
Proceedings of Machine Learning Research 304, 2025 ACML 2025

Boundary-Aware Refinement with Environment-Robust
Adapter Tuning for Underwater Instance Segmentation

Supplementary Material

Pin-Chi Pan r12942103@ntu.edu.tw
Graduate Institute of Communication Engineering, National Taiwan University, Taiwan

Soo-Chang Pei peisc@ntu.edu.tw

Department of Electrical Engineering, National Taiwan University, Taiwan

1. Training Setup

• Swin Transformer Backbone: We utilized a Mask R-CNN-based architecture with
Swin Transformer as the backbone to leverage its powerful hierarchical representation
and environmental adaptability features. Our setup includes the BARDecoder mod-
ule for multi-stage feature refinement and the ERA-tuning module to handle the
domain shift inherent in underwater conditions. Key hyperparameters were set as fol-
lows: a base learning rate of 0.0001 was used with the AdamW optimizer, employing
(β1, β2) = (0.9, 0.999) for momentum parameters and a weight decay of 0.05 to pre-
vent overfitting. A warmup phase was implemented with 1,000 iterations to gradually
increase the learning rate, ensuring stable convergence. The model was trained for a
total of 12 epochs, with a learning rate decay scheduled at epochs 8 and 11, following
a step decay schedule to fine-tune performance in later stages.

• ConvNeXt V2 Backbone: Similarly, we used a Mask R-CNN-based architecture
with ConvNeXt V2 as the backbone to explore its advantages in handling complex
visual patterns common in underwater scenes. The core training configurations, in-
cluding the optimizer, learning rate, warmup phase, and epoch schedule, mirrored
those of the Swin Transformer backbone. We also incorporated environmental ro-
bustness features, tailoring ConvNeXt V2 with layer-wise decay to manage feature
adaptation effectively. Specifically, a decay rate of 0.95 was applied over six lay-
ers, optimizing the balance between retaining pretrained knowledge and adapting to
underwater specifics.

The configuration files included in our code repository provide an overview of additional
setup details.

2. PyTorch-Like Code Implementation

We provide a PyTorch-like implementation of Boundary-Aware Cross-Entropy (BACE) loss,
illustrating how range-null space decomposition enhances segmentation accuracy, particu-
larly at object boundaries. This implementation projects predictions onto range-space and
null-space components, refining object contours while preserving structural consistency. In
the implementation, we first apply max pooling to downsample both predictions and ground
truth masks, extracting dominant structures and reducing high-frequency noise. This is
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# Boundary -Aware Cross Entropy (BACE) Loss

def boundary_aware_cross_entropy(pred , label , scale , class_weight ):

# Downsample the prediction (A * pred) using max pooling

A_pred = MaxPooling(pred , kernel_size=scale)

# Upsample the result (A^T * A * pred) back to original size

AtA_pred = Upsample(A_pred , scale_factor=scale)

# Compute orthogonal projection (I - A^T * A) * pred

ortho_project = pred - AtA_pred

# Downsample the ground truth (A * label) using max pooling

A_label = MaxPooling(label , kernel_size=scale)

# Upsample the ground truth (A^T * A * label) back to original size

AtA_label = Upsample(A_label , scale_factor=scale)

# Compute parallel projection (A^T * A * label)

parallel_project = AtA_label

# Combine orthogonal and parallel projections for refined mask

refined_pred = parallel_project + ortho_project

# Compute the binary cross -entropy loss with logits

loss = BinaryCrossEntropyWithLogits(refined_pred , label , weight=class_weight)

return loss

# Example inputs: pred (prediction), label (ground truth)

# Set scale (e.g., scale=4), and class_weight if needed.

# Call boundary_aware_cross_entropy(pred , label , scale , class_weight)

followed by nearest-neighbor interpolation to restore spatial resolution. The range-space
component ensures consistency with non-boundary regions, while the null-space component
captures finer details, correcting boundary misalignment. The final mask is computed by
combining these components and applying Binary Cross-Entropy (BCE) loss for segmenta-
tion supervision. The BACE loss integrates seamlessly into modern segmentation pipelines
with minimal computational overhead. Unlike standard loss functions, it explicitly refines
boundary features, improving segmentation accuracy in complex scenarios. Its flexibility al-
lows it to be used across different segmentation tasks with customizable linear operators A,
such as blurring or inpainting operators in inverse problems. Additionally, the scaling pa-
rameter in the implementation determines the downsampling factor, providing adaptability
for different dataset resolutions and object complexities. Researchers and practitioners can
easily incorporate this method into existing frameworks to enhance segmentation precision,
particularly for tasks requiring fine-grained boundary refinement.

