and the robustness of our
approach. Moreover, our EMA-ORF also improves large occlusion
cases in SNU-FLIM hard and extreme. It even shows competitive
performance with SOTA methods on other benchmarks that do not

contain large obstructions. Thus, our method could be a potential
solution to deal with large obstruction in the real-world.

4.3 Ablation Study
To evaluate the effectiveness of our DMD and RSM to deal with
large obstruction and occlusion data, we conduct the ablation study
in Table 2. We make the following observations: 1. DMD data aug-
mentation slightly enhances the accuracy on SNU-FILM Hard and
Extreme datasets which contain largemotion and large obstructions.
Moreover, it clearly improves the performance in the presence of
considerable obstructions. 2. The RSM module further improves
both, large motion and large obstruction data. We attribute this to
the fact that SNU-FILM hard and extreme have many large displace-
ments that are difficult to warp to the same position. The RSM can
efficiently capture those parts (see Figure 8). 3. Both components
have demonstrated efficiency across all four methods.

Ablation for Region Similarity Map. Here, we discuss the
detail of RSM. We first compare the different measurements and
their corresponding results. As shown in Figure 10, we found pixel
similarity failed to highlight the error region, cosine similarity can
find the error region but with some noise which degrades the output
image. Region cosine similarity reduces noise and produces a clearer
boundary in the error region, resulting in the most realistic output
image. Table 3 shows the results of our EMA-ORF with different
similarity measurement where region cosine similarity achieves
the best results.
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Figure 9: Qualitative results on our RWO dataset

Table 1: Quantitative comparison of VFI methods on three datasets. The best result is in red, and the second best is in blue.
"-ORF" indicates our Obstruction Robustness Framework.

Method
Vimeo90K SNU-FILM EASY SNU-FILM MED SNU-FILM Hard SNU-FILM EX RWO

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
AdaCof[16] 34.47 0.9730 39.80 0.9900 35.05 0.9754 29.46 0.9244 24.31 0.8439 26.43 0.8608
CAIN[4] 34.65 0.9729 39.89 0.9900 35.61 0.9776 29.90 0.9292 24.78 0.8507 27.19 0.8805
RIFE[8] 35.61 0.9779 39.99 0.9904 35.68 0.9786 30.08 0.9327 24.83 0.8533 27.52 0.8837
ABME[30] 36.18 0.9805 39.59 0.9901 35.77 0.9789 30.58 0.9364 25.42 0.8639 28.93 0.9029
IFRNet[15] 35.80 0.9794 40.03 0.9905 35.94 0.9793 30.40 0.9358 25.05 0.8587 28.25 0.8939
VFIformer[22] 36.50 0.9816 40.13 0.9907 36.09 0.9799 30.67 0.9378 25.43 0.8643 28.77 0.8994
EMA[41] 36.64 0.9819 39.77 0.9908 35.98 0.9801 30.93 0.9395 25.69 0.8663 28.97 0.8978
VFIformer-ORF 36.50 0.9814 40.11 0.9905 36.07 0.9794 30.87 0.9396 25.73 0.8694 29.20 0.9043
EMA-ORF 36.69 0.9821 39.96 0.9909 36.14 0.9802 31.10 0.9419 25.95 0.8722 29.56 0.9081

Ablation for Cross Overlap Attention. According to Equa-
tion 7, we aim to obtain accurate geometric information to correct
the error regions indicated by the RSM. In this context, we con-
ducted experiments with different technologies: residual convolu-
tional layers, self-attention, inter-frame attention [41] and our COA.
In Figure 11, we find that the convolution layer fails to recover the
region. This failure is attributed to the convolution layer capturing
only local information, which is insufficient to recover large error
regions. Subsequently, the self-attention mechanism recovered in

an incorrect region. The Inter-Frame Attention (IFA) recovers parts
of error regions but still suffers from blurry boundaries because
IFA does not bring the corresponding information between input
and synthetic frames. Conversely, our Cross-Overlap Attention
(COA) successfully recoveres it by building the correspondence di-
rectly between the input and synthetic images. In Table 4, our COA
outperforms the other three methods across all three benchmarks,
indicating its efficiency.
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Table 2: Ablation study for module components. Effect of
applying DMD and RSM on the performance of the proposed
model. “-D” indicates using DMD and “-DR” indicates using
DMD and RSM. (Note: RSM is applied by Equation 3 in this
Table. COA is evaluated in Table 1).

