
Appendix1

A Spectral Analysis and LTI-SDE2

We consider the Matérn kernel family,3

κν (t, t′) = a

(√
2ν
ρ ∆

)ν
Γ(ν)2ν−1

Kν

(√
2ν

ρ
∆

)
(1)

where ∆ = |t− t′|, Γ(·) is the Gamma function, a > 0 and ρ > 0 are the amplitude and length-scale
parameters, respectively, Kν is the modified Bessel function of the second kind, ν > 0 controls
the smoothness. Since κν is a stationary kernel, i.e., κν(t, t′) = κν(t − t′), according to the
Wiener-Khinchin theorem [Chatfield, 2003], if

f(t) ∼ GP(0, κν(t, t′)),

the energy spectrum density of f(t) can be obtained by the Fourier transform of κν(∆),4

S(ω) = a
2
√
πΓ(1

2 + ν)

Γ(ν)
α2ν

(
α2 + ω2

)−(ν+ 1
2) (2)

where ω is the frequency, and α =
√

2ν
ρ . We consider the commonly used choice ν = p+ 1

2 where5

p ∈ {0, 1, 2, . . .}. Then we can observe that6

S(ω) =
σ2

(α2 + ω2)p+1
=

σ2

(α+ iω)p+1(α− iω)p+1
(3)

where σ2 = a 2
√
πΓ(p+1)

Γ(p+ 1
2)

α2p+1, and i indicates an imaginary number. We expand the polynomial7

(α+ iω)p+1 =
∑p

k=0
ck(iω)k + (iω)p+1 (4)

where {ck|0 ≤ k ≤ p} are the coefficients. From (3) and (4), we can construct an equivalent system8

to generate the signal f(t). That is, in the frequency domain, the system output’s Fourier transform9

f̂(ω) is given by10 ∑p

k=1
ck(iω)kf̂(ω) + (iω)p+1f̂(ω) = β̂(ω) (5)

where β̂ is the Fourier transform of a white noise process β(t) with spectral density (or diffusion) σ2.11

The reason is that by construction, f̂(ω) = β̂(ω)
(α+iω)p+1 , which gives exactly the same spectral density12

as in (3), S(ω) = |f̂(ω)|2. We then conduct inverse Fourier transform on both sides of (5) to obtain13

the representation in the time domain,14 ∑p

k=1
ck

dkf

dtk
+

dp+1f

dtp+1
= β(t), (6)

which is an SDE. Note that β(t) has the density σ2. We can further construct a new state z =15

(f, f (1), . . . , f (p))> (where each f (k) ∆
= dkf/dtk) and convert (6) into a linear time-invariant (LTI)16

SDE,17

dz

dt
= Az + η · β(t) (7)

where18

A =


0 1

.
0 1

−c0 . . . −cp−1 −cp

 , η =


0
...
0
1

 .

1

For a concrete example, if we take p = 1 (and so ν = 3
2), then A = [0, 1;−α2,−2α], η = [0; 1],19

and σ2 = 4aα3.20

The LTI-SDE is particularly useful in that its finite set of states follow a Gauss-Markov chain, namely21

the state-space prior. Specifically, given arbitrary t1 < . . . < tL, we have22

p(z(t1), . . . , z(tL)) = p(z(t1))
∏L−1

k=1
p(z(tk+1)|z(tk))

where p(z(t1)) = N (z(t1)|0,P∞), p(z(tk+1)|z(tk)) = N (z(tk+1)|Fkz(tk),Qk), P∞ is the sta-23

tionary covariance matrix computed by solving the matrix Riccati equation [Lancaster and Rodman,24

1995], Fn = exp(∆k ·A) where ∆k = tk+1 − tk, and Qk = P∞ −AkP∞A>k . Therefore, we do25

not need the full covariance matrix as in the standard GP prior, and the computation is much more26

efficient. The chain structure is also convenient to handle streaming data as we will explain later.27

Note that for other type of kernel functions, such as the square exponential (SE) kernel, we can28

approximate the inverse spectral density 1/S(ω) with a polynomial of ω2 with negative roots, and29

follow the same way to construct an LTI-SDE and state-space prior.30

B RTS Smoother31

Consider a standard state-space model with state xn and observation yn at each time step n. The
prior distribution is a Gauss-Markov chain,

p(xn+1|xn) = N (xn+1|Anxn,Qn),

p(x0) = N (x0|m0,P0).

Suppose we have a Gaussian observation likelihood,

p(yn|xn) = N (yn|Hnxn,Wn).

