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Abstract
Detecting AI-generated text is increasingly im-
portant to prevent misuse in education, journal-
ism, and social media, where synthetic fluency
can obscure misinformation. Existing detec-
tors often rely on likelihood heuristics or black-
box classifiers, which struggle with high-quality
outputs and lack interpretability. We propose
DivEye, a novel detection framework that lever-
ages surprisal-based features to capture fluctua-
tions in lexical and structural unpredictability, a
signal more prominent in human-authored text.
DivEye outperforms existing zero-shot detec-
tors by up to 33.2%, matches fine-tuned baselines,
and boosts existing detectors by up to 18.7% when
used as an auxiliary signal. DivEye is robust to
paraphrasing and adversarial attacks, generalizes
across domains, and offers interpretable insights
into rhythmic unpredictability as a key indicator
of AI-generated text.

Project Website & Demos: https://diveye.
vercel.app/

1. Introduction
Large Language Models (LLMs) are widely used in tasks
from personal assistance to content creation (Alahdab, 2024;
Meyer et al., 2023; Lund et al., 2023; Hu et al., 2024; Yuan
et al., 2022). While their fluency enhances utility, it also
enables seamless insertion of AI-generated text into essays,
articles, legal briefs, and social media, often without de-
tection (De Giorgio et al., 2025; Papageorgiou et al., 2024;
Telenti et al., 2024; Törnberg et al., 2023).

Reliable AI-text detection is vital for combating risks like
misinformation, academic dishonesty, professional miscon-
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duct, and the suppression of genuine human writing (Abdali
et al., 2024; Gameiro et al., 2024; Wu et al., 2025). Tradi-
tional supervised detectors (Shukla et al., 2024; Tolstykh
et al., 2024; Wang et al., 2024b) rely on labeled datasets
but often fail to generalize to unseen models or domains
(Doughman et al., 2024; Gameiro et al., 2024), especially
as new LLMs emerge. Zero-shot detectors (Bao et al., 2024;
Gehrmann et al., 2019; Mitchell et al., 2023; Wang et al.,
2024a) address this by leveraging statistical signals or LLMs
at inference time, offering scalable, model-agnostic detec-
tion critical for maintaining platform integrity.

Contributions. We present DivEye1, a zero-shot frame-
work that enhances AI-text detection using diversity-based
statistical features from token-level surprisal (Wilcox et al.,
2025). By capturing distributional irregularities and dy-
namically enriching existing detectors with diverse features,
DivEye improves generalization beyond static classifiers
or aggregate metrics.

• Zero-shot diversity detection: We propose DivEye,
a zero-shot framework that enhances detectors using
diversity metrics based on token-level surprisal. Each
feature is grounded in known differences between hu-
man and machine text, and DivEye boosts black-box
detectors without requiring retraining.

• Language & Model-agnostic detection: DivEye is a
fully zero-shot method that requires no model access
or fine-tuning. It relies solely on token probability
sequences from an off-the-shelf language model and
generalizes across languages and model families.

• Complementary to existing detectors: DivEye cap-
tures statistical patterns missed by detectors relying
on fine-tuned representations or classifiers, and signif-
icantly improves robustness when combined, particu-
larly against high-quality and paraphrased adversarial
text.

• Strong generalization across domains and attacks: Ex-
tensive evaluations across three benchmarks and varied
testbeds reveal that DivEye not only achieves state-of-
the-art accuracy in standard settings but also remains
robust when tested on unseen domains and language
models.

1The code of our method and experiments is available at
https://github.com/IBM/diveye/.
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Figure 1: Overview of DivEye. DivEye extracts diversity-based features (see Section 3, Equation (3)) from token-level
surprisal patterns. These features can be used in two ways: (1) as a standalone detector, or (2) as an enhancement to existing
detectors, improving their performance.

2. Background and Problem Formulation
The rise of LLMs has enabled machine-generated text that
closely mimics human writing by approximating the true
conditional distribution of natural language, Phuman(xt |
x<t), through training on large human-written corpora
(Chen et al., 2024; Lu et al., 2025). The LLM’s learned
distribution, PLLM(xt | x<t), is used to sequentially gener-
ate tokens during inference via sampling (Zhou et al., 2024).
Despite their fluency, LLMs imperfectly approximate hu-
man language (PLLM ̸= Phuman) (Ippolito et al., 2020; Jones
et al., 2024), and this subtle difference is the crux of AI text
detection.