3. Computational Efficiency Analysis

We provide a comparison of frames per second (FPS) to evaluate the computational effi-
ciency of BARD-ERA relative to baseline methods. Table 1 reports the FPS and parameter
count for models using Swin Transformer backbones. While BARD-ERA achieves state-
of-the-art segmentation performance, it maintains competitive inference speed. Compared
to standard Mask R-CNN, our method introduces a moderate computational overhead
due to multi-scale refinement and adapter-based tuning. However, BARD-ERA remains
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significantly more efficient than USIS-SAM, which employs a ViT-H backbone, leading to
substantially higher computational costs. The trade-off between accuracy and efficiency un-
derscores the suitability of BARD-ERA for practical applications, balancing segmentation
precision with feasible real-time performance.

Swin Transformer

Method Params FPS

Mask R-CNN He et al. (2017) 106.75 M 8.325

Cascade Mask R-CNN Cai and Vasconcelos (2018) 139.79 M 7.430

Point Rend Kirillov et al. (2020) 118.84 M 7.430

SOLOv2 Wang et al. (2020) 109.00 M 6.775

Mask2Former Cheng et al. (2022) 106.75 M 4.401

WaterMask Lian et al. (2023) 110.40 M 9.597

USIS-SAM Lian and others. (2024) 698.12 M 2.750

BARD-ERA (Ours) 114.44 M 4.866

Table 1: Comparison of FPS and parameter efficiency among different instance segmentation
methods using the Swin Transformer backbone.

Method
Trained

Params*
%

Extra

Structure
mAP AP50 AP75 APS APM APL

ConvNeXt V2

Full Fine-Tuning 87.69 M 100.00 % ✘ 28.5 46.0 32.3 7.9 22.1 40.9

BitFit 0.13 M 0.15 % ✘ 27.9 47.6 29.9 9.8 21.9 38.0

NormTuning 0.04 M 0.05 % ✘ 26.5 47.1 28.0 9.4 21.2 36.6

PARTIAL-1 8.46 M 9.64 % ✘ 26.0 46.6 27.1 8.0 21.4 36.2

VPT 0.20 M 0.23 % ✓ 26.8 47.2 28.0 9.8 20.8 36.5

Conv-Adapter 2.36 M 2.63 % ✓ 24.4 43.7 25.5 8.9 19.0 34.9

ERA (Ours) 1.54 M 1.72 % ✓ 29.9 50.2 33.2 11.3 22.9 41.3

Table 2: Quantitative comparison with different fine-tuning methods on UIIS dataset using
ConvNeXt V2 backbones. Red indicates the best performance, and blue indicates the
second-best. * denotes the trainable parameters in backbones.

4. Additional Fine-Tuning Comparisons

To complement the comparison of fine-tuning strategies in the main paper, which compare
fine-tuning methods on Swin Transformer, we provide additional results for ConvNeXt V2
backbones. This comparison follows the same experimental setup, ensuring that parameter
efficiency and segmentation performance are fairly evaluated across different architectures.
As shown in Table 2, ERA achieves the highest mAP of 29.9, surpassing full fine-tuning
by 1.4 mAP while requiring only 1.72% of the trainable parameters. The results reinforce
the effectiveness of ERA across different model architectures, demonstrating its ability to
efficiently adapt to varying feature representations while maintaining strong segmentation
performance. These findings further validate ERA as an efficient alternative to traditional



Pan Pei

full fine-tuning, significantly reducing computational overhead while maintaining state-of-
the-art segmentation performance across different network backbones.

5. Effectiveness of Each Component in BARDecoder

To validate the effectiveness of BARDecoder, we ablate its two primary components: the
Multi-Stage Gated Refinement Network (MSGRN) and the Depthwise Separable Upsample
(DSU), as shown in Table 3. MSGRN progressively refines the top-level feature map F4

using aligned lower-level features F1 to F3 through ROIAlign and gated attention. This
selective refinement enhances spatially informative regions and improves boundary local-
ization. Replacing MSGRN with standard convolutional fusion reduces performance by 3.1
mAP, highlighting the benefit of progressive attention-based refinement. DSU substitutes
bilinear upsampling with multi-scale depthwise convolutions and pixel shuffle, enabling ef-
ficient reconstruction of fine structures often degraded in underwater scenes. Substituting
DSU with bilinear upsampling leads to a 1.2 mAP drop, confirming its role in preserving
spatial detail. These results support the design choices in BARDecoder and demonstrate
their contribution to segmentation accuracy and boundary quality.

