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In this supplementary material,1

1. Sec. 12: we collect data in casual scenarios to validate the effectiveness of our method on2

unsupervised learning and light-normal joint optimization.3

2. Sec. 13: we visualize the BRDFs of different points to demonstrate that our method could4

generate spatially varying BRDF.5

3. Sec. 14: we list the testing time of our method for objects in DILIGENT benchmark [8].6

4. Sec. 15: we compare our method with those that remove the ShadowNet and use the shadow7

maps obtained from simple binarization of observed images (as in [6]).8

5. Sec. 16: we provide an intuitive explanation of how silhouette constraints work in our9

method.10

6. Sec. 17: we randomly scale the intensity of input images and provide an experimental11

comparison.12

7. Sec. 18: we revise the numbers of Table 2 in the main paper (indicated by red color). We13

also provide the standard deviation and the mean value for 10 objects on the DILIGENT14

benchmark [8] under 5 random tests.15

8. Sec. 19: we switch our rendering model to be identical to [6], where we use 9 specular basis16

instead of 1.17

12 Comparison on Data Collected under Casual Environments18

To further highlight the advantage of our method regarding unsupervised learning and light-normal19

joint optimization, we perform an experimental comparison on data collected in casual environments.20

Captured objects. We use three objects for this experiment, including BUNNY, VENUS, and MOUSE.21

BUNNY contains lots of fine details, with a broad specular lobe on a uniform material (phenolic resin).22

VENUS is made up of glass for the pearl on the tray and gypsum for the body. MOUSE has lots of23

defects on the shell, made up of a spatially varying but mostly diffuse material. The illustration of24

these objects can be found in Fig. 21.25

Data capture. We use the iPhone 13 Pro Max camera fixed on a phone tripod for data capture. We26

turn the HDR mode on and set the exposure compensation to -2 to avoid overexposure. We record27

a video with a raw resolution at 1920 × 1080. During video recording, we move the light source28

slowly to illuminate the object at different angles and try the keep the trajectory parallel to the image29

plane. The captured video could be found at anonymous link1. Fig. 20 shows the capture equipment.30

1https://drive.google.com/drive/folders/1XZEb2H3-ZTuTyZaxiewa3DDH-urVbuOk?usp=
sharing
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Figure 20: Data collection process. From top to the bottom, Row 1: the equipment we use in scene 1
to capture the VENUS and BUNNY; Row 2: the equipment we capture MOUSE in scene 2.

BUNNY and VENUS are shot at about 1 meter away with the light at about 1-1.5 meters away. MOUSE31

is shot at about 30cm away with light at about 40cm away.32

Ambient light and light sources. All data are captured with ambient light because the full-dark33

chamber is also expensive for casual users. For the data capture of BUNNY and VENUS, we control34

the impact of the ambient light by changing the intensity of the electric torch, i.e., weak impact (or35

strong light source intensity) for BUNNY, and strong impact (or weak light source intensity) for36

VENUS. The capture environment for these objects is relatively controlled, and the ambient light37

is from a small window (see Fig. 20). For the data capture of MOUSE, we consider a more casual38

and challenging scenario (see Fig. 20). That is, the ambient light is more dominant and uncontrolled.39

We use a flashlight from the mobile phone to further relax the assumption of directional light in40

photometric stereo.41

Data processing. We use MATLAB 2020 to extract 100 frames uniformly from each video and42

further downsample them to the resolution of 960 × 540. We extract the mask of each object via43

PhotoShop 2020.44

Comparison methods. We compare our method with CW20 [4]. As LL22 [6] is not for UPS,45

we feed it by the estimated light from the state-of-the-art method CW20 [4] and denoted it as46

CW20 [4]+LL22 [6].47

12.1 Comparison of Surface Normal48

The estimated normal map for each object is shown in Fig. 21. However, CW20 [4] and49

CW20 [4]+LL22 [6] is sensitive to the data bias in supervised learning of light estimation model.50