Existing detection methods fall into two categories: wa-
termarking and zero-resource detection. Watermarking
(Kirchenbauer et al., 2024; Liang et al., 2024; Liu et al.,
2024a) embeds patterns in generated text but requires model
access or fine-tuning, limiting use in black-box or adversar-
ial settings. Zero-resource methods need no model knowl-
edge and rely on statistical or learned differences between
human and AI text, further divided into statistical and
training-based approaches.

Training-based / Fine-tuned detection methods train clas-
sifiers, such as fine-tuned transformers on a labeled corpora
of human and AI text. While these models can be accurate,
they often fail to generalize across domains or against ad-
versarial paraphrasing, especially when trained on specific
generators or prompts. Statistical / Zero-shot detection
methods refers to identifying AI-generated text without
task-specific training, either by leveraging LLM probability
cues or prompting LLMs directly as detectors. We discuss
all related works in more detail in Appendix A.

Despite progress, AI-text detection remains unsolved. We
move beyond individual token probabilities (Solaiman et al.,
2019) to measure statistical diversity across token sequences,
capturing variation in surprise and predictability. This re-
veals distributional and temporal patterns beyond likelihood

metrics, as shown by the class separation in Figure 3.

3. DivEye: Methodologies
3.1. Design Hypothesis

One of the key challenges in detecting AI-generated text
(Ghosal et al., 2023; Sadasivan et al., 2025) is that current
models, while proficient at producing fluent language, often
sacrifice variability and unpredictability for coherence and
consistency.

Our hypothesis is that human-written text inherently
exhibits greater stylistic diversity and unpredictability
than AI-generated text. Humans make creative, sponta-
neous choices that introduce bursts of surprise, whereas
LLMs aim to maximize sequence likelihood (Park & Choi,
2024), leading to more predictable and uniform outputs. We
support this hypothesis through both intuition and empirical
evidence (see Remark A).

3.2. Mathematical underpinning of DivEye

DivEye computes higher-order statistical features over sur-
prisal sequences, capturing structural signals beyond aggre-
gate likelihood.

Surprisal. Human language balances consistency with cre-
ative bursts, introducing novel expressions and stylistic vari-
ation. This diversity can be quantified using surprisal (Kurib-
ayashi et al., 2025), the negative log-probability of a token
given its context S(xt) = − logP (xt | x1, x2, . . . , xt−1).
For a sequence X = x1, . . . , xn, surprisal offers a prin-
cipled measure of local unpredictability based on model
log-probabilities.

Rather than examining individual token surprisals in isola-
tion, we summarize their behavior through aggregate met-
rics. The mean surprisal (µS) serves as a coarse indicator
of how “expected” a text is on average: Lower values sug-
gest closer conformity to the model’s distribution, whereas
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higher values signal greater unpredictability. Moreover, hu-
man writing also exhibits fluctuations in predictability due
to stylistic shifts, topic changes, or bursts of creativity, moti-
vating the use of surprisal variance (σ2

S) alongside the mean.
Formally:

µS =
1

n

n∑
t=1

S(xt); σ
2
S =

1

n

n∑
t=1

(S(xt) − µS)
2 (1)

Mean and Variance are not sufficient. Mean and variance
capture surprisal’s central tendency and spread but miss
deeper structural signals distinguishing human from AI text.
Human writing often shows asymmetric surprisal distribu-
tions with bursts of creativity, causing occasional spikes in
unpredictability. AI-generated text, optimized for consis-
tency, tends toward more symmetrical distributions centered
on high-probability tokens (Ippolito et al., 2020). Skewness
(γ1) measures this asymmetry, positive values indicate rare,
surprising tokens typical of human writing, while kurtosis
(γ2) reflects the frequency of extreme deviations, signal-
ing stylistic diversity. These higher-order moments enable
DivEye to detect subtle irregularities overlooked by meth-
ods focusing only on average behavior.