Method mAP AP50 AP75 APS APM APL Params

Mask R-CNN 28.2 46.6 32.1 9.5 23.4 39.6 106.75 M

Replace MSGRN module 28.5 49.7 31.0 10.0 21.8 40.6 113.93 M

Replace DSU module 30.4 49.9 32.6 10.5 24.1 42.0 114.34 M

Full model (Ours) 31.6 52.0 33.6 10.7 24.0 45.0 114.44 M

Table 3: Ablation of BARDecoder. Swin-B backbone and 1× training schedule is adopted.

6. Effectiveness of Each Component in Environment-Robust Adapter

Table 4 presents an ablation study of the two main components in the proposed Environment-
Robust Adapter (ERA): the Multi-Scale Feature Extraction (MSFE) module and the En-
vironmental Adaptation (EA) module. MSFE is inspired by the Inception architecture and
captures degradation patterns across multiple spatial frequencies using parallel convolutions
with diverse receptive fields. This helps the model handle underwater degradations such as
turbidity, color distortion, and reduced visibility. Removing MSFE causes a 1.4 mAP drop,
indicating its importance in robust feature extraction. The EA module improves adapt-
ability by applying channel-wise attention and pixel-wise gated modulation. It generates
environmental embeddings that reflect local degradation conditions and modulates features
accordingly. Removing EA results in a 0.7 mAP drop, confirming the benefit of adaptive
feature modulation. Together, MSFE and EA form a lightweight and effective adapter for
underwater robustness. These findings validate the complementary roles of both modules
in enhancing representation under challenging conditions.
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Method mAP AP50 AP75 APS APM APL Params

Mask R-CNN 28.2 46.6 32.1 9.5 23.4 39.6 106.75 M

w/o MSFE module 30.2 49.4 33.5 10.7 23.7 41.7 112.37 M

w/o EA module 30.9 50.9 33.5 10.3 23.8 43.5 114.25 M

Full model (Ours) 31.6 52.0 33.6 10.7 24.0 45.0 114.44 M

Table 4: Ablation of Environmental Robust Adapter. EA: Environmental Adaptation.

7. Comparison with Laplacian-Based Boundary Loss

To highlight the effectiveness of the proposed Boundary-Aware Cross-Entropy (BACE) loss,
we conduct a comparative experiment with a Laplacian-based variant that replaces the
range projection term A†A with a fixed edge-detection filter. This baseline mimics heuris-
tic boundary enhancement methods such as those used in WaterMask, where a Laplacian
kernel is applied to approximate boundary regions. As shown in Table 5, this substitu-
tion leads to a 1.3 mAP drop, demonstrating that the heuristic approach is less effective
than our principled formulation. Unlike fixed filters that apply uniform weights to edge
regions, BACE is grounded in range-null space decomposition, a well-established concept
in inverse problem theory. This formulation explicitly separates low-frequency components,
which capture global structure, from high-frequency components, which emphasize ambigu-
ous and detailed boundaries. Such decomposition provides more meaningful supervision,
enabling the model to better distinguish between confident interior regions and uncertain
edges during learning. By aligning the loss design with the mathematical structure of the
segmentation task, BACE improves boundary accuracy in a theoretically sound and empir-
ically validated manner. These findings confirm that the range-null space decomposition
offers a more effective strategy for guiding boundary learning than traditional edge-based
losses.

Method mAP AP50 AP75 APS APM APL Params

Mask R-CNN 28.2 46.6 32.1 9.5 23.4 39.6 106.75 M

w/ Laplace convolution 30.3 50.3 32.6 10.6 24.0 42.5 114.44 M

Full model (Ours) 31.6 52.0 33.6 10.7 24.0 45.0 114.44 M

Table 5: Comparison between BACE Loss and a Laplacian-based variant by replacing ATA
in Eq. (15) with a Laplace convolution.

8. Impact of the Number of Refine Blocks

We investigate the effect of varying the number of Refine Blocks on segmentation perfor-
mance and computational efficiency, as shown in Table 6. Increasing from two to three
blocks improves mAP from 31.0 to 31.6, demonstrating the benefits of deeper feature re-
finement. However, further increasing to four or five blocks results in diminishing returns,
with increased computational cost. Thus, we adopt three Refine Blocks as the optimal
configuration, balancing segmentation quality and inference speed.
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# Refine Block mAP AP50 AP75 APS APM APL Params

2 31.0 51.2 34.5 10.2 24.6 43.6 114.20 M

3 31.6 52.0 33.6 10.7 24.0 45.0 114.44 M

4 30.0 50.4 33.2 9.8 23.0 42.7 114.87 M

5 31.0 50.6 33.7 10.7 24.1 44.3 115.69 M

Table 6: The impact of the number of Refine Blocks. Bold: best.

