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ABSTRACT

The subjects differences in human brain dynamics have plagued the academic
community for a long time. More specifically, the brain signals from different
human subjects have very different domain distributions, normally considered
subject-specific noises. Thus it severely limited the generalized ability of EEG
recognition models. Recently, denoising diffusion probabilistic models (DDPM)
have shown remarkable performance in both unconditional and conditional gener-
ative tasks. However, none of the previous DDPM models has explored the task
of domain variance separation through generative processing. This paper models
subject differences in human brain dynamics as domain variance and performing
domain-specific denoising probabilistic processes to remove human subject bias
from the brain dynamics. The separation is realized by redesign the denoising
process to respectively generate both invariant content and domain variance at each
time step. Moreover, we design subtle constraint to formulate invariant content and
domain variance into orthogonal spaces and further supervise the domain variance
with subject classifier. Domain Specific Denoising Diffusion Probabilistic Model
(DS-DDPM), a novel framework is proposed to realize the separation. This method
is the first work to explicitly separate human subject-specific variance through
generative denoising processes. Comprehensive experimental results suggest that
DS-DDPM could help alleviate domain distribution bias for cross-domain EEG
signal recognition. Code is available in https://anonymous.4open.science/r/DS-
DDPM-2EA6

1 INTRODUCTION

The recognition of human brain dynamics signals such as electroencephalogram (EEG) (Nunez
et al., 2006) and Event-related Potential (ERP) (Picton et al., 1995) is of vital importance for the
non-invasive brain-computer interface. However, the brain signal distribution from different human
subjects exhibits severe distributional differences (Henry, 2006; Jiang et al., 2019), which means the
recognition model (Lawhern et al., 2018; Duan & Feng, 2019) trained for a set of human subjects
might not be efficient for other unknown human subjects. This weakens the generalized ability of
deep learning-based models.

Various works are introduced to alleviate the above problem, which could be categorized into two
aspects 1) human artifacts removal by traditional signal processing methods, and 2) increasing model
generalization ability by introducing meta-learning or domain adaptation training techniques. Human
artifacts removal techniques (Jiang et al., 2019) mainly include Regression (Al-Nuaimi et al., 2018),
Blind Source Separation (BSS) (Sweeney et al., 2012; Somers & Bertrand, 2016), Empirical-mode
Decomposition (EMD), and Wavelet Transform algorithm to their hybrid methods (James & Hesse,
2004). Among these methods, regression and BSS are two widely used approaches. Classic regression
methods (Sweeney et al., 2012) are applied under the assumption that each channel is the cumulative
sum of clean EEG data and a proportion of artifact given by known reference signals (Hillyard &
Galambos, 1970; Wallstrom et al., 2002) through a set of regressed transmission factors. However,
these methods require exogenous reference channels (i.e., EOG, ECG) to omit different artifacts. BSS
methods, such as PCA (Barry & De Blasio, 2018) and ICA (Oja & Hyvarinen, 2000; Vayá et al., 2007),
include a variety of unsupervised learning algorithms. Especially, Independent Component Analysis
(ICA) decompose observed signal into independent components (ICs) (Somers & Bertrand, 2016)
from linear mixtures of cerebral and artifactual sources. However, current ICA methods still require
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(a) DDPM (b) DS-DDPM

Figure 1: Illustration of probabilistic model graphs, where Figures 1(a) and 1(b) respectively denote
the original model DDPM and the proposed DS-DDPM. DS-DDPM separate the subject-specific
domain variance x

s
t (human artifacts), and the clean signal xc

t at each denoising time step t. We
constrain the summation of the separated x

s
t and x

c
t equal to diffusion result xt at time step t, which

denotes the two separated variance shares the same diffusion process. Here, the dotted line denotes
the diffusion process, while the solid line denotes the denoising process.

multi-channel information to perform artifacts separation, which may not have considered the domain
variance between different human subjects. The efforts to increase the model’s generalized ability
normally introduce Meta-Learning (Li et al., 2021; Miyamoto et al., 2021) or Domain Adaption (Lan
et al., 2018; Li et al., 2019) techniques into EEG signal augmentation or classification training. These
methods could effectively increase the model performance, but none of these methods could explicitly
model the subject difference.
In this paper, we propose to revisit the human artifacts removal for EEG signals by modeling
the removal as domain-specific denoising diffusion probabilistic models (DS-DDPM). We follow
the widely accepted assumption that the recorded EEG signals are mixtures of clean samples and
subject-specific human artifact noises. We propose a novel probabilistic model based on the diffusion-
denoising generative process (Nichol & Dhariwal, 2021; Choi et al., 2021), which has been the
recent research spotlight, especially for image generation tasks (Ramesh et al., 2021). The proposed
DS-DDPM formulate the artifact removal into every denoising step in the original model as shown in
Figure 1, where the diffusion result xt at time step t is separated by two denoising models respectively
into domain variance x

s
t (human artifacts), and the clean signal xc

t . We formulate the diffusion result
is the summation of two separated content as xt = x

c
t + x

s
t , which means the two stream shares the

same diffusion process. This constraint naturally stands as our assumption is that the noisy EEG signal
could be decomposed into clean signals and domain-specific noise, where Section 2.1 give a detailed
problem definition mathematically. We decompose the domain variance and clean signal into two
mutually orthogonal spaces, as described in Section 2.2. Moreover, an auxiliary cosine classifier is
applied to disentangling variance spaces for subject variance noises. As none of the previous methods
has explored the DDPM models for EEG signal, Section 2.3 give technical details of the efficient
structure of DDPM for EEG signals. Comprehensive experimental results are provided to illustrate
that 1) the domain-specific separation is significant in subject-domain-wise (Section 3.2), 2) domain-
specific denoising could help improve the cross-subject classification performance (Section 3.3). We
also provide an ablation study to discuss the contribution of each proposed component in Section 3.4.
The contribution of this paper could be categorized threefold as below.