γ1 =
1

n

n∑
t=1

(
S(xt) − µS

σS

)3

; γ2 =
1

n

n∑
t=1

(
S(xt) − µS

σS

)4

− 3.

(2)

Static metrics still miss temporal structure. While static
surprisal metrics (mean, variance, skewness, kurtosis) sum-
marize overall unpredictability, they miss how it evolves
across a sequence, a key trait separating human from AI
text. To model these dynamics, we compute the first-order
difference ∆St = S(xt) − S(xt−1), with its mean (∆µ)
and variance (∆σ2) capturing stylistic volatility, such as
abrupt shifts in topic or tone common in human writing.

We also compute the second-order difference ∆2St =
∆St −∆St−1 to track fluctuations in the rate of surprisal
change. From this, we extract: (1) variance (σ2

∆2) for er-
ratic transitions; (2) entropy (H∆2 ) for irregularity; and (3)
autocorrelation (ρ(∆2St)) for clustering of unpredictability
bursts. These metrics uncover rhythmic, non-stationary pat-
terns typical of human text but rare in the smoother, more
uniform outputs of LLMs, offering a richer signal for detec-
tion. These have been formally defined in Equation (6).

We provide empirical validation of these temporal features
and their individual contributions to detection performance
in Appendix C.

Combinations. Collectively, DivEye, formalized as (D)
in Equation (3), encapsulates critical aspects of text genera-
tion that distinguish human creativity from algorithmically
generated predictability, thereby serving as a robust basis
for our detection framework.

D = {µs, σ
2
s , γ1, γ2︸ ︷︷ ︸

Distribution

⊕∆µ,∆σ
2︸ ︷︷ ︸

1st-Order

⊕σ
2
∆2 , H∆2 , ρ∆2︸ ︷︷ ︸

2nd-Order

} (3)

Table 1: Performance of zero-shot and open-source fine-
tuned methods on RAID. Results are aggregated over 8
domains, 12 models, and 4 decoding strategies. δ denotes
the difference in AvgAcc from the benchmark leader.

Frameworks Type AvgAcc δ

Desklib AI (Desklib) Fine-tuned 94.9% 0%
e5-small-lora (Dugan et al., 2024) Fine-tuned 93.9% -1%
DivEye (Ours) Zero-shot 93.63% -1.27%
Binoculars (Hans et al., 2024) Zero-shot 79.0% -15%
SuperAnnotate (SuperAnnotate) Fine-tuned 70.3% -24.6%
RADAR (Hu et al., 2023) Fine-tuned 65.6% -29.3%
GLTR (Gehrmann et al., 2019) Zero-shot 59.7% -35.2%

D is a 9-dimensional vector of distributional, first-order, and
second-order statistics, derived by passing text through an
autoregressive LLM. These features feed a binary classifier,
optionally combined with existing detector outputs. See
Algorithm 1 and Appendix B for details.

DivEye as a booster. Existing detectors often fail against
high-quality adversarial text that mimics human writing.
DivEye provides a complementary signal by capturing sta-
tistical and temporal patterns of token-level unpredictability,
orthogonal to traditional features. We enhance detectors by
appending DivEye ’s feature vector to their outputs and
training a lightweight meta-classifier (e.g., XGBoost (Chen
& Guestrin, 2016), Random Forest (Breiman, 2001)) on
the combined representation. This fusion significantly im-
proves performance on adversarial and out-of-distribution
text, without retraining or altering the base model.

4. Experiments
Setup. We evaluate DivEye on diverse benchmarks cov-
ering adversarial, domain & model-specific settings. Our
main tests use the RAID dataset (Dugan et al., 2024), fea-
turing adversarial attacks, and the MAGE benchmark (Li
et al., 2024), which spans eight domains and 27 LLMs to
assess generalization. DivEye is compared against a wide
range of baselines, including RADAR (Hu et al., 2023), Lo-
gRank (Ghosal et al., 2023), Entropy (Lavergne et al., 2008),
FastDetectGPT (Bao et al., 2024), DetectLLM (Su et al.,
2023), OpenAI Detector (Solaiman et al., 2019), Binoculars
(Hans et al., 2024), RAiDAR (Mao et al., 2024), BiScope
(Guo et al., 2024), and others listed on the RAID leader-
board. For implementation, we compute all DivEye fea-
tures using GPT-2 and use a lightweight XGBoost (Chen
& Guestrin, 2016) meta-classifier, either standalone (using
only DivEye) or fused (concatenated with other detectors’
features). Following each benchmark’s predefined splits, we
evaluate using Average Accuracy (AvgAcc), AUROC, and
F1 score to capture comprehensive performance.

