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A Proofs for Section 2]

In this section we present a proof of the convergence of Algorithm [T/in the strongly convex case —
Section We also present a modification of Algorithm [I]for the convex case, as well as a proof of
its convergence — Section[A.2]

A.1 Strongly convex case

Here we prove Theorem[T] First, we need the following lemmas:

Lemma 1. Consider Algorithm|l. Let 0 be defined as in Theorem[ 0 = % Then, under

Assumpttons the following inequality holds for all & € R?

2z — af, Vr(aft) <2 [r(@) = r(@f™)] - ule ! = 2] — 0 9r(af P

zERY

L2 (18)
+ 36 <|IVA’5(:E'}“)II2 = llzg — arg min A (x )Il2>-

Proof. Using p-strong convexity of r(z), we get
2z —af, Vr(xi ™)) =2(z — 2§, Ve th) + 2025 — b, Ve th)
<2 [r(@) = r(2h )] - pllaht = 3l + 22k - 2k, Vr(afY)
=2 [r(@) = ()] = ullalt = 3|2 + 20007 (2 — ob), Tr(ah )
[r(f) r(@h )] -l - 22
Sl — k2 = 6V P
+e||9 ot = af) + Ol

The definition of A (z) and L,-Lipschitzness of Vp (Assumption give

2z — 2k, Vr(eh ™) <2 [r(@) — r(aht)] - ek — 2l -l — b - 6Vt
+ OV A5 + Vp(ah ) - Vple >||2
<2 [r(@)  r(™)] — ™ — 2P Ll — 2k - 6|V

+ 20| VA (@2 + 2612 ! — gu2
_ 1
=2 |r(2) — (2} = pllef™ =32 - 5 (1-262L2) 2} — o
= 0[Vr(a )2 + 26V Af ) 2

With 6 = we have

1
2L,°
2z — 2, Vr(aht)) <2 [r(@) - (@) -l 2l — ikt — kP
= 0 Vr ()12 + 26| VA (o k+l>||2
1
—9 k+1 E+1 =2 _ ok in AF 2
[r() rf] =l =3l = g leh — argmin A )|

b1 argmin A§(2)[? — 0] Vr (25|12 + 20] v AS (5|12,

zERY

g%
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One can observe that Af () is 3-strongly convex. Hence,
_ 1 .
2z — b, iz ) <2 [r(@) = r(eh)] - et — 2l — -k — argmin A5(a)
40 ZCRE
0
+ §||VA§(II;+1)H2 — 0| Vr(ftH|1? + 20|V Ag ()12
<2 [T(z) - T(xlfvﬂ)} pllaftt =z - *HT/IgC — arg min Ag (z)|*
40 zER?
+ 30| VAG (2 )|1P = 0] V()
=2 [r(@) — (2] =l = 2l = oIV ()P

) —
+30 <||VA9 REL)12 -
) —

=2 [r(z

L2
+30 (Vfl’é(x’}“)ll2 = [l — arg min A5 (z )||2>~

zeR4

1
o} arg i 45
12629 ST

r@h ] =l — 2l - 0wk

This completes the proof of Lemma. O

Lemma 2. Consider Algorithm/|l|for Problem|l|\under Assumptions with the following tuning:

) VE 1 1 1
=min< 1, , 0=—, min a = U, 19
! { >/L, oL, 17 "9 /uL, s 19

and let x’}“ in line|5|satisfy

L2
IV AG (5 H)1? < pHI — arg min Ag (z)[|*. (20)
zERY

Then, the following inequality holds:

1 2 1 2
EHIk—H _ gj*HQ +2 = [ (z l}+1) r(x*)} <(1-p) [nnxk — gj*HQ 4+ Z - [r(gjf) —r(x )} , (21)
where