• This work is the first to introduce denoising diffusion probabilistic models into EEG signals,
where UNet-EEG is first proposed for long time-sequence sample generation.

• DS-DDPM give a novel approach to explicitly separate long existing domain variance related
to human subject difference through domain specific denoising process.

• Comprehensive Experimental results suggest that the proposed DS-DDPM is efficient in
domain-specific denoising for both relevance analysis and classification performance.

2 METHODOLOGY

We give technology details of DS-DDPM in this section, where Section 2.1 provide the mathematical
description of how we revisit the human artifact removal by formulating it as a domain-specific
denoising diffusion probabilistic process. Section 2.2 provides technical details about how we
constrain and separate the two variables through novel training loss. Section 2.3 illustrate how we
design the model structure to fit the properties of EEG signals.
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2.1 DEFINITION OF DOMIAN-SEPCIFIC DENOISING

The separation of domain-specific variance is decomposed into denoising process of a denoising
diffusion probabilistic model (Nichol & Dhariwal, 2021). We define x0 as the original recorded EEG
signals and xt as the variable by adding Gaussian noise distribution by sequentially t times iteration.
Thus, we could continuously add noise into original x0 through a Markov process sampling variables
{x0,x1, ...xt−1,xt, ...,xT } until xT becomes a normal noise distribution p(xT ) ∼ N (xT ; 0, I) as
shown Figure 1. Here, the transition is also called diffusion process or forward process as below.

q(x1∶T ∣x0) ∶=
T

∏
t=1

q(xt∣xt−1), q(xt∣xt−1) = N (xt;
√
1 − βtxt−1, βtI) (1)

where β1, β2, ...βT is a fixed variance coefficient schedule. Follow the Gaussian distribution assump-
tion of DDPM, xt could further represented as combination of x0 and sampled variance ε.

q(xt∣x0) ∶= N (xt;
√
ᾱtx0, (1 − ᾱt)I), αt ∶= 1 − βt, ᾱt =

t

∏
i=1

αi (2)

where αt is also a fixed variance coefficient schedule corresponding to βt. In practice, the rep-
resentation of xt could be obtained by extending the diffusion process defined in Equation 2 as
below.

xt = αtxt−1 + βtεt = αt (ᾱt−1x0 + β̄t−1ε̄t−1) + βtεt = ᾱtx0 + αtβ̄t−1ε̄t−1 + βtεt (3)
where εt ∼ N (0, I) is a gaussian distribution which represent the stochastic property to the diffusion
process. It also give description of how to represent the diffusion result xt by real sample x0 and
given fixed variance scheduler αt and βt.

Different from the classical DDPMs which model a direct reverse process or denoising process as
q(xt−1∣xt), we decompose the denoising process subject to different subject domain s by separate the
process into to two variables, q(xs

t−1,x
c
t−1∣xt). Here, xs

t−1 denotes the separated domain variance of
subject s and x

c
t−1 denotes the compared clean signal generated at step t, where xt−1 = x

s
t−1 + x

c
t−1

as we assume the signal is the mixture of subject noise and the clean signal. As the direct reverse
of the diffusion process q(xs

t−1,x
c
t−1∣xt) is intractable (Sohl-Dickstein et al., 2015), we use two

separate function to express the denoising process as below.

pθ(xs
t−1∣xt) ∶= N (xs

t−1;µθ(xt, t, s), σ2
t I), pϕ(xc

t−1∣xt) ∶= N (xc
t−1;µϕ(xt, t), σ2

t I) (4)
where pθ(xs

t−1∣xt) and pϕ(xc
t−1∣xt) are the two seperated denoising functions decomposed from

p(xt−1∣xt) = pθ(xs
t−1∣xt) + pϕ(xc

t−1∣xt). Here, σ2
t denote the variance in transition. The core

transition µθ(xt, t, s) and µϕ(xt, t) is learned by deep neural networks. We follow previous experi-
mental settings (Nichol & Dhariwal, 2021; Choi et al., 2021) that σ2

t is directly set as βt or 1−ᾱt

1−αt
βt,

which suggest similar results in previous experiments. Thus, the variable xt at time step t could
be expressed as the summation of domain variance, and the clean data follow the original DDPM
conduction (Nichol & Dhariwal, 2021).

xt−1 =
1

1 − αt
(xt −

1 − αt√
1 − ᾱt

(µθ(xt, t, s) + µϕ(xt, t)) + σtz, (5)

where the two learned transition deep model µθ(xt, t, s) and µϕ(xt, t) share a same variance
coefficient schedule corresponding to βt. Given relation we defined above xt−1 = x

s
t−1 + x

c
t−1,

we could further approximate the separated domain variance of subject s as x
s
t−1 =

1
1−αt

(xt −
1−αt√
1−ᾱt

µθ(xt, t, s))+σtz, and the separated clean signal as xc
t−1 =

1
1−αt

(xt−
1−αt√
1−ᾱt

µϕ(xt, t))+σtz.
It is noted that, after the denoising process sampled to x1, we could directly calculate the desired
domain variance xs

0 of human subjected s and clean data xc
0 according to the equations defined above.