Figure 1: The t-SNE visualization of feature distributions illustrating the effectiveness of
ERA in aligning underwater features with terrestrial distributions. ”Swin w/ ERA (Ours)”
(blue points) shows significant overlap with ”Swin (Pretrained),” (red points) bridging
the gap between underwater and land-based environments, while ”Swin w/o ERA” (green
points) remains distinct due to underwater-specific degradations.

9. Knowledge Transfer of ERA

The purpose of ERA is to adapt underwater image features by learning priors of various
underwater degradations, allowing pretrained models on land-based data to process un-
derwater imagery effectively. To evaluate the transferability of ERA, we present t-SNE
visualizations in Figure 1. The figure shows that ”Swin w/o ERA” (green points), which
uses full fine-tuning, captures underwater-specific features with distributions affected by
underwater degradation (e.g., color distortions, low visibility). In contrast, ”Swin (Pre-
trained)” (red points) retains ImageNet Deng et al. (2009) features suited for terrestrial
environments, demonstrating a distinct distribution. However, ”Swin w/ ERA (Ours)”
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(blue points) achieves significant overlap with ”Swin (Pretrained),” (red points) illustrat-
ing the effectiveness of the proposed ERA in dynamically adapting underwater features
to align with terrestrial feature distributions by mitigating underwater degradation effects.
This alignment is crucial for stabilizing training and capturing robust features in challenging
underwater conditions. These results highlight the capability of ERA to adapt models for
underwater segmentation, effectively bridging the gap between underwater and land-based
visual characteristics.

10. The Impact of the Projection Ratio γ in ERA.

We assessed the effect of the projection ratio γ in ERA using Swin Transformer and Con-
vNeXt V2 backbones (see Table 7). For Swin Transformer, γ = 2 achieved the highest mAP
of 31.6, while γ = 4 balanced performance across multiple metrics. Higher ratios, such as
γ = 8, led to declines in mAP. For ConvNeXt V2, γ = 4 yielded the best mAP of 32.3,
with γ = 2 following closely behind. These results suggest that a lower γ is optimal for
Swin Transformer, while moderate values work best for ConvNeXt V2. We used the best
configurations in all experiments, highlighting the importance of selecting an appropriate γ
for optimal ERA performance in underwater segmentation tasks.

Projection

Ration (γ)
mAP AP50 AP75 APS APM APL Params mAP AP50 AP75 APS APM APL Params

Swin Transformer ConvNeXt V2

2 31.6 52.0 33.6 10.7 24.0 45.0 114.44 M 31.8 51.0 34.9 11.0 24.0 45.4 120.05 M

4 30.6 50.3 34.5 10.4 24.2 42.9 109.38 M 32.3 51.4 36.3 10.9 23.8 45.7 112.46 M

8 29.3 48.7 32.9 10.0 23.9 41.5 107.18 M 31.4 50.5 35.3 11.3 23.6 44.8 109.15 M

Table 7: The impact of the projection ratio γ in ERA. Results are obtained using the
Swin Transformer and ConvNeXt V2 backbones with a 1× training schedule. Bold: best,
underline: 2nd.

11. Learnable Environment Embeddings

We evaluated the effect of varying the number of learnable environmental embeddings, test-
ing configurations with 4, 8, 16, and 32 embeddings. As shown in Table 8, the 16-embedding
configuration achieved the highest mAP of 31.6 and the best AP50 of 52.0, indicating strong
accuracy. The 4-embedding setup yielded an mAP of 30.9, while 8 embeddings attained
the highest AP75 of 33.8 with a competitive mAP of 30.6. The 32-embedding configuration
slightly underperformed with an mAP of 30.6. These results suggest that 16 embeddings
strike the optimal balance for accuracy under varying underwater conditions. Figure 2
visualizes representative learnable environmental degradation prior embeddings (E8, E10,
E13, E15), showing their complementary roles in mitigating challenges such as turbidity
and reduced visibility, enabling adaptation to diverse underwater environments.
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# Environment

Embeddings
mAP AP50 AP75 APS APM APL

4 30.9 50.7 33.0 10.8 24.4 43.5

8 30.6 50.8 33.8 10.3 24.5 43.0

16 31.6 52.0 33.6 10.7 24.0 45.0

32 30.6 51.1 33.5 10.6 24.9 42.4

Table 8: The impact of the number of learnable environment embeddings. Evaluation is
conducted using the Swin Transformer backbone with a 1× training schedule. Bold: best,
underline: 2nd.

Inputs E8 E10 E13 E15

Figure 2: Visualization of learnable environmental degradation prior embeddings show-
ing the effectiveness of our adaptation mechanism in addressing underwater degradations.
Different embeddings (E8, E10, E13, E15) complement each other in adapting to diverse
underwater conditions.
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