Then upon receiving each yn, we can use Kalman filtering to obtain the exact running posterior,

p(xn|y1:n) = N (xn|mk,Pk)

which is a Gaussian. After all the data has been processed — suppose it ends after step N — we can32

use Rauch–Tung–Striebel (RTS) smoother [Särkkä, 2013] to efficiently compute the full posterior of33

each state from backward, which does not need to re-access any data: p(xn|y1:N) = N (xn|ms
n,P

s
n),34

where35

m−n+1 = Anmn, P−n+1 = AnPnA>n + Qn,

Gn = PnA>n [P−n+1]−1,

ms
n = mn + Gn

(
ms
n+1 −m−n+1

)
,

Ps
n = Pn + Gn[Ps

n+1 −P−n+1]G>n . (8)

As we can see, the computation only needs the running posterior p(xn|y1:n) = N (·|mn,Pn) and36

the full posterior of the next state p(xn+1|y1:N) = N (·|mn+1,Pn+1). It does not need to revisit37

previous observations y1:N38

C Details about Online Trajectory Inference39

In this section, we provide the details about how to update the running posterior according to equation40

(8) and (9) (in the main paper) with the conditional EP (CEP) framework [Wang and Zhe, 2019].41

C.1 EP and CEP framework42

We first give a brief introduction to the EP and CEP framework. Consider a general probabilistic43

model with latent parameters θ. Given the observed data D = {y1, . . . ,yN}, the joint probability44

distribution is45

p(θ,D) = p(θ)

N∏
n=1

p(yn|θ). (9)

2

Our goal is compute the posterior p(θ|D). However, it is usually infeasible to compute the exact the46

marginal distribution p(D), because of the complexity of the likelihood and/or prior. EP therefore47

seeks to approximate each term in the joint probability by an exponential-family term,48

p(yn|θ) ≈ cnfn(θ), p(θ) ≈ c0f0(θ) (10)

where cn and c0 are constants to ensure the normalization consistency (they will get canceled in the
inference, so we do not need to calculate them), and

fn(θ) ∝ exp(λ>nφ(θ))(0 ≤ n ≤ N)

where λn is the natural parameter and φ(θ) is sufficient statistics. For example, if we choose a49

Gaussian term, fn = N (θ|µn,Σn), then the sufficient statistics is φ(θ) = {θ,θθ>}. The moment50

is the expectation of the sufficient statistics.51

We therefore approximate the joint probability with52

p(θ,D) = p(θ)

N∏
n=1

p(yn|θ) ≈ f0(θ)

N∏
n=1

fn(θ) · const (11)

Because the exponential family is closed under product operations, we can immediately obtain a53

closed-form approximate posterior q(θ) ≈ p(θ|D) by merging the approximation terms in the RHS54

of (11), which is still a distribution in the exponential family.55

Then the task amounts to optimizing those approximation terms {fn(θ)|0 ≤ n ≤ N}. EP repeatedly56

conducts four steps to optimize each fn.57

• Step 1. We obtain the calibrated distribution that integrates the context information of fn,58

q\n(θ) ∝ q(θ)

fn(θ)

where q(θ) is the current posterior approximation.59

• Step 2. We construct a tilted distribution to combine the true likelihood,60

p̃(θ) ∝ q\n(θ) · p(yn|θ)

Note that if n = 0, we have p̃(θ) ∝ q\n(θ) · p(θ).61

• Step 3. We project the tilted distribution back to the exponential family,

q∗(θ) = argmin
q

KL(p̃‖q)

where q belongs to the exponential family. This can be done by moment matching,62

Eq∗ [φ(θ)] = Ep̃[φ(θ)]. (12)

That is, we compute the expected moment under p̃, with which to obtain the parameters63

of q∗. For example, if q∗(θ) is a Gaussian distribution, then we need to compute Ep̃[θ]64

and Ep̃[θθ>], with which to obtain the mean and covariance for q∗(θ). Hence we obtain65

q∗(θ) = N (θ|Ep̃[θ],Ep̃[θθ>]− Ep̃[θ]Ep̃[θ]>)66

• Step 4. We update the approximation term by67

fn(θ) ≈ q∗(θ)

q\(θ)
. (13)

In practice, EP often updates all the fn’s in parallel, and uses damping to avoid divergence. It68

iteratively runs the four steps until convergence. In essence, this is a fixed point iteration to optimize69

a free energy function (a mini-max problem) [Minka, 2001].70

The critical step in EP is the moment matching (12). However, in many cases, it is analytically71

intractable to compute the moment under the tilted distribution p̃, due to the complexity of the72

likelihood. To address this problem, CEP considers the commonly used case that each fn has a73

factorized structure,74

fn(θ) =
∏
m

fnm(θm) (14)

3

where each fnm is also in the exponential family, and {θm} are mutually disjoint. Then at the75

moment matching step, we need to compute the moment of each θm under p̃, i.e., Ep̃[φ(θm)]. The76

first key idea of CEP is to use the nested structure,77

Ep̃[φ(θm)] = Ep̃(θ\m)Ep̃(θm|θ\m)[φ(θm)] (15)

where θ\m = θ\θm. Therefore, we can first compute the inner expectation, i.e., conditional moment,78