2.2 SEPARATE DOMAIN SPECIFIC VARIANCE BY CONSTRAINT

Under the domain specific denoising process defined in Section 2.1, we separate the domain specific
variance by the combination of three constraint. 1) Section 2.2.1 introduce how we constraint the
summation separated clean signal and domain specific variance could reconstruct the EEG signals
by reverse process loss Lr 2) Section 2.2.2 introduce orthogonal constraint between clean signal
and domain specific variance by orthogonal loss Lo. 3) Section 2.2.3 further formulate the domain
variance space seperable according to different human subjects by Arc-Marging loss Larc.
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2.2.1 REVERSE PROCESS

Basically, we modeling the diffusion results xt at time step t as the mixture of domain variance xs
t and

clean data xc
t as defined in Section 2.1 and Figure 1(b). We first discuss how to ensure the effectiveness

of diffusion-denoising training. Given the decomposition the of denoising results as xt = x
s
t + x

c
t ,

generative training loss is granted by minimizing the distance ∥xt−1 − (µθ(xt, t, s) + µϕ(xt, t))∥2

between diffusion results xt and denoising results. Follow the original conduction of DDPM (Nichol
& Dhariwal, 2021), Considering the definition in Section 2.1 that the seperated two denoising models
share the same variance coefficient scheduler α and β we could approximate the summation of the
denoising process as.

µθ(xt, t, s) + µϕ(xt, t) =
1
αt

(xt − βtεθ(xt, t, s) − βtεϕ(xt, t)) (6)

where θ and ϕ are respectively the training parameter for domain specific denoising and content
denoising. εθ and εϕ denote the generated variance from these models. Thus by introducing
Equation 6, we could rewrite the distance to be minimized as in Equation 7.

∥xt−1 − (µθ(xt, t, s) + µϕ(xt, t))∥2
=

β
2
t

α2
t

∥εt − εθ(xt, t, s) − εϕ(xt, t))∥2 (7)

where β
2
t

α2
t

is a loss coefficient which we use hyper parameter λr to represent. Also by introducing the
diffusion process to represent xt defined in Equation 3, we could give the training loss Lr for the
reverse process in Equation 8.

Lr = λr∥εt − εθ(ᾱtx0 + αtβ̄t−1ε̄t−1 + βtεt, t, s) − εϕ(ᾱtx0 + αtβ̄t−1ε̄t−1 + βtεt, t))∥2 (8)

The reverse process training loss Lr could be minimized by given recorded EEG signals x0, fixed
variance scheduler {α1∶T , β1∶T } and standard Gaussian distribution εt sampled at each time step.

2.2.2 SEPARATE SUBJECT DOMAIN VARIANCE APART

Figure 2: The orthogonal domain
variance separation of DS-DDPM.

The training of the reverse process only ensures the summation
of the generated x

s
0 and x

c
0 is the recorded EEG signal x0. Yet,

we impose two constraints to separate the domain variance. First,
we formulate the generated x

s
0 and x

c
0 at each time step into two

orthogonal spaces as shown in Figure 2, where the blue space
contains the signal distribution of the clean EEG signals, green
space contains the distribution of the subject-specific domain
variance. The orthogonal property is granted by introducing a
constraint loss defined in Equation 9.

Lo = λo
ÂÂÂÂÂ(µθ(xt, t, s)⊤µϕ(xt, t) − I)⊗ (1 − I)ÂÂÂÂÂ

2
(9)

where µθ(xt, t, s) and µϕ(xt, t) are the denoising process de-
fined in Equation 6. According to this representation, we make

an approximation to directly optimize the model output εθ(xt, t, s)⊤εϕ(xt, t) instead, the accord-
ingly adjustment of the coefficient λo regularize the value scale of Lo.

2.2.3 FORMULATE SUBJECT DOMAIN VARIANCE TO HUMAN SUBJECTS

In order to perform domain specific denoising related to given human subject s, DS-DDPM also
constraint the domain variance separable in subject wise. The constraint is constructed by introducing
a extra subject classifier to supervise conditional denoising process µθ(xt, t, s). Here, the generated
domain variance of subject s is expected to predict the subject label s given the domain variance by
introducing a conditional probabilistic model p(s∣xs

t). Also, under our assumption, we design the
clean data variance totally independent to the subject information. Thus, we could eliminate all items
in Equations defined above for representation of the classification model p(s∣xs

t). We use a simple
EEGNet (Lawhern et al., 2018) classifier to extract feature x̄

si
t over denoisig output xs

t , where the
transition is represented as Wθ. We propose to formulate the decision boundary of predicting subject
s into cosine space, where the traditional SoftMax (Liu et al., 2016) loss is replaced by introducing
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Additive Angular Margin classification (Arc-Margin) loss (Deng et al., 2019). The Arc-Marging loss
transforms the classification logits as W⊤

θ,sj x̄
si
t = ∥Wθ,sj∥∥x̄

si
t ∥ cos θsj , where the θsj is the angle

between the weight Wθ,sj and the feature x̄
si
t representing subject si. The individual weight and

features are fixed by L2 normalization. Here we let ∥Wθ,sj∥ = 1, which denotes the weights make
the predictions only depend on the angle between the feature and the weight We also let ∥x̄si

t ∥ = r,
which denotes the learned embedding features are thus distributed on a hyper-sphere with a radius of
r. As the feature x̄

si
t is calculate by µθ(xt, t, s) through bunch of classification transformation ω.