Proof. Using line[6|of Algorithm[I] we get

1 2 1
7||xk+1_$*H2 k—$*||2+7<.’tk+1 k .k *>+*||(Ek+1—1'kH2

1
=—||z —z"a" —x
n

1
== ||zF — 2| + 2a<xfc+1 — kb —2*)
n

1
= A Tr(ah), 7t — ) 4 [l — o
n

—Jlat — a I+l - 2t - alla® - o*|? - alaf T - 2F|?
U

1
<V7"( k+1) (Ek _ LU*> + 5||:L,}’~c—§—1 o xk”2.
Line @] of Algorithm|T] gives
1 1 1
Lttt =P = (1 - o - 2P allft P D P - et - oK

2(1—17)

+ 2(Vr(z k+1),x* — x§> + -

<Vr(x’;+1), mlfc — ).

g
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Using (18) with Z = z* and z = %, we get
Lok w2 o (1 - Rl ez g Lok k2 Rl _ kg2
5Hx —tF < - % —2™|" + af[z} [ +5H1’ —a[|” — |} |
+2 [r(@*) = (@] = pllaftt - a2+ S () - ()]
1 30 L?
- (5012 + 50 [ 1wk (A 12— 22k — i AR ()12
27_Lp|| r(@e )" + - IV AG (3| 3 [ arg min o(@)|l
1

=(n—a)mﬁ—mw2+«x I~ 2|7 — alfabt? )2

1
+llna(ey ™t —at) = Ve - o O P
p

+§Q;ﬁvw®—wfﬂ—§hﬁﬂ>ruﬂ

L2
+ Y (HVAk( FOIP - ~ g - argminA§($)|2>
zER
1 k * |12 k+1 * 2
=\; ¢ 2% = 2™||" + (o — p) ||z [
1
e — Dlla*+! — 25112 + (27 — N
+ata - e -2+ (20 - 1 ) IV
20l —7 * *
+ 200 ot — ()] - 2 [r(abt) - (e
L2
+ % (HVAk( FOI? - p||1‘§ - argminAg(l“ﬂQ) :
zER
The choice of «, 1, T defined by gives
1 . 1 Lo 21—7 L2 .
Lttt - < (1) ot -+ 2T e - o) - 2 [rtef ) - o)
L2
+ ¥ (HVAk( FOI? - pHx’; - argminAg(ff)H?) ~
z€R?
With (20), we have

1 * 2 1 * 1 * 21 -7 *
Dbt — o+ 2 [r( ) - (o) < (3 - ) ok =P+ 22T [y — 10

where p is defined by (22). O

To prove Theorem[T] it is sufficient to run the recursion 21)):

2n

o = a2 < (1= ) [l = a2+ 22 i) = r(a)]| = €1 ),

where C'is defined as
2
C = [z° — 2*|2 + 77’ [r(a) — r(z")] .
Hence, choosing number of iterations K given by (5) yields

o’ — 2| <.
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A.2 Convex case

The next Algorithm [3]is an adaptation of Algorithm [I]for the convex case. In particular, time-varying

Ti+1 and ni41 are used instead of the momentum c.

Algorithm 3 Accelerated Extragradient (modification for convex case)

1: Input: 2° = 24 € R?
2: Parameters: K € {1,2,...}, {m}X, C (0,1], {mx}, CR4,0 >0
3: fork=0,1,2,..., K —1do

4: ab = mepah + (1 - Tk_H)x’}
k : .
5: :cf“ ~ argmin, cpa [Af(2) = p(ak) + (Vp(ah), z — 25) + 55z — 252 + ()]
6: aFtl = gk — nk_i_lVr(x?"‘l)
7: end for

8: Output:

Lemma 3. Consider Algorithm[3|for Problem[I\under Assumptions [l = 0){3] with the following

tuning:
2 1 1

9 = 9 = )
M 2TkLp
and let x];fl in line|5|satisfy

L2
IVAG (=) < ~ llzg - arg min Af (@))%
A
Then, the following inequality holds:

0 _ ZC*||2

Proof. We start from line[6|of Algorithm [3]and get

(23)

(24)

(25)

1 1 2 1
T]T.H”karl _ gg*||2 _ nTH”xk 7‘%*”2 + ﬁ<xk+l ka,xk o $*> + ”karl N kaQ
1ok 1
= — ||3?k — sr:*H2 — Q(Vr(x;ﬁl),mk —z*) + Ekaﬁ-l _ 95k||2-
Line [ of Algorithm [3 gives
1 1 1
WTH”:EICH — | =——|l2* —2*|* + o~ |2+t — 2|2