Ep̃(θm|θ\m)[φ(θm)] = g(θ\m), (16)

and then seek for computing the outer expectation, Ep̃(θ\m)[g(θ\m)]. The inner expectation is often79

easy to compute (e.g., with our CP/Tucker likelihood). When fn is factorized individually over80

each element of θ, this can always be efficiently and accurately calculated by quadrature. However,81

the outer expectation is still difficult to obtain because p̃(θ\m) is intractable. The second key idea82

of CEP is that since the moment matching is also between q(θ\m) and p̃(θ\m), we can use the83

current marginal posterior to approximate the marginal titled distribution and then compute the outer84

expectation,85

Ep̃(θ\m)[g(θ\m)] ≈ Eq(θ\m)[g(θ\m)]. (17)

If it is still analytically intractable, we can use the delta method [Oehlert, 1992] to approximate the86

expectation. That is, we use a Taylor expansion of g(·) at the mean of θ\m. Take the first-order87

expansion as an example,88

g(θ\m) ≈ g
(
Eq(θ\m)[θ\m]

)
+ J

(
θ\m − Eq(θ\m)[θ\m]

)
where J is the Jacobian of g at Eq(θ\m)[θ\m]. Then we take the expectation on the Taylor approxi-89

mation instead,90

Eq(θ\m)

[
g(θ\m)

]
≈ g

(
Eq(θ\m)[θ\m]

)
. (18)

The above computation are very conveniently to implement. Once we obtain the conditional moment91

g(θ\m), we simply replace the θ\m by its expectation under current posterior approximation q, i.e.,92

Eq(θ\m)[θ\m], to obtain the matched moment g(Eq(θ\m)[θ\m]), with which to construct q∗ in Step 393

of EP (see (12)). The remaining steps are the same.94

C.2 Running Posterior Update95

Now we use the CEP framework to update the running posterior p(Θn+1, τ |Dtn+1
) in equation (8) in96

main paper via the approximation (equation (9) in the main paper) . To simplify the notation, let us97

define vmlm
∆
= um`m(tn+1), and hence for each (`, y) ∈ Bn+1, we approximate98

N
(
y|1>

(
v1
`1 ◦ . . . ◦ vM`M

)
, τ−1

)
≈

M∏
m=1

N (vm`m |γ
m
`m ,Σ

m
`m)Gam(τ |α`, ω`). (19)

If we substitute (??) into (??), we can immediately obtain a Gaussian posterior approximation of99

each vm`m and a Gamma posterior approximation of the noise inverse variance τ . Then dividing the100

current posterior approximation with the R.H.S. of (19), we can obtain the calibrated distribution,101

q\`(vm`m) = N (vm`m |β
m
`m ,Ω

m
`m),

q\`(τ) = Gam(α\`, ω\`) (20)

where 1 ≤ m ≤M . Next, we construct a tilted distribution,102

p̃(v1
`1 , . . . ,v

M
`M , τ) ∝ q\`(τ) ·

M∏
m=1

q\`(vm`m) · N
(
y|1>

(
v1
`1 ◦ . . . ◦ vM`M

)
, τ−1

)
. (21)

To update each N (vm`m |γ
m
`m
,Σm

`m
) in (19), we first look into the conditional tilted distribution,103

p̃(vm`m |V
\m
` , τ) ∝ N (vm`m |β

m
`m ,Ω

m
`m) · N

(
y|
(
vm`m

)>
v
\m
` , τ−1

)
(22)

4

where V\m` is {vj`j |1 ≤ j ≤M, j 6= m}, and

v
\m
` = v1

`1 ◦ . . . ◦ vm−1
`m−1

◦ vm+1
`m+1

◦ . . . ◦ vM`M .

The conditional tilted distribution is obviously Gaussian, and the conditional moment is straightfor-104

ward to obtain,105

S(vm`m |V
\m
` , τ) =

[
Ωm
`m
−1 + τv

\m
`

(
v
\m
`

)>]−1

, (23)

E[vm`m |V
\m
` , τ] = S(vm`m |V

\m
` , τ) ·

(
Ωm
`m
−1βm`m + τyv

\m
`

)
, (24)

where S denotes the conditional covariance. Next, according to (18), we simply replace τ , v
\m
` ,106

and v
\m
`

(
v
\m
`

)>
by their expectation under the current posterior q in (23) and (24), to obtain the107

moments, i.e., the mean and covariance matrix, with which we can construct q∗ in Step 3 of the EP108

framework. The computation of Eq[τ] is straightforward, and109

Eq[v\m`] = Eq[v1
`1] ◦ . . . ◦ Eq[vm−1

`m−1
] ◦ Eq[vm+1

`m+1
] ◦ . . . ◦ Eq[vM`M],

Eq[v\m`
(
v
\m
`

)>
] = Eq[v1

`1

(
v1
`1

)>
] ◦ . . . ◦ Eq[vm−1

`m−1

(
vm−1
`m−1

)>
]

◦ Eq[vm+1
`m+1

(
vm+1
`m+1

)>
] ◦ . . . ◦ Eq[vM`M

(
vM`M

)>
].