The error of estimated light dramatically degrades the performance of normal estimation. In contrast,51

our method is robust to casual environments. We have a more reasonable estimation on BUNNY52

with the ambient light and MOUSE in the challenging scene and much better results on VENUS as53
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Figure 21: Visual quality comparison in terms of normal map on BUNNY (row 1), MOUSE (row 2),
and VENUS (row 3) from DILIGENT [8]. For each subfig, from left to right: mean of the observed
images, coarse normal map download in https://sketchfab.com/, that has similar shape with
the objects for reference, normal map from our method, CW20 [4], LL22 [6] + CW20 [4].

compared with CW20 [4] and CW20 [4]+LL22 [6]. Since our model adopts the directional light54

assumption, it produces inaccurate light. The superior performance advantage on surface normal55

estimation indicates that our method could better balance the accuracy of the surface normal and light56

due to its light-normal joint optimization manner.57

12.2 Comparison of Light Estimation58

We further make a comparison on the estimation of light. The predicted light direction projected59

on the XY-plane is shown in Fig. 22 and represents the estimated light intensity by color (note that60

the light intensity is normalized for better visualization). Since the intensity of our light source61

during data collection is unchanged, our method produces much more accurate light intensity than62

the comparison methods. Besides, we change the light direction by moving the light source at a large63

distance. The trajectory recovered by our method is more reasonable than the comparison methods,64

especially for objects of MOUSE and VENUS. These results indicate that our method is more robust65

to training data bias due to its unsupervised manner.66

13 Spatially Varying BRDF67

We visualize the BRDF in different position of KNIGHT STANDING in Fig. 23. Although we are68

restricted by our specular model, we can still generate spatially varying BRDF by assigning different69

scaling factors kd ∈ [0, 1] to different spatial points. That is, kd controls the specularity of a certain70

point. The reflectance could be Lambertion if kd is 1 and non-Lambertian otherwise. For instance,71

we have a larger kd on the knight’s face and cloak, but a smaller kd on the armor, generating different72

BRDF and shading effects shown in Fig. 23.73
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Figure 22: Visual comparison in terms of the estimated light trajectory on BUNNY(column 1), MOUSE
(column 2), and VENUS (column 3). For each sub-figure, from top to bottom: Ours, CW20 [4]’s
predicted light trajectory that projected onto the XY-plane, the color indicates the value of the light
intensity.

14 Test Time on DILIGENT Benchmark [8]74

KK21 [5] did not release their code. Therefore, we report the test time (s) for TM18 [9], LL22 [6] and75

ours in Table 10 under different numbers of input, respectively. Our method has the fastest test time76

given 96 images as input and competitive test time given 16 images as input among the mentioned77

methods. The tests are implemented on an RTX3090 GPU, and the batch size is full size for lighting78

and 2048 for spatially sampling. The larger the batch size for spatially sampling, the faster the test,79

but the GPU memory occupation will also increase. According to our experiments, the parameters80

we choose are the most cost-efficient, which will occupy around 3.2GB on RTX3090.81

Table 10: Quantitative comparison in terms of test time (s) on DILIGENT benchmark [8]. Numbers
in brackets indicate the number of lights. For example, Ours (96) indicates that our method takes 96
images under different lights as the input.

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG
TM18 (96) [9] 0.21 0.70 0.79 1.02 0.48 1.07 1.07 1.18 0.84 0.54 0.79
LL22 (96) [6] 1.22 0.92 1.17 1.36 0.85 1.26 1.23 1.08 1.14 1.06 1.13

Ours (96) 0.29 0.70 0.83 0.82 0.50 0.46 1.04 1.10 0.65 0.52 0.69
TM18 (16) [9] 0.04 0.11 0.12 0.17 0.08 0.22 0.17 0.17 0.14 0.13 0.13
LL22 (16) [6] 0.62 0.69 0.69 0.68 0.67 0.66 0.71 0.66 0.69 0.77 0.68

ous (16) 0.27 0.67 0.80 0.83 0.49 0.49 1.08 1.09 0.63 0.52 0.69

15 Statistical Shadow Handling82

We remove the ShadowNet and train our method using the pseudo shadow maps for reconstruction83

loss. The pseudo shadow maps are obtained by binarizing the observed images, i.e, considering84

