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Appendix

A Details of Experimental Setup

A.1 SP-RT-1 Dataset

As described in Sec. 4.1, we constructed the SP-RT-1 dataset from the RT-1 dataset [1] for our task.
The details are described below. We collected the first and last images of each episode. The dataset
was preprocessed by modifying the instruction sentences. In the RT-1 dataset, 43.6% of the negative
samples were incorrectly labeled as negative, despite the manipulator having successfully executed
the manipulation. We replaced the instruction sentences for the incorrectly annotated samples with
alternative sentences that were randomly selected to create negative samples. This strategy was
chosen instead of converting them to positive samples, because the original dataset contained fewer
negative samples than positive samples, and converting negative samples to positive samples would
further reduce the proportion of negative samples.

The SP-RT-1 dataset consisted of a total of 13,915 samples, with a vocabulary size of 49, a total
word count of 78,790, and an average sentence length of 5.66. The dataset contains 10,000 positive
samples and 3,915 negative samples. The SP-RT-1 dataset contained 11,915, 1,000, and 1,000 sam-
ples in the training, validation, and test sets, respectively. We used the training, validation, and test
sets to estimate parameters, tune hyperparameters, and evaluate models, respectively. We computed
the accuracy on the validation set every epoch. The performance on the test set was evaluated using
the model that achieved the highest accuracy on the validation set. The dataset is publicly avail-
able athttps://contrastive-lambda-repformer.s3.amazonaws.com/dataset/SP-RT-1.
tar.gz.

Other related datasets and benchmarks. For multimodal language understanding tasks for
robotics, various datasets and benchmarks are used in both real-world [2, 3, 4] and simula-
tion [5, 6, 7, 8] settings. Among them, the RT-1 dataset is the most relevant to our target task of
success prediction for object manipulation. Additionally, VLMbench [9] is a standard benchmark
for object manipulation tasks on a tabletop. It provides natural language instructions, labels indicat-
ing the success or failure of each manipulation, and images captured from five camera views.

A.2 Zero-Shot Transfer Experiment

For a comprehensive evaluation, we validated the proposed method in a physical environment using
a mobile manipulator with zero-shot transfer settings. We collected the data in the environment
described in Sec. 4.1. In this experiment, we used a subset of the YCB objects [10], which are
standard objects for manipulation research. These selections were based on their suitability for
grasping by the HSR end-effector.

In the experiment, we randomly selected up to four objects and arranged them on the table. Then,
executable open-vocabulary instruction sentences were created and assigned to the episodes. The
manipulations were performed by remote controlling the robot. The images of the scene before
and after the manipulations were taken using the head-mounted camera of the robot. In total, 112
episodes were collected, with 56 episodes for both positive and negative samples. The dataset is
also available at https://contrastive-lambda-repformer.s3.amazonaws.com/dataset/
zero-shot.tar.gz.

A.3 Implementation Detail

Table A1 shows the experimental settings for the proposed method. Our model had approximately
64M trainable parameters and 7.25G multiply-add operations. We trained our model on a GeForce
RTX 4090 with 24 GB of GPU memory and an Intel Core i9-13900KF with 64 GB of RAM. It
took approximately 1.5 hours to train our model on the SP-RT-1 dataset. The inference time was
approximately 1.6 ms/sample.


https://contrastive-lambda-repformer.s3.amazonaws.com/dataset/SP-RT-1.tar.gz
https://contrastive-lambda-repformer.s3.amazonaws.com/dataset/SP-RT-1.tar.gz
https://contrastive-lambda-repformer.s3.amazonaws.com/dataset/SP-RT-1.tar.gz
https://contrastive-lambda-repformer.s3.amazonaws.com/dataset/zero-shot.tar.gz
https://contrastive-lambda-repformer.s3.amazonaws.com/dataset/zero-shot.tar.gz
https://contrastive-lambda-repformer.s3.amazonaws.com/dataset/zero-shot.tar.gz
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In Narrative Representation Module in - Optimizer Adam (B, — 0.9, B2 — 0.999)