Similarly, to update Gam(α`, ω`) in (19), we first observe that the conditional titled distribution is110

also a Gamma distribution,111

p̃(τ |V`) ∝ Gam(τ |α̃, ω̃) ∝ Gam(τ |α\`, ω\`)N (y|1>v`, τ
−1) (25)

where v` = v1
`1
◦ . . . ◦ vM`M , and112

α̃ = α\` +
1

2
,

ω̃ = ω\` +
1

2
y2 +

1

2
1>v`v

>
` 1− y1>v. (26)

Since the conditional moments (the expectation of τ and log τ) are functions of α and ω, when using113

the delta method to approximate the expected conditional moment, it is equivalent to approximating114

the expectation of α̃ and ω̃ first, and then use the expected α̃ and ω̃ to recover the moments. As a115

result, we can simply replace v` and v`v
>
` in (26) by their expectation under the current posterior,116

and we obtain the approximation of Eq[α̃] and Eq[ω̃]. With these approximated expectation, we then117

construct q∗(τ) = Gam(τ |Eq[α],Eq[ω]) at Step 3 in EP. The remaining steps are straightforward.118

The running posterior update with the Tucker form likelihood follows a similar way.119

D More Results on Simulation Study120

D.1 Accuracy of Trajectory Recovery121

We provide the quantitative result in recovering the factor trajectories. Note that there is only one122

competing method, NONFAT, which can also estimate factor trajectories. We therefore ran our123

method and NONFAT on the synthetic dataset. We then randomly sampled 500 time points in the124

domain and evaluate the RMSE of the learned factor trajectories for each method. As shown in125

Table 1, the RMSE of NONFAT on recovering u1
1(t) and u2

1(t) is close to SFTL, showing NONFAT126

achieved the same (or very close) quality in recovering these two trajectories. However, on u1
2(t) and127

u2
2(t), the RMSE of NONFAT is much larger, showing that NONFAT have failed to capture the other128

two trajectories. By contrast, SFTL consistently well recovered them.129

D.2 Sensitive Analysis on Kernel Parameters130

To examine the sensitivity to the kernel parameters, we used the synthetic dataset, and randomly131

sampled 100 entries and new timestamps for evaluation. We then examined the length-scale ρ and132

5

u1
1(t) u1

2(t) u2
1(t) u2

2(t)
SFTL 0.073 0.082 0.103 0.054
NONFAT 0.085 0.442 0.096 0.443

Table 1: RMSE in recovering trajectories on the simulation data.

ρ 0.1 0.3 0.5 0.7 0.9

Matérn-1/2 SFTL-CP 0.091 0.064 0.059 0.056 0.057
SFTL-Tucker 0.060 0.055 0.056 0.056 0.057

Matérn-3/2 SFTL-CP 0.062 0.061 0.074 0.093 0.112
SFTL-Tucker 0.061 0.059 0.078 0.101 0.129

(a) Prediction RMSE with a = 0.3 and varying ρ.

a 0.1 0.3 0.5 0.7 0.9

Matérn-1/2 SFTL-CP 0.056 0.064 0.057 0.059 0.063
SFTL-Tucker 0.065 0.055 0.054 0.055 0.055

Matérn-3/2 SFTL-CP 0.072 0.061 0.063 0.060 0.059
SFTL-Tucker 0.098 0.059 0.064 0.062 0.061

(b) Prediction RMSE with ρ = 0.3 and varying a.

Table 2: Sensitive analysis of amplitude a and length-scale ρ on synthetic data.

amplitude a, for two commonly-used Matérn kernels: Matérn-1/2 and Matérn-3/2. The study was133

performed on SFTL based on both the CP and Tucker forms. The results are reported in Table 2.134

Overall, the predictive performance of SFTL is less sensitive to the amplitude parameter a than to135

the length-scale parameter ρ. But when we use Matérn-1/2, the performance of both SFTL-CP and136

SFTL-Tucker is quite stable to the length-scale parameter ρ. When we use Matérn-3/2, the choice of137

the length-scale is critical.138

E Real-World Dataset Information and Competing Methods139

We tested all the methods in the following four real-world datasets.140

• FitRecord1, workout logs of EndoMondo users’ health status in outdoor exercises. We141

extracted a three-mode tensor among 500 users, 20 sports types, and 50 altitudes. The entry142

values are heart rates. There are 50K observed entry values along with the timestamps.143