Thus, x̄si
t could be approximated by eliminate irrelevant items in Equation 6 as below.

cos θsj =

W
⊤
θ,sjω(εθ(ᾱtx0 + αtβ̄t−1ε̄t−1 + βtεt, t, s))

∥W⊤
θ,sj

∥∥ω(εθ(ᾱtx0 + αtβ̄t−1ε̄t−1 + βtεt, t, s))∥
(10)

An additive angular margin penalty m is added between x̄
si
t and Wθ,sj to simultaneously enhance the

intra-class compactness and inter-class discrepancy (Deng et al., 2019). Also by given the coefficient
λarc for subject classification, we could formulate the Arc-Margin loss Larc coulde be defined in
Equation 11.

Larc = −λarc
1

N

N

∑
i=1

log
e
r(cos(θyi

s
+m))

er(cos(θyi
s
+m)) +∑n

sj=1,sj≠y
i
s
er cos θsj

(11)

where yis denotes the target subject label. By introducing Larc, we could regulate the domain variance
space separable by angle according to different subject si. Since we already regulate the clean data
space and the subject space orthogonal, the mixture of different subjects will be distributed evenly
according to different subjects si as well, which increase the interoperability of DS-DDPM.

2.3 DENOISING MODEL FOR EEG SIGNALS

Model Structure: This section introduce how we design domain specific generative model structure
and how we train the denoising model by combining the loss constrained proposed in Section 2.2.
For model structure, we follow the common UNet (Huang et al., 2020) structure and modified it to fit
long-time series signals (UNet-EEG). The overall model structure is shown in Figure 3, where we
modified the UNet (Huang et al., 2020) structure into two generative streams. The UNet-EEG model

Figure 3: The overall model structure of DS-DDPM, where the recorded EEG signals is sliced by time
window 224, step 75 and stacked into shape bs× channel ×window × stacks as x0. The modified
UNet-EEG structure receives diffusion results xt and respectively generate domain variance x

s
t−1

and the clean data x
c
t−1 by two streams. The generated x

s
t−1 and x

c
t−1 are simultaneously supervised

by reverse loss Lr, orthogonal loss Lo and Arc-Margin loss Lr.

receives diffusion results xt and respectively generate domain variance x
s
t−1 and the clean content

x
c
t−1. Here for clean content stream, the UNet-EEG sequentially perform three times down-sample

and up-sample operation with the residual fusion within each feature map scale, which could enhance
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the ability of the model of maintaining time sequential relations. Similar to original DDPM, time label
t is tokenized into time embedding and fed into each layer of the UNet-EEG to improve the generative
ability according to each time step t. For the domain variance separation stream, the subject condition
s is tokenized into embedding and fused with UNet-EEG at the mid layer by multi-head attention
layers. Here, we take the subject token as the query and the original feature map as key and value for
the attention layer.

Training and Sampling Procedure: Given the structure defined above, we provide detailed training
procedure as shown in Algorithm 1. For fast converging, we pre-train the subject classifier ω
(EEGNEt) by sampling {x0, s} ∼ q(x0, s) pairs from the recorded EEG signals of set of human
subjects. Since EEG signals naturally contains the subject label (it means from which human the
EEG signal is collected), the training of ω is practical. It could help the optimizer concentrate
on the parameter θ, ϕ for generative model. For the whole training procedure, the time step t is
sampled evenly between {1, 2, .., T} and variance scheduler {α, β} is sampled and fixed. At each
iteration, the algorithm sampling ε ∼ N (0, I) at each time step. During each iteration, the generative
model for clean data and subject-specific domain variance is calculated by giving the subject label
s, time step t, real EEG signal x0 and variables sampled mentioned above. The parameters θ, ϕ
of the generative model is optimized by minimizing the weighted combination of the loss function
proposed in Section 2.2. After the generative model is trained, we could generate subject-specific

Algorithm 1 Training
1: repeat
2: x0, s ∼ q(x0, s), Sample x0 from Subjects {s}
3: Pretrain subject classifier ω given sample label pairs

{x0, s}
4: t ∼ Uniform({1, . . . , T })
5: ε ∼ N (0, I)
6: Calculate, εθ(xt, t, s) , εϕ(xt, t), ω(εθ(xt, t, s))

with model parameters θ and ϕ.
7: Take gradient descent step optimize θ and ϕ on
8: Combination Loss L = λrLr + λoLo + λarcLarc

9: until converged

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: x
s
t−1 =

1√
αt

(xt −
1−αt√
1−ᾱt

εθ(xt, t, s))+σtz

5: x
c
t−1 =

1√
αt

(xt −
1−αt√
1−ᾱt

εϕ(xt, t)) + σtz

6: end for
7: return x

s
0, xc

0

domain variance according to the probabilistic model discussed in Section 2.1. Algorithm 2 denotes a
complete procedure of sampling domain variance according to subject s and generated unconditional
EEG signals from pure noise. One natural process of perform denoising on give signal is that,
sampling a subject specific domain variance x

s
0, and direct perform x0 − x

s
0 to get cleaner signal.

