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Extreme weather events are increasing in fre-
quency and intensity due to climate change [1, 2,
3, 4, 5]. This, in turn, is exacting a significant toll
in communities worldwide. While prediction skills
are increasing with advances in numerical weather
prediction and artificial intelligence tools, extreme
weather still present challenges. More specifically,
identifying the precursors of such extreme weather
events and how these precursors may evolve un-
der climate change remain unclear. In this paper,
we propose to use post-hoc interpretability methods
to construct relevance weather maps that show the
key extreme-weather precursors identified by deep
learning models. We then compare this machine
viewwith existing domain knowledge to understand
whether deep learningmodels identified patterns in
data that may enrich our understanding of extreme-
weather precursors. We finally bin these relevant
maps into different multi-year time periods to un-
derstand the role that climate change is having on
these precursors. The experiments are carried out
on Indochina heatwaves, but the methodology can
be readily extended to other extremeweather events
worldwide.
Predictability drivers for heatwaves vary across

different regions and involve several physical mech-
anisms. Better understanding them could help fore-
casting heatwaves and issuing early warnings [6, 7,
8, 9]. These predictability drivers, also referred to as
precursors, are typically the result of human-expert
knowledge, or briefly the “human view”. In thiswork,
we look at these precursors through the lenses of in-
terpretable machine learning (ML), thereby provid-
ing a possibly complementary “machine view”. The
latter is obtained by identifying what data the ma-
chine deemed important to the onset of heatwaves,
and it is used to understand (byworkingwith human
domain experts)whether itmaybehelpful in enrich-
ing our understanding of precursors – see also [10]
for the use of explainable artificial intelligence (XAI)
for scientific knowledge discovery. Without los-
ing generality in the methodology proposed, we fo-
cus on tropical heatwaves in the Indochina penin-
sula, and attempt to answer two questions via inter-
pretableML: (i)What are the key precursors of these
events? (ii) Is climate change influencing these pre-

cursors?
To outline our approach, we focus on dry-season

(February-March-April-May) heatwaves in the In-
dochina peninsula (the latter depicted inAppendixA
FigureA1). The key idea is to look at these dry-season
heatwaves, using interpretable ML; more specifi-
cally post-hoc interpretability methods applied to a
binary time series classification deep learning (DL)
framework. This approach allows producing rel-
evance maps, that highlight what input data the
DL framework deemed important for the prediction
it made. The binary DL time series classification
framework is setup as follows. As input data, we con-
sider the spatial (i.e., geographical) maps of 23 vari-
ables for the 7 days prior of a heatwave striking the
Indochina peninsula. The 23 input variables char-
acterize the large majority of dry-season heatwave
precursors, and the 7 days time window provides a
relevant time frame to capture the underlying path-
ways leading to these extremes. We then assume
that the DL framework is able to identify patterns in
the data that are causal to heatwaves; in otherwords,
we assume that it could capture systematically the
precursors to heatwaves. Indeed, we consider only
true positive samples, such that the data deemed im-
portant by the DL framework is only associated to
correctly classified heatwaves. The binary labels for
the classification task are (1) heatwave and (0) non-
heatwave, where the heatwaves are identified as out-
lined in Appendix A.
The final heatwave binary classification dataset

consists of 720 samples with an approximate ratio of
(1) heatwave vs (0) non-heatwave being 1:5. We split
the dataset into training, validation, and testing sets
with a ratio of [0.6:0.2:0.2], and then train the Trans-
former model for heatwave classification. We ap-
ply four different post-hoc interpretability methods,
namely Integrated Gradients [11], DeepLIFT [12],
DeepSHAP [13], and GradSHAP [13], to the trained
Transformer model. To guarantee that we obtain
the most accurate and robust relevance maps, we
adopt the interpretability evaluation frameworks in
[14] and [15]. Integrated Gradients performs the best
among four post-hoc methods according to the eval-
uation results; thereby we use the relevance maps
it generates for analysis. The overall approach, that
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Fig. 1: The XAI4Extremes framework proposed, composed of a novel extremeweather dataset (a), a DL predic-
tive model (b), an interpretability block along with its evaluation (c), that produces relevance maps, or what
we called the “machine view” (d). The latter (d) is then compared with existing human expert knowledge (e)
for knowledge discovery or for augmenting the dataset with e.g., adversarial samples that can shape and
improve model behavior.

we name XAI4Extremes, is depicted in Figure 1: we
propose a new dataset for weather extremes – heat-
waves in this particular case (panel a, in gray), that is
used by a predictiveDL framework (panel b, in blue),
to which we apply post-hoc interpretability and its
evaluation (panel c, in red). The relevancemaps pro-
duced by the post-hoc interpretability method, what
we also refer to as “machine view” (panel d, in red),
are then compared against human expert knowl-
edge, what we also refer to as “human view” (panel
e, in green). This comparison may lead to knowl-
edge discovery in terms of heatwave precursors and
role of climate change in heatwave precursors. This
maybe the casewhen themachine viewenriches hu-
man expert knowledge, by providing a scientifically
plausible use of data thatwasunknown tohumando-
main experts, but that domain experts can explain.
Indeed, it is responsibility of human domain experts
to respond to the question why the interpretable ML
framework deemed important a specific set of input
data. The relevance maps can also be used to gener-
ate adversarial samples to augment the dataset and
shape model behavior, thereby improving the per-
formance of the predictive DL framework. We re-
mark that the approach outlined in this section can
readily be applied to other types ofweather extremes
in different regions worldwide.
We present our preliminary results in Ap-