• ServerRoom2, temperature logs of Poznan Supercomputing and Networking Center. We144

extracted a three-mode tensor between 3 air conditioning modes (24◦, 27◦ and 30◦), 3 power145

usage levels (50%, 75%, 100%) and 34 locations. We collected 10K entry values and their146

timestamps.147

• BeijingAir-23, air pollution measurement in Beijing from year 2014 to 2017. We extracted a148

two-mode tensor (monitoring site, pollutant), of size 12× 6, and collected 20K observed149

entry values (concentration) and their timestamps.150

• BeijingAir-3, extracted from the same data source as BeijingAir-2, a three-mode tensor151

among 12 monitoring sites, 12 wind speeds and 6 wind directions. The entry value is the152

PM2.5 concentration. There are 15K observed entry values at different timestamps.153

We first compared with the following state-of-the-art streaming tensor decomposition methods based154

on the CP or Tucker model. (1) POST [Du et al., 2018], probabilistic streaming CP decomposition155

via mean-field streaming variational Bayes [Broderick et al., 2013] (2) BASS-Tucker [Fang et al.,156

2021] Bayesian streaming Tucker decomposition, which online estimates a sparse tensor-core via a157

spike-and-slab prior to enhance the interpretability. We also implemented (3) ADF-CP, streaming CP158

1https://sites.google.com/eng.ucsd.edu/fitrec-project/home
2https://zenodo.org/record/3610078#%23.Y8SYt3bMJGi
3https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+

Air-Quality+Data

6

https://sites.google.com/eng.ucsd.edu/fitrec-project/home
https://zenodo.org/record/3610078#%23.Y8SYt3bMJGi
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data

decomposition by combining the assumed density filtering and conditional moment matching [Wang159

and Zhe, 2019].160

Next, we tested the state-of-the-art static decomposition algorithms, which have to go through the161

data many times. (4) P-Tucker [Oh et al., 2018], an efficient Tucker decomposition algorithm that162

performs parallel row-wise updates. (5) CP-ALS and (6) Tucker-ALS [Bader and Kolda, 2008],163

CP/Tucker decomposition via alternating least square (ALS) updates. The methods (1-6) are not164

specifically designed for temporal decomposition and cannot utilize the timestamps of the observed165

entries. In order to incorporate the time information for a fair comparison, we augment the tensor166

with a time mode, and convert the ordered, unique timestamps into increasing time steps.167

We then compare with the most recent continuous-time temporal decomposition methods. Note that168

none of these methods can handle data streams. They have to iteratively access the data to update169

the model parameters and factor estimates. (7) CT-CP [Zhang et al., 2021], continuous-time CP170

decomposition, which uses polynomial splines to model a time-varying coefficient λ for each latent171

factor, (8) CT-GP, continuous-time GP decomposition, which extends [Zhe et al., 2016] to use GPs to172

learn the tensor entry value as a function of the latent factors and time y`(t) = g(u1
`1
, . . . ,uK`K , t) ∼173

GP(0, κ(·, ·)), (9) BCTT [Fang et al., 2022], Bayesian continuous-time Tucker decomposition,174

which estimates the tensor-core as a time-varying function, (10) THIS-ODE [Li et al., 2022], which175

uses a neural ODE [Chen et al., 2018] to model the entry value as a function of the latent factors and176

time, dy`(t)
dt = NN(u1

`1
, . . . ,uK`K , t) where NN is short for neural networks. (11) NONFAT [Wang177

and Zhe, 2022], nonparametric factor trajectory learning, the only existing work that also estimates178

factor trajectories for temporal tensor decomposition. It uses a bi-level GP to estimate the trajectories179

in the frequency domain and applies inverse Fourier transform to return to the time domain.180

F More Results about Prediction Accuracy181

We report for R = 2, R = 3 and R = 7, the final prediction error (after the data has been processed)182

of all the methods in Table 3, Table 4, and Table 5, respectively. We report for R = 2, R = 3 and183

R = 7, the online predictive performance of the streaming decomposition approaches in Fig. 1, Fig.184

2, and Fig. 3, respectively.185

0 20000 40000
Number of Entries

0.45

1.00

1.50

RM
SE

SFTL-CP
SFTL-Tucker
ADF-CP
POST

(a) FitRecord

0 4000 8000
Number of Entries

0.25

0.60

1.00

RM
SE

(b) ServerRoom

0 8000 16000
Number of Entries

0.2

0.7

1.2

RM
SE

(c) BeijingAir-2

0 6000 12000
Number of Entries

0.45

0.70

1.00

RM
SE

(d) BeijingAir-3

Figure 1: Online prediction error with the number of processed entries (R = 2)

0 20000 40000
Number of Entries

0.45

1.00

1.50

RM
SE

(a) FitRecord

0 4000 8000
Number of Entries

0.25

0.60

1.00

RM
SE

(b) ServerRoom

0 8000 16000
Number of Entries

0.2

0.7

1.2

RM
SE

(c) BeijingAir-2

0 6000 12000
Number of Entries

0.45

0.70

1.00

RM
SE

(d) BeijingAir-3

Figure 2: Online prediction error with the number of processed entries (R = 3)