However, this approach does not link the noise according to the given signal. Meanwhile, the
iterative denoising process is time-consuming. For real-life scenarios, it’s more convenient to perform
denoising not only depending on subject s but also the signal itself. Revisiting the denoising iterative
process xT , ...,xt,xt−1, ...x0, the denoising model remove the noise by small steps each time. As
recorded EEG signal naturally contains noise, it’s also reasonable that we direct perform denoising by
assume recorded signal as x1/2, a mediate state in the denoising process. Thus, given recorded raw
signal is xraw we could directly separate the domain variance and the clean content by performing
x
s
0 =

1√
α1

(xraw − 1−α1√
1−ᾱ1

εθ(xraw, 1, s)) + σ1z and x
c
0 =

1√
α1

(xraw − 1−α1√
1−ᾱ1

εθ(xraw, 1)) + σ1z.
This assumption could replace the iterative sampling process with inference only once. Experimental
results suggest that this assumption is efficient in improving the cross subject classification task.

3 EXPERIMENTS
In this section, we conduct comprehensive experiments to illustrate the efficiency of the proposed
Domain-Specific Denoising, where Section 3.2 analysis the correlation by 1) performing correlation
coefficient Moreover, we conduct experiments on cross subject classification task in Section 3.3 to
illustrate our efficiency on classification tasks. Additional ablation study is conducted in Section 3.4
to discuss the effectiveness of each component.
3.1 EXPERIMENTAL SETUP
We mainly conduct our experiments on BCI-Competition-IV dataset (Tangermann et al., 2012), which
is widely used to validate Motor Imaginary classification tasks. The dataset is collected under a
widely-used 10-20 system, where 22 EEG channels and 3 EOG channels are provided. The dataset
contains EEG and EOG signals with a sampling frequency of 250 Hz from nine subjects. Each human
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subject was required to perform four classes (left hand, right hand, feet, and tongue) motor imaginary
while recording the brain dynamics. We only use the 22-channel EEG signals by pre-processing them
into shape 22×750, where 750 is the time sequence length with a 250 Hz sampling rate for 3 seconds.
As mentioned in Section 2.3, we use a time window to slide along the time sequence and slice time
sequence to segments with overlaps. Here by using time window size 224 and stride size 75, the data
is processed into shape bs × 22 × 224 × 8 and fed into the UNet-EEG model. For the UNet-EEG
model, we sequentially perform 3 times down-sampling and up-sampling blocks for the clean content
stream and perform 1 times down-sampling and up-sampling for the domain variance stream. This
compared slim structure for domain variance stream prevents severe over-fitting, thus making the
training process more stable. For the subjects classifier, we use a original EEGNet structure with
modification of input size bs × 22 × 224 × 8 as well. For the hyper-parameters of Arc-Margin Larc,
we follow the previous explorations on human face recognition where we respectively set the radius
r = 30 and the margin as m = 0.5. The ADAM (Zhang, 2018) with default hyper-parameters is
utilized as our optimizer. According to our experiments, we found batch size 64 could stabilize the
training process than smaller numbers. The DS-DDPM is implemented based on PyTorch, where we
release our code through anonymous link https://anonymous.4open.science/r/DS-DDPM-2EA6.

Table 1: Subject-wise correlation analysis inside between real EEG samples and DS-DDPM generative
samples. It shows that the correlation coefficient of the same subject between real and generated
sample is significantly higher than un-related subjects, which indicates the efficiency of DS-DDPM.

Subject Correlation Coefficient of EEG BCI-IV EEG Signals
s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 0.1013 0.0481 0.0546 0.0593 0.0450 0.0508 0.0502 0.0424 0.0431
s2 0.0481 0.0744 0.0401 0.0384 0.0333 0.0406 0.0451 0.0373 0.0378
s3 0.0546 0.0401 0.0804 0.0483 0.0365 0.0430 0.0483 0.0372 0.0394
s4 0.0593 0.0384 0.0483 0.0876 0.0409 0.0423 0.0529 0.0433 0.0438
s5 0.0450 0.0333 0.0365 0.0409 0.0576 0.0343 0.0387 0.0312 0.0341
s6 0.0508 0.0406 0.0430 0.0423 0.0343 0.0713 0.0444 0.0339 0.0376
s7 0.0502 0.0451 0.5483 0.0529 0.0387 0.0444 0.0929 0.0424 0.0498
s8 0.0424 0.0373 0.0372 0.0433 0.0312 0.0539 0.0424 0.0687 0.0321
s9 0.0498 0.0378 0.0394 0.0413 0.0341 0.0376 0.0438 0.0321 0.0660

Subject Correlation Coefficient Between DS-DDPM Sampled Signal and BCI-IV
s1 0.1089 0.0711 0.0772 0.0797 0.0668 0.0731 0.0715 0.0634 0.0695
s2 0.0716 0.0897 0.0670 0.0645 0.0580 0.0660 0.0682 0.0595 0.0614
s3 0.0759 0.0652 0.0960 0.0721 0.0610 0.0680 0.0702 0.0596 0.0626
s4 0.0793 0.0637 0.0729 0.1000 0.0638 0.0678 0.0739 0.0637 0.0635
s5 0.0690 0.0603 0.0646 0.0666 0.0757 0.0617 0.0633 0.0553 0.0586
s6 0.0832 0.0655 0.0689 0.0673 0.0588 0.0883 0.0675 0.0571 0.0609
s7 0.0725 0.0689 0.0789 0.0753 0.0696 0.0691 0.1025 0.0659 0.0656
s8 0.0673 0.0636 0.0651 0.0686 0.0574 0.0619 0.0664 0.0821 0.0574
s9 0.0724 0.0637 0.0666 0.0670 0.0589 0.0647 0.0671 0.0559 0.0816