Representation Encoder, we used following Learning rate 1.0 x 10—6
prompt to generate descriptions: “Give a clear, Weight decay 1.0 x 10~1
comprehensive and detailed description of the  Batch size 32
state of the objects shown in this image. For  Epoch 150

each object, mention their c.olors, sizes, shz.lp.es, Table Al: Experimental settings for Contrastive
how they are placed (upright, etc.), position A-Repformer.

within the image and relative position to other

objects. Begin with the phrase ‘In the image,’. Only use information that can be gained from the
image. Mention the objects that appear in the sentence string below. If the objects in the sentence
string are not present in the image, mention that they are not present. Sentence string: ‘instruction’
.’ Here, we inserted the instruction sentence for each episode into ‘instruction’.

A.4 Baselines

For comparative experiments, five baseline methods were used. We used the following experimental
settings for each baseline. For each multimodal large language model (MLLM)-based method—
InstructBLIP [11], Gemini [12], GPT-4V [13]-, we tested more than ten prompts and adopted the
one with the best results.

UNITER-base/large [14]. We performed fine-tuning according to the hyperparameter settings de-
scribed in [14].

InstructBLIP. InstructBLIP assumes a single im-
age as the image input. Therefore, we concatenated
Thefore aNd T, as shown in Fig. Al, handling
them as a single input image. The prompt used is
as follows: “These two images show the robot exe-
cuting the instruction ‘instruction’. Based on them,
please predict whether the robot has successfully
completed the task and answer with ‘success’ or
‘failure’.” Here, we inserted the instruction sentence
for each episode into ‘instruction’. This approach
was applied similarly across all MLLM-based model
prompts.

Figure Al: An example of the image input to
InstructBLIP. The left and right parts show
the images before and after manipulation, re-
spectively.

Gemini. Gemini is capable of handling multiple images as input [12]. Therefore, during inference,
we provided Tpefore, Lafter, and the following prompt as input: “These images show the robot exe-
cuting the instruction ‘instruction’. The first image shows the scene before the object manipulation
by the robot and the second image shows the scene after. Based on the two images and the instruc-
tion, determine whether the robot has successfully completed the task and answer with ‘true’ or

LT

‘false’.

GPT-4V. Similarly, GPT-4V can also process multiple images [13]. Thus, in the experiments, we
inputted Tpefore, Lafters and the following prompt: “These images, taken from a single viewpoint
camera, show the robot executing the instruction ‘instruction’. Based on these images and the in-
struction, please determine whether the robot has successfully completed the task and answer with

5 93

‘true’ or ‘false’.

Model Attention Mechanism  Accuracy [%]

B Additional Ablation Study (i) Self-Attention 78.88 + 1.05

(i) Cross-Attention 80.80 + 0.86

We conducted an additional ablation study
to investigate the contribution of the Table A2: Results of additional ablation study. Bold

cross-attention operation in Contrastive - indicates the highest value.
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Representation Decoder. This operation was used to create a representation of the difference
between two A\-Representations. Table A2 presents the results.

In this experiment, we changed the cross-attention operation to a self-attention operation to investi-
gate its contributions. From the table, it can be observed that the accuracy of Model (i) was 78.88%,
which was 1.92 points lower than that of Model (ii). This indicates that the cross-attention operation
is suitable for identifying the differences between images.

C Error Analysis

The confusion matrix of Contrastive A-Repformer on the test set of the SP-RT-1 dataset includes
431, 114, 386, and 69 samples that are true positive, false positive, true negative, and false negative
cases, respectively.

Thus, there were a total of 183 samples where the proposed method failed on the test set of the
SP-RT-1 dataset. Table A3 shows the results of the error analysis, where we randomly selected 100
samples of failed cases. We classified them into the following six categories:

Multimodal Language Compre-

X > Error type #Errors
hension Error: This refers to
cases where the model incorrectly ~ Multimodal Language Comprehension Error 63
interpreted visual information and Pamal,VISlblhty 14
. . . Narrative Deficiency 11
instruction sentences, such as mis- . 4
. . Ambiguous Instruction 8
understanding the target object Erroncous Data Sample 4
and misinterpretation of referring
Total 100

expressions.