G Running time186

As compared with static (non-streaming) methods, such as BCTT, our method is faster and more187

efficient. That is because whenever new data comes in, the static methods have to retrain the model188

from scratch and iteratively access the whole data accumulated so far, while our method only performs189

incremental updates and never needs to revisit the past data. To demonstrate this point, we compare190

7

RMSE FitRecord ServerRoom BeijingAir-2 BeijingAir-3

Static

PTucker 0.606± 0.015 0.757± 0.36 0.509± 0.01 0.442± 0.142
Tucker-ALS 0.914± 0.01 0.991± 0.016 0.586± 0.016 0.896± 0.032
CP-ALS 0.926± 0.013 0.997± 0.016 0.647± 0.041 0.918± 0.031
CT-CP 0.675± 0.009 0.412± 0.024 0.642± 0.007 0.832± 0.035
CT-GP 0.611± 0.009 0.218± 0.021 0.723± 0.01 0.88± 0.026
BCTT 0.604± 0.019 0.715± 0.352 0.504± 0.01 0.799± 0.027
NONFAT 0.543± 0.002 0.132± 0.002 0.425± 0.002 0.878± 0.014
THIS-ODE 0.544± 0.005 0.142± 0.004 0.553± 0.015 0.876± 0.027

Stream

POST 0.705± 0.013 0.767± 0.155 0.539± 0.01 0.695± 0.135
ADF-CP 0.669± 0.033 0.764± 0.114 0.583± 0.07 0.54± 0.045
BASS-Tucker 1± 0.016 1± 0.016 1.043± 0.05 0.982± 0.058
SFTL-CP 0.437± 0.014 0.18± 0.019 0.323± 0.019 0.462± 0.009
SFTL-Tucker 0.446± 0.024 0.276± 0.031 0.344± 0.031 0.417± 0.035

MAE

Static

PTucker 0.416± 0.005 0.388± 0.152 0.336± 0.004 0.271± 0.053
Tucker-ALS 0.676± 0.008 0.744± 0.01 0.408± 0.008 0.669± 0.02
CP-ALS 0.686± 0.011 0.748± 0.009 0.454± 0.057 0.691± 0.016
CT-CP 0.466± 0.005 0.295± 0.029 0.49± 0.006 0.642± 0.02
CT-GP 0.424± 0.006 0.155± 0.012 0.517± 0.01 0.626± 0.01
BCTT 0.419± 0.015 0.534± 0.263 0.343± 0.003 0.579± 0.018
NONFAT 0.373± 0.001 0.083± 0.001 0.282± 0.002 0.622± 0.006
THIS-ODE 0.377± 0.003 0.097± 0.003 0.355± 0.008 0.606± 0.015

Stream

POST 0.485± 0.008 0.564± 0.091 0.368± 0.008 0.517± 0.123
ADF-CP 0.462± 0.022 0.574± 0.073 0.401± 0.029 0.415± 0.038
BASS 0.777± 0.039 0.749± 0.01 0.871± 0.125 0.727± 0.029
SFTL-CP 0.248± 0.005 0.126± 0.007 0.199± 0.005 0.311± 0.004
SFTL-Tucker 0.25± 0.01 0.203± 0.032 0.218± 0.02 0.261± 0.023

Table 3: Final prediction error with R = 2. The results were averaged from five runs.

RMSE FitRecord ServerRoom BeijingAir-2 BeijingAir-3

Static

PTucker 0.603± 0.045 0.677± 0.129 0.464± 0.012 0.421± 0.074
Tucker-ALS 0.885± 0.007 0.989± 0.014 0.559± 0.017 0.863± 0.032
CP-ALS 0.907± 0.015 0.993± 0.016 0.594± 0.031 0.901± 0.03
CT-CP 0.666± 0.008 0.5± 0.2 0.641± 0.006 0.819± 0.019
CT-GP 0.606± 0.008 0.217± 0.025 0.749± 0.014 0.895± 0.054
BCTT 0.576± 0.015 0.358± 0.082 0.454± 0.011 0.829± 0.028
NONFAT 0.517± 0.002 0.129± 0.002 0.408± 0.005 0.877± 0.014
THIS-ODE 0.528± 0.005 0.132± 0.002 0.544± 0.014 0.878± 0.026

Stream

POST 0.706± 0.034 0.741± 0.161 0.518± 0.016 0.622± 0.123
ADF-CP 0.641± 0.009 0.652± 0.012 0.542± 0.012 0.518± 0.003
BASS-Tucker 1.008± 0.017 1± 0.016 1.035± 0.038 0.99± 0.034
SFTL-CP 0.434± 0.014 0.178± 0.006 0.288± 0.017 0.454± 0.011
SFTL-Tucker 0.418± 0.01 0.289± 0.096 0.314± 0.049 0.41± 0.013