3.2 DOMAIN SPECIFIC VARIANCE ANALYSIS

Correlation analysis: In order to analysis the generative quality of the domain variance generative
tasks, we conduct correlation analysis on both real signals and generative signals as shown in Table 1.
The upper part reports the correlation coefficient matrix on the real EEG signal distribution from
BCI-Competition-IV 2a datasets. It shows that the coefficient between the same subjects is higher
than cross subjects coefficient significantly, where the diagonal values of the matrix is significant
larger than others. By given the subject label to the DS-DDPM model, we could also generate real
EEG signals of each subject. In order to illustrate the domain variance separation according to
subject s, we analysis the coefficient between real samples and DS-DDPM generated samples. If the
generated signal distribution of subject s has higher to the real signal distribution of the same human
subject s, we think is significant to illustrate our efficiency. The results are reported on lower part of
Table 1, where the correlation coefficient properties is similar to the real samples. This results indicate
the efficiency of DS-DDPM. We could also observe that the generated signals have higher correlation
coefficient with unrelated subjects compared to real signal, where the value of generated signals varies
between 0.0312 ∼ 0.0593 while the value of generated signals varies between 0.0695 ∼ 0.0832.
We argue this phenomenon is rational as the real sample is actually the upper bound of the current
regression-based domain separation methods.
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Visualization of Domain Variance Distribution: We also visualize the domain variance distribution
of each subject. We sample domain variance by given different subject labels to each subject. Then
the domain variance is visualized by introducing t-Distributed Stochastic Neighbor Embedding
(t-SNE) (Belkina et al., 2019) algorithm. We compare the visualization of original EEG signal x0,
the separated domain variance x

s
0, and the invariance content xc

0 in Figure 4. As the raw signals of

Figure 4: T-SNE visualization of invariance content xc
0, subject domain variance xs

0, and mixed signal
x0. Different color denotes different human subjects, where the invariance distribution is irrelevant to
different subjects while the domain variance clearly sperable accroding to subject wise.

all channels is too large bs × channels × 224 × 75 for T-SNE to perform significant clustering, we
actually use a EEGNet pretrained on the 4-class MI classification task, and take the mediate feature
map to perform down-sampling on the raw signal. As the 4-class MI classification task is irrelevant
to the subject information, so this down sampling does not introduce unfair bias. It could be observed
that the invariance distribution of different subjects distributed evenly in the whole space, which
illustrate the efficiency of our methods to separate “invariance” features from the original signal. For
domain variance, although the degree of clustering between different classes is differentiated, the
experimental results still show that the generated domain variance strongly corrlated with subjects.
This results support the efficiency of the proposed DS-DDPM method.

Visualization of Denoised Signals: Here, we also visualize the EEG signal waves after performing
domain specific variance separation. For the visualization, we show both 1) utilizing real EEG signal
as the mediate state of the diffusion process and 2) sampling EEG signals of subject s from pure
noise in Figure 5. For the generative process from the pure noise, it is observed that the domain

(a) Sampling EEG signals with domain variance from pure noise distribution

(b) Perform denoising by assign real EEG signals as mediate state.

Figure 5: Visualization of the EEG signals after performing domain variance separation given subject
s = 3, where green curves denotes the domain variance and blue curves denotes clean EEG signal.

variance is very large at the beginning. However, along with the demonising process, the proportion
domain variance gradually converged into a rational ration. According to our observation, at half
time steps (t = 500), the denoising process could generate EEG signals with quality, which support
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the assumption that we do not need to perform a complete denoising process for domain separation.
For denoising on real EEG signal, setting x3 as the recorded EEG signal, we could also got rational
results by only performing three steps of the denoising process. This assumption could largely save
the computational cost as well as the sampling time for real life scennarios.

3.3 CROSS SUBJECT CLASSIFICATION PERFORMANCE

For further verifying the effectiveness of DS-DDPM on human artifacts removal, we conduct cross
subject classification task and compare it with widely used ICA (Subasi & Gursoy, 2010) method.
In practical, we respectively train MI classifier by only given EEG signals from one single subject,
and test the classification accuracy on EEG signals from all other human subjects and reported in
Table 2. It is observed that by introducing DS-DDPM and use the separated invariant feature to
perform classification tasks, the DS-DDPM outperforms previous model on subject 1, 3, 4, 5, 7, 8, 9.
It suggests the efficiency of our model to separate domain invariant content signals, where by using
the domain variance separation, the cross-subject classification performance is significantly improved.

Table 2: Cross-subject classification performance on BCI-IV dataset, where each column denotes a
single model trained from one single subject and single denoising method, each row denotes which
subject is selected for the training set. M denotes the mean accuracy of each model.

