
Response to Reviewer VQRz’s official reviews on submission 10036

We are grateful for your inspirational reviews and constructive suggestions. We have carefully

revised the manuscript. In what follows, your reviews are shown in italics, which are then fol-

lowed by our point-by-point responses.

Main Comments

(1) The literature review on existing methods appears limited, which may lead to the proposed

approach overlapping with established techniques. From the simple derivation below, the

proposed blockwise correlation matrix estimation (BCME) in Equation (3) is closely related

to Equation (12) in Engle and Kelly (2012). (Hat on Ŷ zis omitted due to compilation

issue.)
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Furthermore, the issue of positive definiteness mentioned in the Introduction is examined

in Corollary 2 of Archakov and Hansen (2024).

Reply: We appreciate your valuable reviews. According to your advice, we have cited the

two references, Engle and Kelly (2012) and Archakov and Hansen (2024), and carefully

compared the differences between their estimation methods with our BCME method to

clarify the contribution of our paper. Specifically, compared with the Engle and Kelly

(2012, EK), we have shown the following two differences.

(1a) The different model. Engle and Kelly (2012) imposed a blockwise structure on

the Dynamic Conditional Correlation (DCC) models and proposed the Block DECO

model. Specifically, the Block DECO correlations are calculated as the average DCC

correlation within each block (i.e., EK’s equation (12)). In other words, in addition

to the blockwise structure, the Block DECO model incorporates additional prior

structures. However, we focus solely on the blockwise correlation matrix without

imposing any other structures, making our approach more general than EK’s model.

(1b) The different estimation methods and theoretical assumptions. With the

assumptions that the variables follow a Gaussian distribution and the dimension of
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variables is fixed, Engle and Kelly (2012) employed the maximum likelihood esti-

mation for the Block DECO model and showed the asymptotic properties of the

estimated parameters. In contrast, we develop a novel closed-form estimator for the

blockwise correlation matrix of variables using moment method (see, equation (3) in

our paper). And we establish the asymptotic normality of the estimated parame-

ters under certain moment conditions and allowing the dimension of the variables to

exceed the sample size.

In short, the equation (3) in our paper is the estimator for the blockwise correlation matrix

and the EK’s equation (12) is a DCC model with a blockwise correlation matrix, which

are not closely related.

Next, after carefully studying the article of Archakov and Hansen (2024, AH), we have

found that Archakov and Hansen (2024) did examine the problem of positive definiteness

mentioned in our Introduction by their Corollary 2. Then, the positive semi-definiteness of

the estimated blockwise correlation matrix can simply be verified by their Corollary 2. In

our paper, we similarly obey the AH’s Corollary 2 and ensure the positive semi-definiteness

of the estimated blockwise correlation matrix and their corresponding covariance matrix.

In addition to this point, we have shown the following one difference between our paper

and theirs.

(1c) The different goals. The main goals of Archakov and Hansen (2024) are to derive a

canonical representation for a broad class of block matrices which includes the block-

wise correlation matrices as the special cases. This canonical representation simplifies

the computations of several matrix function, which improves the maximum likelihood

estimation of a correlation matrix with the blockwise structure. However, our main

goals are to correctly estimate the blockwise correlation matrix using moment method

and establish its asymptotic properties.

In addition to the differences mentioned above, we have made the following one additional

contribution.

(1d) The block number determination and group membership recovery. Engle

and Kelly (2012) and Archakov and Hansen (2024) assumed that the block number

and their memberships are given a priori. However, in real-world applications, their

true values are unknown and need to be estimated correctly. We address this limita-

tion by utilizing the ridge-type ratio criterion and spectral clustering to estimate the

number of blocks and recover their memberships for a blockwise correlation matrix,

and prove their consistency. Subsequently, we extend the asymptotic normality of
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parameter estimators and stochastic convergence rate of the estimated blockwise cor-

relation matrix and corresponding estimated covariance matrix to the scenario where

the group memberships are unknown and the block number is given.

In sum, the three differences and one additional contribution mentioned above indicate

our paper has considerable value; see lines 54-60 and 71-76 on page 2.

(2) The notation is not rigorous. Yi inconsistently denotes the random variable and realization

(sample) of the random variable.