MAE

Static

PTucker 0.392± 0.009 0.323± 0.053 0.307± 0.005 0.197± 0.029
Tucker-ALS 0.648± 0.012 0.743± 0.008 0.39± 0.008 0.651± 0.018
CP-ALS 0.666± 0.013 0.746± 0.01 0.415± 0.022 0.676± 0.021
CT-CP 0.462± 0.005 0.348± 0.141 0.489± 0.006 0.632± 0.015
CT-GP 0.419± 0.005 0.158± 0.022 0.544± 0.012 0.627± 0.015
BCTT 0.392± 0.004 0.267± 0.067 0.299± 0.006 0.607± 0.027
NONFAT 0.355± 0.001 0.078± 0.001 0.265± 0.003 0.622± 0.006
THIS-ODE 0.363± 0.004 0.083± 0.002 0.348± 0.006 0.603± 0.009

Stream

POST 0.482± 0.022 0.54± 0.102 0.351± 0.009 0.442± 0.109
ADF-CP 0.445± 0.006 0.5± 0.009 0.381± 0.006 0.393± 0.009
BASS 0.822± 0.024 0.749± 0.009 0.919± 0.041 0.73± 0.018
SFTL-CP 0.246± 0.005 0.121± 0.003 0.176± 0.006 0.305± 0.006
SFTL-Tucker 0.24± 0.002 0.18± 0.042 0.196± 0.03 0.263± 0.011

Table 4: Final prediction error with R = 3. The results were averaged from five runs.

8

RMSE FitRecord ServerRoom BeijingAir-2 BeijingAir-3

Static

PTucker 0.603± 0.045 0.677± 0.129 0.464± 0.012 0.421± 0.074
Tucker-ALS 0.826± 0.003 0.983± 0.016 0.586± 0.018 0.825± 0.026
CP-ALS 0.878± 0.012 0.994± 0.013 0.897± 0.215 0.863± 0.024
CT-CP 0.663± 0.008 0.384± 0.008 0.64± 0.007 0.818± 0.019
CT-GP 0.603± 0.006 0.381± 0.303 0.766± 0.016 0.904± 0.046
BCTT 0.498± 0.011 0.194± 0.017 0.368± 0.01 0.813± 0.028
NONFAT 0.497± 0.003 0.128± 0.002 0.394± 0.004 0.88± 0.013
THIS-ODE 0.138± 0.003 0.554± 0.016 0.878± 0.027

Stream

POST 0.675± 0.012 0.707± 0.14 0.519± 0.017 0.738± 0.068
ADF-CP 0.652± 0.01 0.646± 0.008 0.548± 0.012 0.552± 0.026
BASS-Tucker 0.604± 0.043 0.493± 0.071 0.391± 0.005 0.634± 0.083
SFTL-CP 0.424± 0.006 0.166± 0.013 0.256± 0.013 0.481± 0.006
SFTL-Tucker 0.448± 0.009 0.406± 0.052 0.249± 0.017 0.432± 0.019

MAE

Static

PTucker 0.353± 0.005 0.305± 0.042 0.248± 0.004 0.32± 0.038
Tucker-ALS 0.6± 0.002 0.737± 0.009 0.392± 0.011 0.619± 0.015
CP-ALS 0.64± 0.009 0.745± 0.008 0.593± 0.121 0.637± 0.015
CT-CP 0.459± 0.005 0.27± 0.003 0.488± 0.005 0.626± 0.012
CT-GP 0.412± 0.004 0.282± 0.23 0.557± 0.009 0.628± 0.01
BCTT 0.342± 0.005 0.157± 0.015 0.234± 0.005 0.581± 0.022
NONFAT 0.335± 0.002 0.077± 0.002 0.256± 0.003 0.627± 0.005
THIS-ODE 0.362± 0.002 0.089± 0.002 0.357± 0.007 0.603± 0.013

Stream

POST 0.461± 0.008 0.518± 0.087 0.357± 0.011 0.558± 0.058
ADF-CP 0.451± 0.006 0.489± 0.009 0.384± 0.014 0.411± 0.025
BASS 0.745± 0.026 0.749± 0.01 0.903± 0.044 0.721± 0.038
SFTL-CP 0.243± 0.003 0.111± 0.008 0.159± 0.004 0.323± 0.003
SFTL-Tucker 0.253± 0.004 0.273± 0.033 0.144± 0.008 0.273± 0.016

Table 5: Final prediction error with R = 7. The results were averaged from five runs.

