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1 OVERVIEW
We present additional results and analysis in this supplemental
material along with video results. We also give a description of our
Real World Obstruction dataset in Section 4.

2 LAYER SELECTION FOR FEATURE REPAIR
Our method uses feature repair with the Region Similarity Map
(RSM) as discussed in Sec. 3.4 of the main paper. We select a layer
for our repair module in each network: RIFE [1], IFRNet [2], VFI-
Former [3], and EMA [5]. In this section, we will report in Table 1
an ablation study that shows how we chose the layer for each
network. For an efficient study, we use a smaller version of the
network (with about 10% parameters of the original network) and a
smaller training schedule for this ablation study. According to the
results of the study, we find that feature repair is most effective in
Level 2 in RIFE, VFIformer and EMA and Level 1 for IFRNet as the
performance of the repair leads to the highest results compared to
other layers. However, we also note that the use of RSM and COA
in neighboring layers achieve similar performance, showing the
robustness of our approach.

3 ANALYSIS OF FEATURE REPAIR MODULE
To analyze the effectiveness of our feature repair module, we visual-
ize further results and the corresponding RSM in this supplemental
material. Figure 1 shows the results of our EMA-ORF in comparison
to EMA. EMA fails in the region indicated by the yellow circle, and
shows our method to be successful. We can see that the correspond-
ing RSM highlights the same region. This shows the effectiveness
of our feature repair module can handle the large occlusions in
these examples and we believe it gives a good indication of the
effectiveness of our method.

4 REAL-WORLD OBSTRUCTION DATASET
To our best knowledge, there is no existing dataset focused on ob-
struction handling in video frame interpolation. There are datasets
for occlusion removal [4, 6]. However, we find some of the video
frames are discontinuous which means the data cannot directly be
used in video frame interpolation. Thus, we collect our Real-World
Obstruction (RWO) Dataset in 11 different scenes with two different
cameras, a cell phone (iPhone 12 pro) and consumer camera (Canon
EOS 5D Mark IV). For each scene, we split 6-33 sequences frames
for evaluation. We also select continuous frames from 6 different
scenes in [4, 6]. Figure 2 shows some examples of triples in our
RWO data. Table 2 reports the statistic of our dataset. We will make
our RWO dataset public.

Table 1: Ablation study of layer selection.

Method
Vimeo90K SNU-FILM EX RWO

PSNR SSIM PSNR SSIM PSNR SSIM
RIFE [1] 34.31 0.9693 24.36 0.8464 26.82 0.8782
RIFE-l1 34.34 0.9691 24.42 0.8466 27.02 0.8791
RIFE-l2 34.42 0.9698 24.52 0.8481 27.09 0.8798
RIFE-l3 34.28 0.9694 24.41 0.8465 26.84 0.8781
RIFE-l4 34.24 0.9688 24.22 0.8457 26.75 0.8777
IFRNet [2] 34.43 0.9705 24.69 0.8498 27.12 0.8801
IFRNet-l1 34.48 0.9708 24.83 0.8503 27.26 0.8813
IFRNet-l2 34.44 0.9702 24.78 0.8500 27.22 0.8809
IFRNet-l3 34.39 0.9698 24.65 0.8491 27.16 0.8802
IFRNet-l4 34.36 0.9699 24.58 0.8484 27.07 0.8797
VFIformer [3] 34.92 0.9737 24.83 0.8524 27.54 0.8844
VFIformer-l1 35.15 0.9743 24.97 0.8526 27.62 0.8849
VFIformer-l2 35.13 0.9741 24.98 0.8531 27.66 0.8848
VFIformer-l3 34.88 0.9735 24.85 0.8522 27.57 0.8841
VFIformer-l4 34.83 0.9732 24.75 0.8517 27.46 0.8835
EMA [5] 35.04 0.9744 25.03 0.8546 27.71 0.8862
EMA-l1 35.13 0.9748 25.08 0.8549 27.88 0.8879
EMA-l2 35.11 0.9749 25.12 0.8551 27.96 0.8885
EMA-l3 34.98 0.9741 24.94 0.8539 27.73 0.8864
EMA-l4 34.90 0.9734 24.98 0.8538 27.62 0.8854

Table 2: Statistics for images of different scenes in our Real
World Obstructions (RWO) dataset.

Scene # # of Frames Type of obstruction Indoor
1 15 screen window ✓

2 12 wire fence ✗

3 15 glass bottle ✓

4 15 reflection ✓

5 9 box substation ✗

6 15 bucket ✓

7 12 wall painting ✗

8 9 pillar ✗

9 9 stone sculptures ✗

10 12 reflection ✓

11 12 reflection ✓

12 9 fence ✗

13 3 fence ✗

14 9 raindrops ✗

15 9 reflection ✗

16 9 reflection ✗

17 9 statue ✗
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Figure 1: Comparison of Results of EMA to our EMA-ORF and its corresponding RSM.

Figure 2: Example image triplets in our RWO dataset.
Table 3: Comparison of model complexity.

VFIformer EMA
Size(M) 24.1/25.4 (+5.1%) 65.66/66.12 (+ 0.7%)

5 DETAILS OF DYNAMIC MASK
DISTRACTIONS

During the training, we generate a binary mask with a randomly
chosen shape: Circle, Square, Oval, or Grid. The shape size ranges
from 10% to 80% of the image resolution. Then, we generate two
subsequent binary masks, each with one of three types of motion:
translation, deformation, or discontinuous motion. We randomly
select an image from another scene and multiply it by each binary
mask, respectively. The new triples will be fused with the training
triples according to Equation 8 in the main paper.

6 NETWORK COMPLEXITY
We report the complexity of our methods in Table 3. Compared
with original methods, our VFIformer-ORF and EMA-ORF slightly
increase the number of network parameters but significantly en-
hance the robustness to deal with large obstructions. (According
to different architectures, the parameters of VFIformer-ORF and
EMA-ORF vary due to the dimensions of repaired features.)

7 VIDEO RESULTS
To show the quality of our methods in real-world video with ob-
structions, we compare our methods with previous state-of-the-art
methods. We put them in the folder video. We compare our EMA-
ORF with the original EMA [5] and our VFIformer-DRC with the
original VFIformer [3]. For both samples, we use the respective
video interpolation method to increase the fps from 6 to 20. We
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show our methods can make videos smoother and more continuous
despite large obstructions in comparison to their respective base
models. The base models EMA and VFIformer generate large errors
and artifacts. We will release our code for further evaluations.
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