Reply: Thank you for your careful reading and suggestion. After carefully studying the

ICLR 2025 template, we have used more rigorous and consistent notation. Specifically, we

have used yi to represent the random variable and used yi as the i-th realization of the

random variable; see line 101 on page 2 and lines 273-274 on page 6, and also see our reply

to the comment # 1 of Reviewer KthD and comment # 2 of Reviewer 4aHF.

(3) The technical conditions lack intuitive explanation, making it unclear how practical they

are in real-world applications.

Reply: We apologize for causing confusion, and have made our conditions more intuitive.

Per your advice, we illustrate that the Condition (C1)(i) introduces the moment conditions

of ϵi. And we imply that Condition (C1)(ii) ensuring that the distribution does not have

“heavy tails” (e.g., Cauchy distribution). Furthermore, for condition (C2), we point out

that it eliminates possible multicollinearity issues; see lines 171-181 on page 4.

(4) The experiments omit the turnover ratio, a significant metric in portfolio optimization

analysis.

Reply: Many thanks for your valuable review. We have added the turnover ratio in our

paper; see Table 3 in the revised paper on page 8. Although the turnover ratio of the

portfolio return based on BCME with RR is higher than that of the other portfolio return,

the other measures have better performance, especially, Sharpe ratio. In short, the block

structure is significant for portfolio management and our proposed framework is highly

effective for portfolio analysis; see lines 367-377 on page 7 and lines 378-386 on page 8.

(5) The topic somewhat diverges from the primary area of probabilistic methods.

Reply: Many thanks for your constructive reviews. The covariance matrix plays a fun-

damental role in probabilistic methods, particularly in statistical inference, parameter

estimation, and model analysis. It is essential for describing the relationships, correla-

tions, and variability between different random variables, making it a core component of

many probabilistic approaches. Specifically, the covariance matrix has gained significant
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popularity in various fields, including but not limited to: Machine learning (Bilmes 2000;

Zhang and Rao 2013), finance and risk management (Markowitz 1952; Jagannathan and

Ma 2003), econometrics (Chen and Conley 2001; Fan et al. 2008), biostatistics (Tong and

Wang 2007; Friedman et al. 2008), and neuroscience and gene expression (Parketal. 2007;

Wu and Smyth 2012; Tan et al. 2015; Eisenach et al. 2020; Pircalabelu and Claeskens

2020).
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Response to Reviewer Fohj’s official reviews on submission 10036

We are grateful for your inspirational reviews and constructive suggestions. We have carefully

revised the manuscript. In what follows, your reviews are shown in italics, which are then fol-

lowed by our point-by-point responses.

Main Comments

(1) This paper’s idea is essentially simultaneous clustering and estimation of a covariance

matrix. Such an idea has been studied in some recent relevant literature; see, e.g., Su et

al. (2016), Liu et al. (2020), Zhu et al. (2023), Liu et al. (2024). I think it will be helpful

to discuss this line of research for a more complete picture.

Reply: Many thanks for your review. Actually, our paper’s idea is a two-step estima-

tion. First, we utilize the spectral clustering to recover the group membership Sks for

k = 1, · · · ,K when the number of blocks is predetermined. Second, we estimate the

unknown parameters in the blockwise correlation matrix with the estimated group mem-

bership. This is different the recent relevant literature that simultaneously estimate the

model parameters and group memberships with given K. Those method is theoretically

complex and lacking generality, since their optimization functions are non-convex and re-

quire specific algorithms. We have highlighted the difference in the revised paper; see

remark 1 on page 5.

(2) The main theorem, Theorem 1, assumes that the group memberships for all variables are

fully known. Later in the paper, however, these memberships are estimated through spectral

clustering, which is shown to be consistent. I’d like to highlight a potential issue: the

consistency established in Lei and Rinaldo (2015) indicates only that the percentage of mis-

clustered nodes converges to zero in probability. For Theorem 1’s asymptotic normality to

hold, the rate of convergence would need this mis-clustered percentage to decrease faster

than n−1/2, which appears unachievable under current assumptions. Similar challenges

are noted in references Liu et al. (2020) and Zhu et al. (2023), but these works resolve

the issue by establishing almost sure convergence for group membership estimation, which

may also be necessary here. Please elaborate on this issue.