Partial Visibility: This category in- Table A3: Error analysis on failure cases.

cludes cases where the target object or area is only partially visible, making it difficult to make
appropriate predictions. This can occur when the target object is more than half occluded by the
manipulator or other objects, or when more than half of the target object is outside the photographed
scene.

Narrative Deficiency: This addresses cases in which the narrative from the MLLM is missing.

Ambiguous Instruction: This involves cases where interpretations of success or failure may vary
depending on the criteria for success. Fig. A2 shows a sample included in this category. In this ex-
ample, the instruction given was “move rxbar blueberry near blue chip bag.” As shown in the figure,
the ‘rxbar blueberry’ moved closer to the ‘blue chip bag’ before and after the object manipulation.
However, the ground truth label for this example was false. In this case, the success or failure of the
task depends on the definition of ‘near.’

Erroneous Data Sample: This category covers cases where the input images of the sample are
inadequate for the SPOM task, making it difficult to perform the task. For instance, a case where
the instruction given is “pick a green can” and the manipulator is already grasping a green can in the
Thetore applies to this category.

As shown in Table A3, the main bottleneck was the Multimodal Language Comprehension Error.
This issue is mainly due to the fact that the MLLM in the Narrative Representation Module generated
incorrect sentences that could directly affect the success of the SPOM task. Fig. A3 shows a sample
categorized as a Multimodal Language Comprehension Error. The left and right image in Fig. A3
ShOW Zpefore and Xasier, respectively. The captions created by the MLLM for @yefore Was “In the
image, there is an open middle drawer on a metal table. Inside the drawer, there are two objects:
a sandwich and a can of soda. The sandwich is upright, while the can of soda is on its side.” The
captions for x,¢; was “In the image, there is an open middle drawer on a metal table. Inside the
drawer, there are two objects: a sandwich and a can of soda. The sandwich is upright, while the
can of soda is on its side.” and “In the image, there is an open middle drawer with a robotic arm
reaching into it. The robotic arm appears to be picking up something from the drawer. Additionally,
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“move rxbar blueberry near blue chip bag” “move rxbar blueberry near blue chip bag”

Figure A2: A sample of Ambiguous Instruction. Figure A3: An example of a sample in the Multi-
In this case, the given instruction was “move rxbar modal Language Comprehension Error category. The
blueberry near blue chip bag.” The ground truth label instruction for this sample was “open middle drawer.”

was false. The success or failure of the manipulation

depends on the definition of ‘near.’
(i) “pick apple from white bowl” (i) “move rxbar chocolate near (iii) “place 7up can upright”
apple”

(iv) “knock 7up can over” (v) “pick coke can from middle  (vi) “move green rice chip bag near

) shelf of fridge” sponge”
Figure A4: Additional qualitative results on the SP-RT-1 dataset. In this figure, (i)-(iii) represent true positive
cases, and (iv)-(vi) are true negative cases. These are visualized in the similar manner to Fig. A2.

there is a can of soda sitting on top of the drawer.” The former caption states that the middle drawer
was already open before the manipulation. This makes it difficult for the model to make appropriate
predictions based on the information.

This issue may be due to the difficulty of designing prompts for large language models (LLMs).
Despite experimenting with many prompts and selecting the best one, erroneous generations still
occurred. Indeed, object hallucination is a known challenge in image captioning by LLMs [15].
Therefore, a possible solution could investigate prompt designs that reduce the likelihood of such
errors. For example, instead of describing everything at once, several elements could defined in
advance and short responses could be obtained for each of them.