pendix B) due to the page limit. Results (Figure A2,
panel a) show the temperature field at 200 hPa (i.e.,
the temperature in the upper troposphere between
approximately 11 and 12 km altitude), is deemed
more important by the machine for heatwaves in
Indochina in more recent decades, with a clear
upward trend. If we compare the interpretability

results (i.e., the relevance maps or machine view)
with something more understandable by humans,
i.e., composite anomalies, we note that there is
indeed a warming of the upper troposphere that is
associated to heatwaves in Indochina (Figure A2,
panel b). This indicates that the temperature at
200 hPa is becoming a key precursor of Indochina
heatwaves, especially in recent decades, aspect that
may indicate the fingerprint of climate change.
The result points to a human-understandable
explanation where higher 200 hPa temperature
can suppress convection and increase subsidence,
thereby leading reduced cloud cover that amplifies
surface heating, potentially leading to heatwaves.
The overarching explainable AI framework we

propose in this work, namely XAI4Extremes, aims to
better understandweather extremes and their evolu-
tion under climate change. We propose to couple a
predictive DL frameworkwith interpretabilitymeth-
ods, in order to understand what data the machine
deemed important for its predictive performance of
true positive samples (i.e., correctly identified heat-
waves), something we refer to as “machine view”. We
finally propose to compare this machine view to ex-
isting human expert knowledge (what we call “hu-
man view”), to respond the question why the ma-
chine used those data. The latter aspect may lead
to knowledge discovery, or it can be used to shape
model behavior by e.g., generating ad-hoc adversar-
ial samples based on themachine view. We note that
there are still several, yet stimulating, open chal-
lenges to be overcome [16]. We believe that these
limitations are open opportunities for the AI and
broader scientific research communities that can be
tackled over the next few years.
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Appendix A. Identification of heatwaves

Identifying heatwaves remains a significant chal-
lenge. Currently, there are numerous definitions of
heatwaves in the research community, yet there is no
consensus on a standard definition. This complexity
arises from the varied spatial coverage and duration
of heatwaves. In our study, we adopted a relatively
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simple two-stage definition that combines index-
based and event-based approaches, whichhave been
widely used in other research.
We first define heatwaves on each individual grid

point in the daily ERA5 reanalysis data from 1959
to 2022 using the heatwave index TX90pct [17]. The
threshold for one day at one grid point is the calen-
dar day 90th percentile of the daily maximum tem-
perature, based on a centered 15-day window. A
heatwave is defined as three or more consecutive
days exceeding this threshold, and all days belong-
ing to this heatwave are considered as heatwave days
for that grid point. We note that we removed a grid
point by grid point linear trend from the the data.
This is because we want to maintain a relatively uni-
formdistribution of heatwaves in the studied period.

Fig. A1: Indochina region used to define heatwaves
(dark red).

Based on this grid point by grid point definition of
local heatwaves, we further define heatwave events
in Indochina using the regional mask illustrated in
figure A1. These events can be divided into heat-
waves in the dry and in thewet seasons, whereby the
precursors and onset mechanisms differ [18]. We fo-
cus on dry-season (FMAM) heatwaves without lack-
ing generality on the methodology proposed here.
For each region, one heatwave event is definedwhen
a minimum number of grid points are identified as
heatwaves. Specifically, this threshold is set at the
90th percentile of the number of grid points clas-
sified as heatwaves during the season of interest.
We define the first day that exceeds the predefined
threshold as the heatwave onset day. To avoid over-
lapping events, we stipulate that no day within the
seven days preceding any onset day should exceed
this threshold. For the onset days of non-extreme
events, we randomly select days when the number
of grid points falls below the predefined threshold
within the same season, following specific criteria:
We ensure that there are no heatwave onset days
or other non-extreme events within a 7-day window
before and after these selected days. We provide
the dataset with a ratio of non-extreme events to ex-
treme events set at 5:1. This is the maximum ra-
tio achievable while following the selection strategy
outlined above.

Appendix B. Preliminary results

FigureA2 show the temperature field at 200 hPa, that
is the temperature between approximately 11 and 12
km altitude (i.e., the temperature in the upper tro-
posphere), for two different regions, region 1 and
2. Region 1 comprises the Indian Ocean, and In-
dia, while region 2 comprises the Maritime conti-
nent and part of the Pacific Ocean. In Figure A2,
panel a, we show the mean trend of relevance for
region 1 (top row), region 2 (middle row), and re-
gion 1 and 2 combined (bottom row). It is possible to
see how the temperature in the upper troposphere
is deemed more important by the machine for heat-
waves in Indochina in more recent decades for both
regions, with a clear upward trend. If we compare
the interpretability results (i.e., the relevance maps
or machine view) with somethingmore understand-
able by humans, i.e., composite anomalies, we note
that there is indeed a warming of the upper tropo-
sphere that is associated to heatwaves in Indochina
(Figure A2, panel b). This indicates that the temper-
ature at 200 hPa is becoming a key precursor of In-
dochina heatwaves, especially in recent decades (in
agreement with composite anomalies), aspect that
may indicate the fingerprint of climate change.
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Fig. A2: Mean relevance of temperature at 200 hPa for the 5 historical time periods considered and on the 7
days prior to heatwaves in Indochina, for region 1 (a, top), region 2 (a,middle), region 1+2 (a, bottom), along
with the corresponding relevance maps – i.e., “machine view” – associated to 7 days prior to heatwave, and
composite anomalies – i.e., “human view” – (b).
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