Reply: Many thanks for your valuable review. Per your advice, we have added the almost

sure convergence for the group membership estimation proved by Su et al. (2019), that is,

for sufficiently large n and p, sup1≤i≤n sup1≤j≤p 1{θ̂j ̸=θj} = 0, a.s.; see Condition (C5) on

page 5. Based on this, we have obtained ρ̂Θ̂

p→ ρ̂, where ρ̂Θ̂ and ρ̂ are two estimators of
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ρ with estimated and given group memberships, respectively. Then, we have extended the

Theorem 1 to the case where group memberships are unknown; see Corollary 1 on page 5.

(3) What happens if the estimated K̂ is greater than the true K? Intuitively, it should still be

ok as long as K̂ is finite. For example, in Liu et al. (2020) and Zhu et al. (2023), the group

estimators are still consistent even if K is over-specified. Can you at least provide some

simulation studies to investigate this issue? This would certainly add to the applicability

of the proposed methodology.

Reply: Many thanks for your valuable review. According to your comment, we have

conducted simulation studies with K̂ = K +1 when the group memberships are unknown

and ϵi follows a multivariate normal distribution Np(0p, Ip). We obtain the same patterns

as given K̂ = K, which implies that the blockwise correlation matrix and covariance matrix

estimations are still consistent even if K is over-specified; see Table R given on page 7 of

the responses. In addition, the similar results are yielded when ϵi follows non-normal

distributions, but they are not reported here to save space.
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Table R: The performance of the BCME estimators (R̂Θ̂, Σ̂Θ̂) of the blockwise correlation

matrix and corresponding covariance matrix with K̂ = K + 1 when the group memberships are
unknown and ϵi follows a multivariate normal distribution Np(0p, Ip). AS and AF represent the
averages of the spectral-error and Frobenius-error, respectively. SS and SF denote the standard
deviations of the spectral-error and Frobenius-error, respectively. Pro. (%) is the proportion of
positive semi-definiteness. Time (in seconds) is the average execution time.

(K, p) (2,150) (4,420) (6,570) (8,840)

n Measures Σ̂Θ̂ (R̂Θ̂) Σ̂Θ̂ (R̂Θ̂) Σ̂Θ̂ (R̂Θ̂) Σ̂Θ̂ (R̂Θ̂)

200

AS 0.020 (0.033) 0.016 (0.028) 0.014 (0.028) 0.011 (0.028)
SS 0.009 (0.016) 0.006 (0.012) 0.005 (0.014) 0.004 (0.011)
AF 0.023 (0.042) 0.018 (0.033) 0.017 (0.035) 0.014 (0.035)
SF 0.009 (0.019) 0.006 (0.013) 0.005 (0.014) 0.004 (0.011)
Pro. 100 100 100 100
Time 0.001 0.008 0.028 0.045

500

AS 0.014 (0.020) 0.010 (0.018) 0.009 (0.021) 0.008 (0.020)
SS 0.006 (0.011) 0.004 (0.011) 0.004 (0.014) 0.003 (0.011)
AF 0.016 (0.025) 0.011 (0.022) 0.011 (0.025) 0.010 (0.025)
SF 0.006 (0.014) 0.004 (0.012) 0.004 (0.014) 0.004 (0.012)
Pro. 100 100 100 100
Time 0.002 0.009 0.018 0.050

1000

AS 0.009 (0.013) 0.007 (0.014) 0.007 (0.016) 0.007 (0.018)
SS 0.004 (0.008) 0.003 (0.011) 0.004 (0.014) 0.004 (0.014)
AF 0.010 (0.015) 0.008 (0.017) 0.008 (0.019) 0.008 (0.021)
SF 0.004 (0.011) 0.004 (0.011) 0.004 (0.014) 0.004 (0.011)
Pro. 100 100 100 100
Time 0.002 0.012 0.108 0.057
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Response to Reviewer KthD’s official reviews on submission 10036

We are grateful for your inspirational reviews and constructive suggestions. We have carefully

revised the manuscript. In what follows, your reviews are shown in italics, which are then fol-

lowed by our point-by-point responses.

Main Comments

(1) The paper is challenging to read due to its dense presentation. The authors should make a

substantial effort to improve clarity by introducing a dedicated notation section. This sec-

tion should simplify the notations, provide clear definitions of each variable, and organize

the symbols systematically for easy reference. Additionally, a more logical reorganization

of the paper’s sections would enhance readability.