Train with ICA Denoising (Acc. %) Train with DS-DDPM Denoising (Acc. %)
s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 89.29 39.29 25.93 50.00 40.74 27.27 62.96 29.63 36.00 85.59 46.43 46.43 52.00 37.04 31.82 68.22 37.04 38.46
s2 82.61 92.86 33.33 41.67 33.33 31.82 33.33 37.04 36.00 85.71 90.01 34.28 44.00 44.44 37.27 32.14 44.18 35.77
s3 53.57 85.71 81.48 58.33 33.33 54.55 44.44 33.33 48.00 60.71 92.86 82.11 58.00 58.15 55.00 49.29 51.85 44.62
s4 53.57 46.43 81.48 91.67 33.33 54.55 37.04 37.04 44.00 52.86 47.21 78.57 88.45 48.15 50.00 38.57 40.74 46.15
s5 42.86 35.71 37.04 91.67 88.89 54.55 40.74 33.33 40.00 45.86 35.71 37.04 91.67 85.47 52.00 42.81 36.12 46.15
s6 50.00 39.29 37.04 50.00 77.78 90.91 44.44 33.33 44.00 52.14 35.00 46.43 44.44 79.12 88.00 49.15 33.33 50.00
s7 57.14 50.00 37.04 41.67 55.56 90.91 74.07 33.33 40.00 55.71 50.00 42.16 52.00 55.56 90.91 76.12 43.10 47.28
s8 39.29 39.29 44.44 50.00 59.26 45.45 66.67 74.07 44.00 39.29 39.29 44.44 47.25 59.26 45.45 70.37 78.88 44.00
s9 32.14 32.14 37.04 45.83 44.44 45.45 33.33 74.07 84.00 25.15 35.71 32.14 38.20 44.44 45.45 34.07 73.08 85.15
M 55.61 51.19 46.09 57.87 51.85 55.05 48.56 42.80 46.22 55.89 52.47 49.29 57.33 56.85 54.48 51.19 48.70 48.62

3.4 ABLATION STUDY
We evaluate each constraint to give a detailed analysis of how each component contributes to the final
result. Limited to paper length, please refer to Appendix B for details.

4 RELATED WORKS
In this section, we respectively give a comprehensive literature review of both 1) the previous
progress on human artifacts removal for brain dynamics and 2) the current advances in domain
separation. Mainstream methods for human artifact removal could be categorized into fourfold
1), signal regression (Al-Nuaimi et al., 2018; Klados et al., 2011), Blink Source Separation (BSS)
(Sweeney et al., 2012; Somers & Bertrand, 2016; Teixeira et al., 2006; Subasi & Gursoy, 2010),
Empirical-mode Decomposition (EMD), and Spectrum filtering methods (James & Hesse, 2004).
Meanwhile, we also give brief reviews of the current domain adaption and domain generation papers,
which are similar in mathematical mechanism to our paper. Limited to paper length, please refer to
Appendix A for details.

5 CONCLUSION
In this paper, we propose DS-DDPM, the first conditional diffusion-denoising probabilistic model for
domain separation on brain dynamics. We modify the normal denoising process into two streams
and respectively generate content signals and the domain variance according to different subjects.
Three subtle constraints are introduced to formulate the feature space with good properties: 1) the
mix of separated two streams could reconstruct the signal in each diffusion step; 2) content feature
and domain variance are orthogonal in feature space; and 3) The domain variances are further divided
in terms of subjects. Moreover, UNet-EEG is first proposed to customize proper generative model
structure, especially for long sequential samples such as EEG signals. The proposed DS-DDPM could
not only generate domain variance distribution for EEG signals from pure noise, but also perform
human artifact removal by giving real EEG signals as mediate diffusion states. Experimental results
suggest that DS-DDPM is efficient in both explicitly generating domain variance of certain subjects
and improving the cross-subject classification performance.
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SUPPLEMENTARY MATERIALS OF SUBMISSION 308: DOMAIN SPECIFIC
DENOISING DIFFUSION PROBABILISTIC MODELS FOR BRAIN DYNAMICS

A RELATED WORKS

A.1 DENOISING METHODS FOR EEG

The removal of artifacts from EEG signals has been a vital step before extracting the neural infor-
mation for the sub-sequence analysis. Based on the cause of these artifacts, whether Arising from
imprecise recording systems, casual recording procedures, or human subjects themselves, these
artifacts can be categorized into intrinsic or extrinsic artifacts by whether they come from the human
subject or not. Either way, these artifacts lead to misleading results in brain-computer interface (BCI)
applications (Mannan et al., 2018). In particular, physiological artifacts caused by human subjects
cannot be eliminated by simply applying bandwidth filtering or strict experimental procedures. Main-
stream methods for physiological artifact removal are signal decomposition and artifactual signal
estimation by incorporating techniques such as, regression (Al-Nuaimi et al., 2018; Klados et al.,
2011), Blind Source Separation (BSS) (Sweeney et al., 2012; Somers & Bertrand, 2016; Teixeira
et al., 2006; Subasi & Gursoy, 2010), Empirical-mode Decomposition (EMD), and Spectrum filtering
methods (James & Hesse, 2004).

Spectrum filtering methods are widely used methods for transforming the temporal signal into
frequency components that allow for separation or extraction of the signals. In the frequency domain,
signals can be decomposed into distinctive combinations of individual frequencies and amplitudes,
thus separating useful signals from artifacts. Typical methods for spectrum filtering in EEG denoising
are Wavelet Transform (Kumar et al., 2008; Safieddine et al., 2012) and Fourier Transform (Behnam
et al., 2007; Murugappan & Murugappan, 2013). However, the current spectrum more or less requires
some prior knowledge about the characteristics of useful components as well as artifacts in the EEG
signal, which will have limitations when utilized in a particular EEG-related application without
sufficient exploration and understanding of its EEG signal.

On the other hand, the BSS methods are unsupervised learning algorithms that learn an underlying
linear transformation that transforms the source EEG signal to the observed noisy EEG signal
without the need for prior information and reference channels. Major methods for BSS are Principal
Component Analysis (PCA) (Berg & Scherg, 1991), Independent Component Analysis (ICA) (Jung
et al., 1998; Vigário, 1997; Vigário et al., 2000; Jung et al., 2000) and Canonical Correlation Analysis
(CCA) (Borga et al., 2002; Dong et al., 2015; De Clercq et al., 2006). Despite the high accuracy of
artifact removal, BSS methods make a strong assumption that the source signals can be approximated
by linear transformation from the noisy observation. We argue that this oversimplified transformation
cannot match the sophisticated nature of EEG artifacts.