0 20000 40000
Number of Entries

0.45

1.00

1.50

RM
SE

(a) FitRecord

0 4000 8000
Number of Entries

0.25
0.60
1.00

RM
SE

(b) ServerRoom

0 8000 16000
Number of Entries

0.2

0.7

1.2

RM
SE

(c) BeijingAir-2

0 6000 12000
Number of Entries

0.45

0.70

1.00
RM

SE

(d) BeijingAir-3

Figure 3: Online prediction error with the number of processed entries (R = 7)

the training time of our method with BCTT on BeijingAir2 dataset. All the methods ran on a Linux191

workstation. From Table 6, we can see a large speed-up of our method with both the CP and Tucker192

form. The higher the rank (R), the more significant the speed-up.

R = 2 R = 3 R = 5 R = 7
SFTL-CP 27.1 27.2 28.5 29.1
SFTL-Tucker 32.3 35.6 43.2 59.3
BCTT 49.5 56.1 72.1 136.7

Table 6: Running time in seconds on BeijingAir2 dataset.

193

H Limitation and Discussion194

The state-space prior used our method arises from the LTI-SDE (7), an equivalent representation of195

the GP prior over time functions using a type of Matérn kernels. While elegant and useful, building196

equivalent SDEs to a specific GP prior might restrict the expressivity of our model. To overcome197

this limitation, we plan to construct an SDE prior directly, e.g., a linear SDE to model how the factor198

9

trajectory varies along the time. Then we consider converting the SDE into a state-space prior. In199

doing so, we can further improve the flexibility of our model to capture more complex temporal200

evolution, e.g., non-stationary and highly fluctuating.201

References202

Brett W Bader and Tamara G Kolda. Efficient matlab computations with sparse and factored tensors.203

SIAM Journal on Scientific Computing, 30(1):205–231, 2008.204

Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan. Stream-205

ing variational bayes. Advances in neural information processing systems, 26, 2013.206

Chris Chatfield. The analysis of time series: an introduction. Chapman and hall/CRC, 2003.207

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary208

differential equations. Advances in neural information processing systems, 31, 2018.209

Yishuai Du, Yimin Zheng, Kuang-chih Lee, and Shandian Zhe. Probabilistic streaming tensor210

decomposition. In 2018 IEEE International Conference on Data Mining (ICDM), pages 99–108.211

IEEE, 2018.212

Shikai Fang, Robert M Kirby, and Shandian Zhe. Bayesian streaming sparse tucker decomposition.213

In Uncertainty in Artificial Intelligence, pages 558–567. PMLR, 2021.214

Shikai Fang, Akil Narayan, Robert Kirby, and Shandian Zhe. Bayesian continuous-time tucker215

decomposition. In International Conference on Machine Learning, pages 6235–6245. PMLR,216

2022.217

Peter Lancaster and Leiba Rodman. Algebraic riccati equations. Clarendon press, 1995.218

Shibo Li, Robert Kirby, and Shandian Zhe. Decomposing temporal high-order interactions via latent219

odes. In International Conference on Machine Learning, pages 12797–12812. PMLR, 2022.220

Thomas P Minka. Expectation propagation for approximate bayesian inference. In Proceedings of221

the Seventeenth conference on Uncertainty in artificial intelligence, pages 362–369, 2001.222

Gary W Oehlert. A note on the delta method. The American Statistician, 46(1):27–29, 1992.223

Sejoon Oh, Namyong Park, Sael Lee, and Uksong Kang. Scalable tucker factorization for224

sparse tensors-algorithms and discoveries. In 2018 IEEE 34th International Conference on Data225

Engineering (ICDE), pages 1120–1131. IEEE, 2018.226

Simo Särkkä. Bayesian filtering and smoothing. Number 3. Cambridge University Press, 2013.227

Zheng Wang and Shandian Zhe. Conditional expectation propagation. In UAI, page 6, 2019.228

Zheng Wang and Shandian Zhe. Nonparametric factor trajectory learning for dynamic tensor229

decomposition. In International Conference on Machine Learning, pages 23459–23469. PMLR,230

2022.231

Yanqing Zhang, Xuan Bi, Niansheng Tang, and Annie Qu. Dynamic tensor recommender systems.232

Journal of Machine Learning Research, 22(65):1–35, 2021.233

Shandian Zhe, Yuan Qi, Youngja Park, Zenglin Xu, Ian Molloy, and Suresh Chari. Dintucker: Scaling234

up gaussian process models on large multidimensional arrays. In Thirtieth AAAI conference on235

artificial intelligence, 2016.236

10

	Spectral Analysis and LTI-SDE
	RTS Smoother
	Details about Online Trajectory Inference
	EP and CEP framework
	Running Posterior Update

	More Results on Simulation Study
	Accuracy of Trajectory Recovery
	Sensitive Analysis on Kernel Parameters

	Real-World Dataset Information and Competing Methods
	More Results about Prediction Accuracy
	Running time
	Limitation and Discussion