Reply: We apologize for causing confusion, and have made our statements clearer. Per

your advice, after carefully studying the ICLR 2025 template, we first introduce a dedi-

cated notation section 2.1 to simplify and clarify the notation throughout the paper. For

example, vectors are denoted by lower-case bold letters, e.g., ι = (ι1, · · · , ιm)⊤ ∈ Rm, and

matrices by upper-case bold, e.g., M = (Mij) ∈ Rm×m; see lines 90-100 on page 2, and

also see our reply to the comment # 2 of Reviewer VQRz and Reviewer 4aHF.

Next, we have reorganized our paper’s original section 2 to reduce the dense presentation.

Specifically, we have set original section 2.1 as the new section 2 and subdivided the new

section 2 into section 2.1 basic notations and definition, section 2.2 blockwise correlation

matrix estimation, and section 2.3 asymptotic analysis. And the original section 2.2 have

been set as the new section 3; see lines 77-84 on page 2.

(2) The experimental results are also difficult to interpret. The tables do not clearly indicate

which method performs best; highlighting the best values in bold would improve clarity.

Furthermore, the presentation of results would benefit from including statistical tests, such

as p-values, to provide a more robust comparison between methods. Also the other should

include more baselines as comparisons since a lot of covariance estimators have recently

been developed in Random Matrix Theory and statistical physics ( linear and non linear

shrinkage of ledoit Wolf,...)

Reply: We apologize for causing confusion again, and have made our experimental results

clearer. Per your advice, in the simulation and real data, we have highlighted the results

of our method in bold. Moreover, in real data, we have also highlighted the best values for
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each measure to indicate which method performs best for that measure. Then, the block

structure is significant for portfolio management and our proposed framework is highly

effective for portfolio analysis. see Table 1 on page 6, Table 3 on page 8, and Tables 4-5

on page 17.

In addition, we have added the p-value for Beta in Table 3 on page 8, which shows that

all method are significant. This, together with the lowest value of Beta for our method,

implies that our method exhibits lower risk than other methods; see line 377 on page 7

and line 378 on page 8.

Finally, we have included three additional methods to compared with our method, that

is, the methods of Ledoit and Wolf (2003), Ledoit and Wolf (2020), and Schäfer and

Strimmer (2005). The results in Table 3 on page 8 indicate the additional three methods

in each measure are lower than our method. Then, we can clearly find that our method

significantly outperforms other methods; see lines 352-367 and 375-377 on page 7, lines

378-386 on page 8, and also see our reply to the comment # 3 of Reviver XHvq.
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Response to Reviewer XHvq’s official reviews on submission 10036

We are grateful for your inspirational reviews and constructive suggestions. We have carefully

revised the manuscript. In what follows, your reviews are shown in italics, which are then fol-

lowed by our point-by-point responses.

Main Comments

(1) While the empirical study shows that the proposed method outperforms existing methods

in portfolio optimization, the paper lacks a clear explanation or theoretical justification

for why this is the case. It remains unclear how the statistical properties of the proposed

estimator translate into better portfolio performance.

Reply: Many thanks for your valuable review. In Ledoit and Wolf (2004, LW), the

covariance matrix estimator is Σ̂LW = γ̂µ̂Ip + (1 − γ̂)S, where γ̂ ∈ [0, 1], µ̂ = tr(S)/p,

and S is the sample covariance matrix. It is worth noting that S is singular matrix for

p > n and Σ̂LW approaches γ̂µ̂Ip when p increases faster than n. Hence, LW’s covariance

matrix estimator can be considered a special case (K = 1) of our estimator when p >> n,

which reveals our method outperforms LW’s method. In Tsay and Pourahmadi (2017,

TP), although the block structure reduces the estimated number of angle parameters (i.e.,

From the angle matrix O(p2) to pivotal angles O(K2)) via MLE, restoring the estimated

correlation matrix still requires that the angle matrix, which is a tough task when p

diverges. However, our estimator is closed-form, which is significantly faster than TP’s

method.

(2) The paper could offer more intuitive explanations or theoretical insights into why the pro-

posed estimator is expected to perform better in applications like portfolio optimization.

Connecting the methodological advancements to practical outcomes would enhance the pa-

per’s impact.

Reply: Many thanks for your valuable review. We have listed two advantages of our es-

timator in portfolio optimization. First, the low rank assumption that correlation matrix

has a blockwise structure effectively reduces the number of unknown parameters in the

covariance matrix model from O(p2) to O(p + K2). This will yield a covariance matrix

estimator with smaller errors and improve the robustness of the optimal weights in the

high-dimensional portfolio optimization. Second, Blondes et al. (2013) and Tsay and

Pourahmadi (2017) indicated that the sample correlation matrix of stock returns exhibits
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structured patterns. Then, for the block number estimation and their membership re-

covery, our data-driven method better captures the block structure compared to directly

specifying it; see Table 3 on page 8.