2(1 —
+ 2<Vr(x];+1),x* _ l’k> + ( Tk+1)
Tk+1

g g

Using with o =0, z
1

Lot e <
Mk+1

r*and T = x’]i, we get

1 1
Sl =P R a2 [r(a) ()

n 2(1 — 7g41)

1
ky k+1i|_7v k+1y12
T T, T\,

30 keokbiygz Loy g Ak (2
+— | VA ()" = 5 llwg — arg min Ay ()]

<Vr(x’;+1), x’}‘ —zk).

Th+1 zeRd
= aF — a2 4+ —— [ Vr(@h )2 = V()2
i1 Mh+1 2741 Ly
2(1_Tk+1) k * 2 k+1 *
+ ———r(xy) —1r(x)| — {rx —r(x ]
7] el r(e)] - 22 [ - o)
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360 k(o k+1y(12 LZ27 k : k 2
+ = IV A = =2k — arg min A5 (@)
Tk+1 zER?

1 k * |12 ( 1 ) k+1y(12
= A - | [|Vr(z

P | | Me+1 el [Vr( )
2(1 — Tk+1) k « k1 .

P e @] = 2 e )

30 L?

+ — [ IVA§(&§™)|? — 2|2} — argmin Af(z)]* | .

Th+1 3 g zER?
The choice of 7, defined by gives
1—m 1
k+1 *|12 k *(12 k+1 k * k+1 *
257 = 2* <[la® — 27| +m [r(z) —r(z")] = I, [r(mf ) —r(z )]
+ 27, L, (IVAe(mf WP = ey — arzgegldmAe(m)H ,

With (24), we have

= 2|2 +

(@) —r(@")] < 1o — 277 + % [r(z%) - r(@™)] . @6)

2
Tk+1LP k+14p

Let us define ¥y,:

i = ok ="+ o [r(e) (@)
Using (26), ¥}, defined above and 74, defined by we get:

1 k41 * }
— <y
Tk;Jr]Lp |:T(If ) T(:E ) — k+1

* 1_Tk+1 *
< la* —2¥|* + - [r(2f) — r(z")]

k+1-DP
2 _
= =+ B ol — )
=l ="+ 2R e = r(o)]
2
<"~ + L ) - rla)]
1

k * (|2 k *
= ||lz* — - _
Jot =2 | + = [r(ah) = r(a)] =

Next, we apply the previous inequality

1 k+1 :| 0 2 1-— T1 1
- D <w <P, <...<¥; < —x* ) — 7
ol [r(:vf )—r(@)] S W1 SV <L SV < 2t =277+ 2L, [r(xf) r(z )]
With 71 = 1, we have
k+1y * :| < 0 _ .2
r(x r(x x’ —x|”.
g [P )] <l
Finally, again with the choice of 7 defined by (23)), we get (29). O]

Using (23), we get
r(xfc{) —r(z*) <e

4L
T =1\ —Fla" = 2|
e

iterations of Algorithm [3] This is what Theorem ]is about.

after
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B Proofs for Section 4]

In this section we present a proof of the convergence of Algorithm 2]in the strongly monotone case —
Section We also present a modification of Algorithm 2] for the monotone case, as well as a proof
of its convergence — Section [B.2.

B.1 Strongly monotone case

Here we prove Theorem[7} First, we need the following lemmas:
Lemma 4. Consider AlgorithmE. Let 0 be defined as in Theorem |Z 0 = 2% . Then, under
Assumptions@-@ the following inequality holds for all T € R?

2(a* — o, R(u")) < = 2pllu® — 2*||* - 0| R(u") |

L? 27
+30 (||B§<u’€>|2—;nx’f—akn?). 0

Proof. Using property of the solution: R(z*) = 0 and p-strong monotonicity of R(x), we get
2(x* — zF R(uP)) =2(x* — uF, R(u")) + 2(u* — 2%, R(u*))

<2(z* — u® R(u*) — R(z*)) + 2(u* — 2*, R(u*))

< = 2uflu — o | + 2(u* — oF, R(uh))

= = 2pflu’ — | + 20007 (u* — 2*), R(u?))