D Additional Qualitative Results

Figs. A4 and A5 provide additional success examples of Contrastive A-Repformer on the SP-RT-1
dataset and in the zero-shot transfer experiment, respectively. For the sample shown in Fig. A4 (iii),
all baseline methods except InstructBLIP made incorrect predictions. Likewise, for the sample dis-
played in Fig. A4 (vi), all baseline methods except UNITER-base made incorrect predictions. It was
found that for episodes with only a subtle difference between the images before and after the ma-
nipulation, the baseline methods had difficulty in making accurate predictions, whereas Contrastive
A-Repformer was able to predict appropriately.

Furthermore, all MLLM-based methods except Gemini made incorrect predictions for Fig. A4 (ii),
and all MLLM-based methods made incorrect predictions for Fig. A5 (ii). This indicates that even
MLLM-based methods can struggle with referring expression comprehension and aligning images
with natural language.
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(i) “place the red pringles can next  (ii) “move the yellow bottle close (iii) “pick the red tomato can”

to the yellow bottle” to the spam can”
\ El

(iv) “place a mug next to the apple” (v) “move the red mug next to the (vi) “pick the yellow French’s
rubik’s cube” bottle”

Figure A5: Successful examples of Contrastive A-Repformer in the zero-shot transfer experiments. In this

figure, examples (i)-(iii) show true positive cases, and (iv)-(vi) depict true negative cases. The examples are

similarly visualized in the same manner in Fig. A2.

- sl
(iii) “move the mug near the spam can” (iv) “move the apple close to the red can”
Figure A6: Failed cases of the proposed method. These are visualized in the same manner in Fig. A2 as well.

Fig. A6 shows failed cases of the proposed method. Fig. A6 (i) and (ii) show the failed examples on
the SP-RT-1 dataset, and Fig. A6 (iii) and (iv) exhibit the failed examples in the zero-shot transfer
experiment.

Fig. A6 (i) shows an example with the instruction of “open middle drawer.” The ground truth label
for this example was success, because the robot opened the middle drawer. Nonetheless, our method
predicted that the robot failed in carrying out the instruction. This error can be explained by the fact
that most of the middle drawer lies outside the photographed area, making it hard even for humans
to deduce correctly.

The instruction for the instance displayed in Fig. A6 (ii) is “pick orange from white bow]” and the
ground truth label was failure. This result is most likely because the bottom of the orange is still
touching the other oranges. Meanwhile, all the baseline and proposed methods predicted success.
This error arises from the ambiguity of the situation, where predictions would likely be divided even
among humans.

Fig. A6 (iii) presents a failed example in the zero-shot transfer experiment. In this example, the in-
struction sentence was “move the mug near the spam can.” This sample was labeled success, whereas
Contrastive A-Repformer predicted this sample as failure. To predict appropriately, the model needs
to appropriately understand both the ‘mug’ and the ‘spam can’. In particular, to understand ‘spam’,
approaches such as optical character recognition are required, which makes it challenging.

Finally, Fig. A6 (iv) exhibits a failed case with the instruction of “move the apple close to the red
can.” Contrastive \-Repformer predicted that the manipulator succeeded in following the instruc-
tion, while the ground truth label was failure. In this sample, there are three red objects: an apple,
ared can, and a red mug. The manipulator brought the apple close to the red mug. Therefore, it is
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(i) “pick the red mug”

(i) “pick 7up can from bottom shelf of fridge”
Figure A7: Samples of human errors. These are visualized in the same way in Fig. A2.

possible that the model judged the success of the manipulation based solely on the characteristic of
being ‘red’.

E Human Errors in Subject Experiment

Fig. A7 depicts examples where the human predictions were incorrect. In Fig. A7 (i), the instruction
sentence for this sample was “pick 7up can from bottom shelf of fridge.” Although the ground truth
for this sample was success, the human prediction was failure. In this example, it is difficult to
identify the label of the can that the manipulator grasped, as well as to determine where the can was
retrieved from.

In Fig. A7 (ii), “pick the red mug” was the instruction. In this example, the mug was successfully
grasped by the manipulator. However, the mug was mostly occluded, making it difficult to judge.
As shown in the example, the SPOM task can be difficult even for humans.
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