Method SNU-FILM Hard SNU-FILM EX RWO
PSNR SSIM PSNR SSIM PSNR SSIM

RIFE [8] 30.08 0.9327 24.83 0.8533 27.52 0.8837
RIFE-D 30.14 0.9329 24.89 0.8548 27.73 0.8863
RIFE-DR 30.23 0.9341 25.01 0.8569 27.82 0.8874
IFRNet [15] 30.40 0.9358 25.05 0.8587 28.25 0.8939
IFRNet-D 30.49 0.9357 25.17 0.8587 28.40 0.8950
IFRNet-DR 30.54 0.9363 25.24 0.8592 28.53 0.8962
VFIformer [22] 30.67 0.9378 25.43 0.8643 28.77 0.8994
VFIformer-D 30.70 0.9380 25.47 0.8659 29.02 0.9014
VFIformer-DR 30.80 0.9383 25.64 0.8679 29.11 0.9028
EMA [41] 30.93 0.9395 25.69 0.8663 28.97 0.8978
EMA-D 30.95 0.9397 25.73 0.8679 29.26 0.9032
EMA-DR 31.02 0.9407 25.86 0.8701 29.33 0.9046

Figure 10: Visualization of different RSM measurement.

Table 3: Quantitative results of different RSM measurement.

Method SNU-FILM Hard SNU-FILM EX RWO
PSNR SSIM PSNR SSIM PSNR SSIM

Pixel Similarity 31.04 0.9409 25.76 0.8690 29.24 0.9037
Cosine Similarity 31.07 0.9418 25.90 0.8713 29.46 0.9072
RCS 31.10 0.9419 25.95 0.8722 29.56 0.9081

Figure 11: Visualization of different repair module.

4.4 Qualitative Evaluation
Clean Scenes. We select samples from the SNU-Film dataset to
compare the quality of different VFI methods. We compare our
method with ABME, IFRNet, VFIformer and EMA in Figure 8. The
red rectangles indicate challenging regions where unlike previous
methods our method achieve accurate results. Specifically, the first

Table 4: Quantitative results of different repair module.

Method SNU-FILM Hard SNU-FILM EX RWO
PSNR SSIM PSNR SSIM PSNR SSIM

Res Conv 31.02 0.9407 25.86 0.8701 29.33 0.9046
Self-Attention 31.03 0.9411 25.88 0.8709 29.41 0.9053
IFA[41] 31.08 0.9416 25.92 0.8717 29.52 0.9065
COA 31.10 0.9419 25.95 0.8722 29.56 0.9081

row shows large motion where IFRNet and EMA warp pixels to
different positions which causes ghosting. ABME and VFIformer
fail to predict this region. Our method preserves the details and the
motion consistency. The third row is a tiny object case, where all
four previous methods fail to reconstruct the thin sword. However,
our method successfully preserves it. The fourth row is an occlusion
case, where the person’s face is visible in one input frame but
partially visible in the other. Other methods produce blurry or
distorted faces due to mismatches while our method generates the
clearest results. We suppose the reason is that RSM successfully
identified the face, and COA effectively recovered it.

Scenes with Obstructions.We further visualize examples in
our RWO dataset (Figure 9). We observe two issues of previous
methods: 1) They sometimes fail to maintain the structure of the
obstruction; and 2) They often have difficulty distinguishing the
boundary of the obstruction and the background object and produce
artifacts in the frames. In the first row, ABME, IFRNet and VFIformer
fail to generate fences, and EMA partially fails, but our method
succeeds in reconstructing it. In the second row, all four previous
methods mixed the boundary between the pillar and the house. In
comparison, our method shows a clearer shape. These examples
demonstrate that our method successfully reduces errors in large
obstruction cases.

5 LIMITATIONS
Our method can handle most videos with large obstructions. How-
ever, it still fails in some cases, such as videos at night. The main
reason is that when pixels are all similar (darkness) in a scene, our
method does not always capture ambiguous pixels/regions. An-
other case is the use of a flash in a video, which could lead to large
dissimilarity for the whole frame and not a dissimilar region which
breaks our hypothesis. The COA module would have difficulties to
reconstruct the whole frame. However, our method is indeed robust
to most cases of obstructions. We hope to address the remaining
issues in future research.

6 CONCLUSION
In this paper, we propose a novel VFI method that can handle videos
with both obstructions and clean frames. We introduce a novel fea-
ture repair module, which first detects dissimilar regions of the two
warped input frames, then repairs those regions by cross overlap
attention (COA). We also propose a new data augmentation method
(DMD) to make VFI networks robust for obstructions without ex-
tra images. Extensive experiments demonstrate that our method
shows remarkable improvement on obstruction datasets, and also
performs well on standard benchmarks.
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