— — 2uflut — o7

1
= gllet =2 = O RN ” + 007" (u* = 2%) + R(ub)|*.

The definition of B} (z) and L,-Lipschitzness of P (Assumption@) give

* * 1
2(2" = 2¥, R(u¥)) < = 2pflut — 27" = Sllu® — 2" = 0] R(u")|*

1
gl =21 = ol R(™)|*

+20] B3 (uM)||* + 20L7 [[u” — 2"

< = 2l —2*|? ~

N 1
= = 2uflut — "2 - 5 (1 - 260°12) lu* — o]
— Ol R(ub) |2 + 26]| B ()2

. _1
With 6 = 31, We have

1
lut = 2| = Ol R(u*) | + 26]1 B (u")||?

2" — ot RuM)) < = 2pllu — 2| - o

1
== 2pflu’ = 2| = lle* - A
1 ~
+ gglu” = @87 = O R(u)|* + 20] By (u®)|*.

One can observe that Bg () is %—strongly monotone. It gives that

1

gllz = ull* < (Bg(2) = By (y);z —y) < IB5(z) = By ) - l= = wll;
and with Bf (ii*) = 0 (since @" is the solution of line |4), we get

1 ~ i
gallu® = a1l < |1Bg (uh) = By (a)|* = || Bg (u®)||*.
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Hence,

* * 1 ~
2(e* — 2 R(u*)) < —2pfu* —a*|? — W] bt

0
+ 5 1B5 Wh)1* = 01 R(u™)* + 2611 Bg (u")|?

g2

1
< 2l — 3P - g lla* - ¥
+ 301 B () - O R ()|
— — 2uflu* — 3l1* - 0| RG]

1 -
+30 (IBEGAIP - g lle” ~ 212

= = 2p||u* — z|* — 0] R(u")|?
L2
+ 30 (IBé“(u'“)II2 - ll?t = at? ).

This completes the proof of Lemma. O

Lemma 5. Consider Algorithm2|for Problem[I0|under Assumptions /9] with the following tuning:

1 1 1
0=— =minq —, — =2 28
and let u* in line satisﬁes
L2
185 (u)|[* < Pl = a2 (29)
Then, the following inequality holds:
et — | < (1= 20m)" (| — 27|, (30)

Proof. Using line[5|of Algorithm 2} we get
||.’Ek+1 _ x*”Z :Hmk _ 1,*||2 + 2<xl~c+1 _ xk7xk o LC*> + ”xk-f-l o $k||2
=[|z* — 2*||? + 2na(u® — ¥ 2F — 2*)

= 29(R(u¥), a* — ") + 2"+ — aF|?
P oot nafut =2t = nalat =2t = nafu® - 2|2
= 2(R(u"), 2® —a*) + [Ja* T — 2|2,
With (27), we get
[ —2* 2 < (1 =na) [l2* — 2> + nallu® — 2*|* + [ — 2F|P = nalju® - 2*|

= 2npf|u” —a*||* = 0ol R(u")||?
L2
+ 30 (IIBé“(U'“)II2 - gpllx’“ - ﬂ’“Iz)

= (1 =na) a* — 2" + [[na(u® — a*) = nR(W")|* - nalju® - 2*|?
= n(2p = a)u* —27|* = no| R(u")|?

L2 _
+ 316 (IIBéC(U’“)II2 -5l - uk|2>

< (1 —na) ||lz* = 2*||* = na(1 — 2na)||u* — 2*||?
—n(2u— a)|uf — 2> — (0 — 2n) || R(u")||?

L2 )
+ 3n6 <IIB§(U’“)II2 - lla* - uk|2> :
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The choice of a, 7, 6 defined by gives
L2
2 = || < (1= 2np) 2" = 2% + 306 { | B (u)|* = ZFll=* —a*]* ] .

Using we get

lz* = 2*[|* < (1= 2np) [l2* — 2*||*.