an observed pixel to be cast shadow if its intensity value is smaller than 0.2× the mean intensity85

values of this image. The result is shown in Table 11. Although pseudo shadow map works well on86

objects like BALL, BUDDHA, and CAT, the performance, the accuracy of the light directions, dropped87

significantly on objects like HARVEST, GOBLET, and READING. This is because pseudo shadow88

maps do not provide any extra clues for the LightNet through the back-propagation.89
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Figure 23: Visual illustration of BRDF at different positions. On the left is the observed image of
STANDING KNIGHT. We select three different points on the object and show our predicted BRDF
spheres of those points on the right side. We normalized the image and the predicted BRDF from 0 to
1 for a better illustration. For the right, sub-figures from top to bottom are: BRDF for the point on the
face, BRDF for the point on the armor, BRDF for the point on the cloak, respectively.

Table 11: Quantitative comparison in terms of normal map error, light direction error, and light
intensity error on DILIGENT dataset [8]. ‘Ours w ŝ’ indicates using pseudo shadow map instead of
the ShadowNet for shadow handling.

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG

Ours w ŝ
norm. 1.68 6.52 8.33 4.87 7.92 18.32 39.08 8.02 8.20 12.91 11.59
dirs 2.60 5.00 2.32 1.34 6.82 26.61 14.48 9.28 6.69 12.25 8.74
ints 0.014 0.012 0.030 0.024 0.067 0.056 0.530 0.037 0.026 0.060 0.086

Ours
norm. 1.15 4.41 8.78 5.08 6.14 9.49 17.68 7.94 6.12 11.82 7.86

dir. 1.69 3.96 1.73 2.92 4.98 6.82 7.06 3.33 3.71 7.45 4.37
int. 0.030 0.010 0.032 0.021 0.050 0.040 0.032 0.134 0.028 0.042 0.042

16 Silhouette Constraint90

For Lambertian objects, the GBR ambiguity is represented as:91

Ik = B⊤Sk. (1)

Where, G is the 3×3 ambiguity matrix; Bk = ρdG−⊤N , ρd is the albedo, N is the surface normal;92

Sk = ekGlk, ek is the light intensity, lk is the light direction. We denote the object’s silhouette93

normal as N s, the fitted silhouette normal as N̄ s, and the predicted silhouette normal by PositionNet94

as N̄ s that contains GBR ambiguity, i.e, N̄ s
= G−⊤N s.95

During training, the output of the LightNet is ēk and l̄
k. The GBR ambiguity is solved by:96

argmin
G

f∑
k=1

(|Ik − B̄
s⊤
S̄

k|+
∣∣∣Nor

(
C
(
N̄

s))− N̂
s
∣∣∣). (2)

Where, f is the number of the light source, C(·) cuts off the 3rd dimension of nk (i.e, C(nk) ∈ R1×2),97

and Nor(·) is the vector normalization operation. This can be easily extended to the non-Lambertian98

case.99
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Figure 24: Visual illustration of error maps of the normal. From left to right: error maps of READING,
normal map of READING. From top to bottom: ours result and CW20 [4]’s result

Table 12: Quantitative comparison in terms of mean angular error for light direction and scale-
invariant error for intensity on APPLE & GOURD [1] and LIGHT STAGE DATA GALLERY [2].

APPLE GOURD1 GOURD2 AVG STANDING
KNIGHT

HELMET AVG

Model dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int.
YS97 [10] 25.71 0.400 22.23 0.329 29.30 0.347 25.75 0.359 37.48 0.533 34.43 0.476 35.96 0.505
PF14 [7] 6.68 0.109 21.23 0.096 25.87 0.329 17.92 0.178 33.81 1.311 25.40 0.576 29.61 0.944
CH19 [3] 9.31 0.106 4.07 0.048 7.11 0.186 6.83 0.113 11.60 0.286 6.57 0.212 9.09 0.249
CW20 [4] 10.91 0.094 4.29 0.042 7.13 0.199 7.44 0.112 5.31 0.198 5.33 0.096 5.32 0.147