(3) The comparisons in the empirical study are primarily with the TP method and the Ledoit-

Wolf estimator. Including a wider range of contemporary high-dimensional covariance

estimation methods in the comparison would provide a more comprehensive evaluation of

the proposed method’s performance.

Reply: Many thanks for your valuable review. Per your advice, we have considered

three additional methods to estimate the high-dimensional covariance matrix, that is, the

methods of Ledoit and Wolf (2003), Ledoit and Wolf (2020), and Schäfer and Strimmer

(2005). The results in Table 3 on page 8 indicate the additional three methods in each

measure are lower than our method. Then, we can clearly find that our method significantly

outperforms other methods; see lines 352-367 and 375-377 on page 7, lines 378-386 on page

8, and also see our reply to the comment # 2 of Reviver KthD.
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Response to Reviewer 4aHF’s official reviews on submission 10036

We are grateful for your inspirational reviews and constructive suggestions. We have carefully

revised the manuscript. In what follows, your reviews are shown in italics, which are then fol-

lowed by our point-by-point responses.

Main Comments

(1) In the abstract, the authors state that ”without imposing any distribution assuptions”. This

statement lacks precision, as certain technical conditions are required.

Reply: Thank you for your careful reading and suggestion. Per your advice, we have

replaced the previous expression “without imposing any distribution assumptions” with

“under certain moment conditions ” throughout the paper; see line 16 on page 1, line 69

on page 2, and line 415 on page 8.

(2) The notation is somewhat heavy, please consider improving the presentation for clarity.

Reply: We appreciate your valuable review. Per your advice, we have simplified and clar-

ified the notation throughout the paper with carefully studying the ICLR 2025 template.

For example, vectors are denoted by lower-case bold letters, e.g., ι = (ι1, · · · , ιm)⊤ ∈ Rm,

and matrices by upper-case bold, e.g., M = (Mij) ∈ Rm×m; see section 2.1 on pages

2-3, and also see our reply to the comment # 2 of Reviewer VQRz and comment # 1 of

Reviewer KthD.

(3) In Theorem 1, how should the convergence result be interpreted as the dimension p ap-

proaches infinity? Discuss the possible connection with high-dimensional Gaussian ap-

proximation.

Reply: Many thanks for your review. In equation (3), we can find that ρ̂k1k2 for k1, k2 =

1, · · · ,K depends on σ̂2
j for j = 1, · · · , p. This, together with the Lemma 3 in Appendix

A, implies that as long as (log p)6/γ1−1 = o(n) holds, as min{n, p} → ∞, σ̂2
j

p→ σ2
j and

ρ̂k1k2
p→ ρk1k2 . Although the condition (log p)6/γ1−1 = o(n) allows p >> n, our model

has no connection with high-dimensional Gaussian approximation. The reason is that we

impose a low rank structure, the blockwise structure, on the correlation matrix. Then,

our model essentially belongs to the domain of dimensionality reduction; see equation (3)

on page 3 and Lemma 3 on page 12.

(4) Please provide references for the comparative methods in the experimental studies. More-

over, why are the results of BCME and TP exactly identical?
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Reply: Many thanks for your review, and we apologize for causing confusion. Per you

advice, we have added the references for the comparative methods in the real data. In

addition, we have replaced the previous expression “We also employ the TP method used

in our simulation studies” with “we employ the Tsay and Pourahmadi (2017,TP)’s method

with variable ordering ”. Since we have sorted the variables before using the TP method,

we obtain the same result of BCME and TP methods. This find can also be discovered in

Table 1 in the simulation; see line 355 on page 7.

(5) What are the results under different values of K with a fixed dimension p?

Reply: Many thanks for your review. We have presented the different values of K with

a fixed dimension p in Section 5; see Table 3 on page 8. This implies that the results of

using different K are similar, but the result of K obtained by data-driven is the best; see

lines 375-377 on page 7 and lines 378-386 on page 8.

(6) It would be helpful to include an arrow indicating whether a larger metric corresponds to

better performance.

Reply: All done; see Table 3 on page 8.
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