4.1. Performance of DivEye

We evaluate DivEye across a wide range of challenging
testbeds to assess its robustness and adaptability to both
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Table 2: Performance of zero-shot methods on 6 diverse
testbeds from MAGE. The OOD settings examine the de-
tection capability on texts from unseen domains or texts
generated by new LLMs.

Settings Methods HumanAcc MachineAcc AvgAcc AUROC

Testbed 2,3,4: In-distribution detection

Arbitrary-domains
& Model-specific
(GPT-J)

LogRank 58.81% 63.94% 61.38% 0.67
Entropy 76.43% 76.84% 76.64% 0.83
DetectLLM 66.36% 62.07% 64.21% 0.72
FastDetectGPT 62.31% 50.49% 56.4% 0.59
Binoculars 60.11% 65.22% 62.67% 0.69
BiScope 89.62% 84.86% 87.24% 0.93
DivEye 90.63% 88.56% 89.60% 0.97

Fixed-domain (WP)
& Arbitrary-models

LogRank 89.61% 56.15% 72.88% 0.76
Entropy 85.96% 60.4% 73.18% 0.78
DetectLLM 88.54% 80.77% 84.66% 0.91
FastDetectGPT 87.25% 54.08% 70.67% 0.76
Binoculars 80.80% 62.07% 71.44% 0.77
BiScope 91.78% 95.27% 93.53% 0.94
DivEye 92.22% 96.88% 94.55% 0.99

Arbitrary-domains
& Arbitrary-models

LogRank 84.91% 44.47% 64.69% 0.68
Entropy 75.68% 50.04% 62.86% 0.67
DetectLLM 64.74% 69.02% 66.88% 0.75
FastDetectGPT 93.65% 41.73% 67.69% 0.7
Binoculars 76.1% 54.89% 65.49% 0.71
BiScope 91.54% 58.70% 75.12% 0.86
DivEye 73.72% 82.57% 78.15% 0.88

Testbed 5,6,8: Out-of-distribution detection

Unseen Models
(BLOOM-7B)

LogRank 85.84% 19.82% 52.89% 0.52
Entropy 77.56% 34.74% 56.15% 0.59
DetectLLM 67.85% 58.5% 63.18% 0.68
FastDetectGPT 94.57% 13.81% 54.19% 0.54
Binoculars 76.10% 54.89% 65.50% 0.71
BiScope 76.72% 50.47% 63.60% 0.72
DivEye 74.75% 77.06% 75.91% 0.86

Unseen Domains
(WP)

LogRank 88.57% 49.8% 69.19% 0.74
Entropy 78.5% 58.16% 68.33% 0.74
DetectLLM 74.15% 71.52% 72.34% 0.79
FastDetectGPT 95.99% 47.17% 71.58% 0.74
Binoculars 78.93% 67.8% 73.37% 0.8
BiScope 80.1% 78.3% 79.2% 0.86
DivEye 94.64% 84.53% 89.59% 0.97

Unseen Domains
& Unseen Models

LogRank 83.87% 43.95% 63.91% 0.68
Entropy 74.93% 50.18% 62.55% 0.66
DetectLLM 63.66% 67.40% 65.53% 0.73
FastDetectGPT 93.38% 41.50% 67.44% 0.70
Binoculars 77.85% 69.39% 73.62% 0.81
BiScope 86% 82.58% 84.24% 0.92
DivEye 69.75% 83.22% 76.49% 0.87