Ours 2.65 0.011 1.76 0.029 3.21 0.230 2.54 0.090 13.38 0.189 8.12 0.082 10.75 0.135

17 Scale on the Input Images100

The intensity of 96 images from READING are scaled by 96 variables generated by the the uniform101

distribution U(0.01, 1), respectively. The new images are used as the training data to train our method.102

The results on READING is shown in Fig. 24, which further illustrates that our method can handle103

the varying light intensity and is free from data bias. While CW20 [4] (15.84 v.s. ours 11.05) fails104

because they have a pre-defined range on the intensities. We will provide results for all the objects in105

DILIGENT in the next round of discussion if the reviewer is still interested.106

18 Revision of Table 3 in the Main Paper107

Table 12 is a revised version of Table 3 in the paper. We highlight the methods that perform the best,108

and the numbers which are incorrect in our main paper due to a copy-and-paste error are indicated as109

red in the table. Moreover, the quantitative results in terms of mean angular error for surface normal,110

light direction, and scale-invariant error for intensity on DILIGENT benchmark [8] of 5 random tests111

are shown in Table 13.112

Table 13: Quantitative results in terms of mean angular error for surface normal, light direction, and
scale-invariant error for intensity on DILIGENT benchmark [8]. This table summarizes 2 version.
Row 2-4 are the reported results in the main paper, row 5-7 are the mean of 5 random tests.

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG STD

Ours †
norm. 1.15 4.41 8.78 5.08 6.14 9.49 17.68 7.94 6.12 11.82 7.86 -
dirs. 1.69 3.96 1.73 2.92 4.98 6.82 7.06 3.33 3.71 7.45 4.37 -
ints. 0.03 0.01 0.03 0.02 0.05 0.04 0.03 0.13 0.03 0.04 0.04 -

Ours ‡
norm. 1.17 4.49 8.73 4.89 6.27 9.53 18.31 7.08 5.85 12.02 7.83 0.44
dirs. 1.79 3.54 2.33 2.60 5.81 8.45 7.40 3.73 2.10 7.91 4.57 0.77
ints. 0.01 0.01 0.03 0.02 0.20 0.04 0.03 0.07 0.04 0.05 0.05 0.03

†Reported version in the main paper.
‡Mean of 5 random tests.
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19 Multiple Specular Basis113

We extend the number of the basis used in our SpecularNet from 1 to 9 and switch our rendering114

model to be identical to [6]. Specifically,115

mij = ej(ρ
d
i + c⊤i D(hij ,ni))max

(
n⊤

i lj , 0
)
. (3)

Where, mij is the pixel value, ej is the light intensity of light j, ρi is the diffuse reflectance at point i,116

ci ≜ (c0, ..., ck) is the specular weights generated by the PositionNet, k is the number of basis, hij117

is the half-vector between the surface normal at point i and the light direction lj , ni is the surface118

normal of point i). The results are shown in Table 14. Although there are improvements in objects119

like BEAR, POT1, and READING, the overall performance drops significantly. This further illustrates120

that our rendering model is a necessary compromise for the complexity of UPS problem.121

Table 14: Quantitative results in terms of mean angular error for surface normal, light direction, and
scale-invariant error for intensity on DILIGENT benchmark [8]. ‘Ours(9 basis)’ indicates using 9
specular basis in SpecularNet.

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG

Ours
norm. 1.15 4.41 8.78 5.08 6.14 9.49 17.68 7.94 6.12 11.82 7.86
dirs. 1.69 3.96 1.73 2.92 4.98 6.82 7.06 3.33 3.71 7.45 4.37
ints. 0.030 0.010 0.032 0.021 0.050 0.040 0.032 0.134 0.028 0.042 0.042

Ours (9 basis)
norm. 1.69 4.03 12.84 5.90 8.89 14.45 20.02 6.82 9.64 11.34 9.56
dirs. 2.50 3.01 7.34 4.94 8.69 21.53 12.60 3.88 6.97 6.41 7.79
ints. 0.011 0.019 0.025 0.036 0.074 0.072 0.059 0.026 0.030 0.051 0.040
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