To prove Theorem[7} it is sufficient to run the recursion (30):
2 — a2 < (1= 2m) [ — 272 + 22 [r(a®) — r(a®)] | = O(1 - )",
Hence, choosing number of iterations K given by yields
le¥ — %] <.
B.2 Monotone case

The next Algorithm[d]is an adaptation of Algorithm 2|for the monotone case. In particular, we remove
the momentum .

Algorithm 4 Extragradient (modification for monotone case)

1: Input: 2° € R?
2: Parameters: ,0 > 0, K € {1,2,...}
3: fork=0,1,2,..., K —1do

4: Find ©* ~ @* where @* is a solution for
. . ) 1
Find * € R? : B§(a") = 0 with BE (z) == P(z*) + Q(z) + 5@ z*)
5. okt =2k —pR(uF)
6: end for

7: Output: 2%

Lemma 6. Consider AlgorithmH|for Problem[I0lunder Assumptions[7{ i = 0){9 with the following

tuning:
1 1
9 = a7 n=-5, (31)
2L, 4L,
and let u* in line satisﬁes
L2
185 (u®)||* < <P l2* — at||*. (32)
Then, the following inequality holds:
K-1
1 2 2Ly||2° — ||
iEE<R(I)’ <K ];) u ) —a) < (33)

Remark 1. Here we do not take the maximum over the entire set R¢ (as in the classical version for
Vis [23]), but over C — a compact subset of R®. Thus, we can also consider unbounded sets in R9.
This is permissible, since such a version of the criterion is valid if the solution x* lies in C; for details
see the work of [36l].
Proof. We start from line [5]of Algorithm [ and get

2"+t = 2]|? = |2 — 2| + 2™ —aF b — @) + (|2t -2

= [lo* — | — 2n(R(u"), &* — @) + [l — 2%

23



Using with o = 0, we get
1251 — 2] <fla® — a|® + " - F)

— 2(R("), ot~ 2) — 0] R(a")|
+ 30 (nBs(uk)n? e a’cn?)
—a* — al[*  2n(R(), u* — @)+ | R |2 = o] R(u) |
+ 30 (IIBé’(u’“)IIQ - Doy akn?)
<l — ] = 2R, ot = 2) — 0(6 — | R
+ 300 (IIBé“(u’“)IIQ - Doy a’“n?) .

The choice of 0, n) defined by give

2+ — a2 <o — a2 — 2(R(u"), u* — 2)
L2
+306 { | By (u®)||* — gpllwk - ﬂk|2> :

With (32), we have
2"t = 2lf* < fla® — 2l* - 20(R(u*), u* — 2).
Summing from £ = 0 to K — 1, we obtain

K-1
1 kY ok |2 — @[] — ]2 — =|?
— — <
K 2 (R(u"),u” —z) < oK

|2 — ]
< .
- 2nK

Monotonicity of R gives

iK'—l b B iK'—l .
(R@). | Y| =2 = 5 3 (R(@).u* —a)
k=0 k=0
K-1
< = Y {RGH),wt — )
k=0

2% = z]|* _ 2Lp[2° — x|
< .
2nK K
By taking the supremum over the set C, we get

K-—1
1 2L,||z0 — z||?
sup(R(a), (K 3 u> ) < 2ol

zeC k=0

Using (33), we get

| K-l
sup(R(z), (K uk> —zy<e

zeC k=0
after

2L
T= 22|00 — 27|
3

iterations of Algorithm ] This is what Theorem T0]is about.
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C Additional experiments

C.1 Additional experiments with saddle point problems

Here we consider a modification of (17), the Robust Linear Regression, which leads to the following
saddle-point formulation:

N
ming max|,|<g, g5 2 (W (@i +75) = y:)* = Blril*] + ]|wll?, (34)

i=1
where 7; is the so-called adversarial noise and 8 > 0 is the regularization associated with it; we set
A=p=0,1and R, = 0,05. The network setting and data generation is the same as discussed in
Section[5.1. We compare with the only existing method for SPPs under similarity, as proposed in [9].