A.2 DOMAIN SEPERATION

EEG signals are well-known for their large inter-subject variance. Our method is similar to domain
separation and adaption methods since we also try to capture the similarity in high-level EGG patterns
as well as the difference in subject-related patterns using separate models. Specifically, existing
domain separation methods assume that could decompose into the domain-specific feature and domain-
invariant features. In our settings, domain-invariant feature directly refers to the underlying mental
state from EEG signals collected from human subjects while domain-specific feature corresponds
to subject-specific features that pose as unwanted artifacts in EEG analysis. Earlier works for
domain separation such as Domain separation Networks (DSN) (Bousmalis et al., 2016) propose an
architecture to learn and separate both domain-specific and domain-invariant features by introducing
additional network branches for both features respectively. By reducing the discrepancy between
the domain-specific subspace and the class-specific feature space, their method is able to learn
separable domain-specific information that is orthogonal to the domain-invariant feature space. Later
on, Adversarial Discriminative Domain Adaptation (ADDA) (Tzeng et al., 2017) utilized a domain
discriminator to allocate features obtained from the different domains into a shared space. In this
way, domain-specific information is not captured by the feature extractor for different domains. More
recent approaches proposed to further separate the domain-specific and domain-invariant features by
utilizing additional regulations terms that eliminate the dependency between domain-specific features
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and domain-invariant features using Entropy regularization (Zhao et al., 2020) or Variance Penality
(Heinze-Deml & Meinshausen, 2021; Wang et al., 2017). Although these methods vary in network
architectures and regularizations, the core idea behind domain separation can be summarised as the
elimination of discrepancy between domain-specific features and domain-invariant features. To the
best of our knowledge, our work is the first to draw the line between domain separation and subject
modeling in EEG processing.

B ABLATION STUDY

Different Constraint In this section, we give detailed discuss of how each constraint component
contribute to the final performance. The reverse loss Lr defined in Section 2.2 in the main paper
indicate how well the generative process could reconstruct the real EEG signals after diffusion.
We first conduct the ablation study by observing the impact each component brings to the original
generative process. First we conduct ablation study on orthogonal constraint Lo, which is designed to
separate the domain specific variance and the invariant feature. However, except for the orthogonal
constraint, KL divergence constraint is also frequently used for separate two different distributions.
We could directly maximize the KL divergence of the two stream to supervise the whole generative
process by adding the KL-divergence into the final loss. Also, as the separation generative process is
naturally given the subject label condition. If we don’t put any constraint it may still perform some
level of domain separation as previous conditional DDPM papers mentioned. We use the reverse loss
as the measurement of the fitting level, while we use the KL divergence as the measurement of the
separation degree. The results are shown in Figure 6. It could be observed that for fitting level, the

Figure 6: The reserve loss curve and the KL-Divergence loss curve of different constraints.

conditional training only formation have the lowest loss throughout the training. It is rational that
without any constraint, the conditional training has the best fitting level. It could be also observed
that if only constraint the training with the KL divergence, the training loss won’t be efficient, where
the loss curve will even increase. However, the loss curve also suggest that although orthogonal
constraint will have some negative impact on the learning curve, yet the fitting level is still acceptable.
Meanwhile, we also visualize the kl divergence curve which could suggest the separation level. Given
the KL divergence, where the green line is the upper bound. It is observed that the KL divergence of
orthogonal constraint is significantly higher than the conditional training methods.

C GENERATED CASE VISUALIZATION

Here, we also visualize the EEG signal waves after performing domain specific variance separation.
For the visualization, we show both 1) utilizing real EEG signal as the mediate state of the diffusion
process and 2) sampling EEG signals of subject s from pure noise pure in Figures 7, 8 and 9. Here
in appendix, we put much clear version of the generated signals. For the generative process from the
pure noise, it is observed that the domain variance is very large at the beginning. However, along with
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(a) Sampling EEG signals with domain variance from pure noise distribution t=950

(b) Sampling EEG signals with domain variance from pure noise distribution t = 500

Figure 7: Visualization of the EEG signals after performing domain variance separation given subject
s = 3, where green curves denotes the domain variance and blue curves denotes clean EEG signal.
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(a) Sampling EEG signals with domain variance from pure noise distribution t = 0

(b) Perform denoising by assign real EEG signals as mediate state t = 2

Figure 8: Visualization of the EEG signals after performing domain variance separation given subject
s = 3, where green curves denotes the domain variance and blue curves denotes clean EEG signal.
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(a) Perform denoising by assign real EEG signals as mediate state t = 1

(b) Perform denoising by assign real EEG signals as mediate state t = 0

Figure 9: Visualization of the EEG signals after performing domain variance separation given subject
s = 3, where green curves denotes the domain variance and blue curves denotes clean EEG signal.
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the demonising process, the proportion domain variance gradually converged into a rational ration.
According to our observation, at half time steps (t = 500), the denoising process could generate
EEG signals with quality, which support the assumption that we do not need to perform a complete
denoising process for domain separation. For denoising on real EEG signal, setting x3 as the recorded
EEG signal, we could also got rational results by only performing three steps of the denoising process.
This assumption could largely save the computational cost as well as the sampling time for real life
scennarios.
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