domain and model shifts. Table 1 benchmarks DivEye on
the RAID dataset (Dugan et al., 2024), which spans diverse
models, domains, attacks, and decoding strategies. DivEye
surpasses other zero-shot methods by 13.73% and matches
the performance of generative detection baselines, demon-
strating strong robustness to evasive generation. As shown
in Figures 6, 7, and 8, DivEye achieves high AUROCs of
0.98 and 0.93 across domains and generators, along with
strong accuracy, confirming its stability and generalization
across varied scenarios. Table 2 shows that DivEye out-
performs existing zero-shot baselines across six MAGE
testbeds, three in-distribution and three out-of-distribution,
achieving an average AUROC of 0.92. These results val-
idate DivEye’s strong generalization and support the hy-
pothesis in Section 3 that diversity-based features effectively
distinguish human and machine-generated text. Appendix
D.5 shows that DivEye achieves strong detection accuracy
across major models like GPT-3.5-Turbo, GPT-4o, Claude-
3-Opus, Sonnet, and Gemini-1.0-Pro (Brown et al., 2020;
et al., 2024; Anthropic; et al., 2025), confirming its robust-
ness and adaptability in enhancing both zero-shot and fine-
tuned detection frameworks.

4.2. Robustness, Efficiency & Boosting Effectiveness

To evaluate robustness, we assess DivEye across a wide
range of adversarial attacks, including paraphrasing from
MAGE and adversarial perturbations from RAID. As shown
in Table 3, DivEye outperforms strong baselines like the
fine-tuned Longformer on MAGE by 10.15% AvgAcc and
0.11 AUROC, and surpasses zero-shot methods on RAID,
notably outperforming Binoculars by 11.2%. Additional
attack-specific results are detailed in Appendices D.3. Be-
yond accuracy, DivEye is highly efficient (see Figure 5b),
requiring just 0.01 seconds per sample and achieving up to
a 2971× speedup over RAiDAR, thanks to its lightweight
GPT-2 backbone and fast statistical computations, mak-
ing it ideal for resource-constrained settings. Furthermore,
we show that DivEye’s diversity features significantly
boost detection performance when fused with other de-
tectors like RADAR, Binoculars, DetectLLM, BiScope, and
FastDetectGPT. As demonstrated in Table 5, this integration
improves AUROC and AvgAcc by over 18.7%, validating
that surprisal-based features offer orthogonal and comple-
mentary signals to traditional heuristics. We further explore
the relative importance of DivEye and the base detector
during prediction in Appendix D.4.

4.3. Ablation Studies

Model Backbone Robustness. We evaluate DivEye on
MAGE Testbed 4 using different LMs for computing token-
level surprisal: GPT2, GPT2-xl (Radford et al., 2019),
and Falcon-7B (Almazrouei et al., 2023). As shown
in Figure 5a, DivEye achieves strong AUROC scores of
0.88, 0.89, and 0.90 respectively, demonstrating consistent
performance across model sizes. Even the smallest model,
GPT2, remains competitive, while larger models improve
human-AI separation, suggesting they better capture stylistic
diversity.

Feature Importance. We analyze the contributions of
DivEye ’s feature groups, distributional, first-order, and
second-order surprisal statistics, via XGBoost importance
scores. Second-order features contribute the most (39.4%),
followed by distributional (34.2%) and first-order (23.7%),
supporting DivEye ’s central claim about second-order fea-
tures: modeling the evolution of surprisal yields stronger
detection capabilities than relying solely on static measures.
Detailed breakdowns are included in Appendix D.6.

5. Conclusion
We introduce DivEye, a zero-shot, model-agnostic frame-
work for detecting AI-generated text using diversity in token-
level surprisal. It is efficient, generalizes well across detec-
tors and datasets, and we discuss its future work & limita-
tions in Appendix G.
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Impact Statement
This work adds a model-agnostic, zero-shot, scalable frame-
work (DivEye) for AI-generated text detection that is
model, domain, and decoding strategy-robust. By relying
solely on intrinsic statistical features, our approach remains
model-agnostic and does not require fine-tuning or access to
LLM internals, making it broadly deployable. We hope this
can facilitate responsible AI use by providing a practical
tool for synthetic text identification in education, journal-
ism, and the internet at large. At the same time, we stress
the importance of cautious interpretation and advocate for
its use as a complementary signal within broader content
verification pipelines.
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A. Related Work
In recent years, identifying AI-generated text has become an increasingly important challenge, leading to the development of
various detection strategies. As outlined in Section 2, prior research (Ghosal et al., 2023; Sadasivan et al., 2025) emphasizes
the inherent difficulty of this task, detection becomes more challenging as language models more closely emulate human
writing. Nevertheless, Chakraborty et al. 2023 demonstrate that even highly capable models can still be statistically
distinguishable under specific conditions, such as when using multiple samples or robust feature sets. This theoretical
foundation supports many practical detection approaches that exploit subtle irregularities in LLM outputs.