Results are summarized in Figure [2] on synthetic and real data.

Synthetic Synthetic Real: a% Real: a9a

o 10 B —+— Sliding o 10 —+— Sliding o 10°) —+— Sliding o 10 —*— Sliding
1071, ! 107 \[ 10t N \[ 107 N !
' 10 N Alg 2 10 N Alg 2 o 10 Alg 2 " 10 N Alg 2
! 102 \ ! 102 N ! 102
QL0 g Q0 910 N
Z10 N N S0 N\, Z10 N
104 \ =104 N\ Z10+ "
N N N N N
107 S 1107 1107 \
21076, ST R0
10 0 100 200 300 400 500 600 700 800 10 0 500 1000 1500 2000 2500 3000 3500 4000 10 0 500 1000 1500 2000 10 0 2500 5000 7500 1000012500150001750020000
Communicat tions, N Local calls, N Communicat tions, N Local calls, N

Figure 2: Robust Linear Regression (34), under similarity assumption: Proposed method vs. Gradient-
Sliding; synthetic data (first two figures on the left) and real data (last to figures from the right).
Distance from optimality vs. number of communications (first/third panel from the left) and vs.
number of local iterations (second/fourth panel from the left).

It can be seen that our method compares favorably with [9] both on communication and gradient
iterations.

C.2 Experiment details

The numerical experiments are run on a machine with 8 Intel Core(TM) i7-9700KF 3.60GHz CPU
cores with 64GB RAM. The methods are implemented in Python 3.7 using NumPy and SciPy.

In this section, we estimate the smoothness, strong convexity as well as the similarity parameters for
objective (17). We denote the identity matrix as I (with the sizes determined by the context). Given a
set of datapoints X = (21 ...2x)" € RV*4 and an associated set of labelsy = (y; ...yn) | € RY,
the Linear Regression problem is

. LSy 2 A
min g(w) := WZ(U) T — i)+ 5”“’” :
i=1

llwll
Equivalently, g(w) can be expressed as
1 A
= || Xw— 2 n 2
o(w) = gl Xw— g + 2l
and its gradient writes as

Vg(w) = % (X" Xw—X"y) \w.

The Hessian of g(w) is
1
Vig(w) = NXTX + AL
We are now ready to estimate the spectrum of the Hessian

1
IV2g(w)l] < 5 Amax (X T X) [0 + Allo]

IA

1
(w0 +3) ol = Lyl
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Therefore, we can estimate the Lipschitz constant of Vg(w) as L,. The same way we can estimate
all L; and take final L = max(Lg, L1,..., Ly,).

Let us discuss the bound on the similarity parameter. Given two datasets {X € RV*4 y e RV}
and {)? e RV e RN}, we define

~ 1, = g A 9
g(w) = —||Xw—g||* + =||w|*.
(w) N | 17+ 5l
And then the similarity coefficient 599 between functions g and g is
~ 1 T 1l 513
099 = Apax | =X X — =X "X |.
N N
Hence, we can take § = max (0991 ... §99n).

Finally, we estimate the strong convexity parameter as . = .

As mentioned in the main body of the paper, we simulate the operation of 25 devices on one machine.
For the synthetic dataset, samples on the workers are generated by adding unbiased Gaussian noise to
the server data. For simulations with real data, we considered the LIBSVM datasets (a9a, w7a, w8a)
and give each worker a full data. Then, each device selects at random a part of size m from the full
dataset. Some samples can occur on more than one worker (in this way we artificially increase the
data size).

The parameters L, § are estimated as written above. For the synthetic dataset we choose the noise
level and the regularization parameter such that L /§ = 200 and L/)\ = 10°. For the real datasets the
regularization parameter is chosen such that L /A = 10°. In Table we give all values of L, §, m, u.

Table 2: The value of the parameters L, §, m, p in experiments.

Dataset L 1 m 0
synthetic 10* 1071 — 20
a9a 2-10° 2-107! 5000 | 300
w7a 6,5-10* | 6,5-1072 | 7000 | 70
w8a 1,3-10° | 1,3-10"1 | 10000 | 90
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