While DivEye demonstrates strong performance across current models and attacks, we acknowledge that existing detectors
may struggle against future generative models with more human-like distributions, as highlighted by recent work (Doughman
et al., 2024). In particular, baseline failures can be attributed to the narrowing statistical gap between machine and human-
generated text, a trend that will likely intensify. Nonetheless, by evaluating on paraphrasing and instruction-tuned variants,
we partially simulate such future shifts and show that DivEye remains robust under these distributional changes.

Broadly, these approaches can be categorized into watermark-based methods and zero-resource detection.

Watermarking. Watermarking embeds traceable patterns in a model’s outputs during training or generation, enabling
downstream identification of machine-generated content (Ren et al., 2024; Liu et al., 2024a). While watermarking can be
effective in controlled environments, it relies on access to or cooperation from the model’s developers, an assumption that
frequently fails in real-world or adversarial scenarios. Furthermore, it is inherently unsuitable for practical situations where
AI-generated text lacks any embedded watermark. This limitation has led to growing interest in zero-resource detection
methods, which make no assumptions about access to the model’s internals or training data. Instead, these methods analyze
the output text alone, offering a more flexible and broadly applicable approach. Within this space, techniques can be further
categorized into fine-tuned methods, which rely on labeled datasets, and zero-shot methods, which generalize to unseen
models without task-specific training.

Fine-tuned Detection. Fine-tuned detection methods represent a major strand of zero-resource detection, often leveraging
fine-tuned classifiers built atop pre-trained language models (PLMs). A pivotal development was the Grover model,
which demonstrated that models trained on text from specific generators can achieve high accuracy on in-distribution data,
particularly when integrating Grover-specific layers. This inspired a wave of PLM-based detectors, most notably OpenAI’s
GPT-2 detector (Solaiman et al., 2019), which uses a RoBERTa classifier trained on GPT-2 outputs. However, such detectors
often struggle to generalize across models, especially as newer LLMs introduce more fluent and coherent outputs.

To improve generalization and robustness, recent work has focused on feature augmentation. Stylometric approaches, for
instance, introduce handcrafted features that capture writing style discrepancies between humans and machines (Mikros
et al., 2023). These include measures of phraseology, punctuation, linguistic diversity, and journalistic standards, which
have proven useful for detecting AI-generated tweets and news articles. Additional features such as perplexity statistics,
sentiment, and error-based cues like grammatical mistakes further enrich detection pipelines (Kumarage et al., 2023).

Parallel efforts have explored structural features, incorporating models that explicitly account for the factual or contextual
structure of text. Techniques such as TriFuseNet combine stylistic and contextual branches with fine-tuned BERT models,
while others employ attentive-BiLSTMs to replace standard feedforward layers, enhancing interpretability and robustness
(Liu et al., 2024b).

Despite these advancements, fine-tuned detectors still require labeled training data and model-specific tuning of PLMs,
which can limit their scalability to novel or proprietary LLMs. Although these detectors perform exceptionally well on data
similar to their training sets, they face significant drawbacks, most notably, a tendency to overfit to specific domains and
a reliance on retraining for every newly emerging AI model, which is unsustainable in light of the fast-paced evolution
of generative technologies. This motivates the development of zero-shot methods, such as DivEye, that aim to detect
AI-generated text without relying on supervised learning or access to model internals.

Zero-shot Detection. Recent research has focused on zero-shot detection strategies that require no fine-tuning on labeled
examples from the target generator. These methods typically leverage statistical cues from PLM’s output distributions or
repurpose LLMs themselves as detectors.

A prominent class of zero-shot detectors exploits the probability structure of text under language models. RADAR (Hu
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Figure 2: Distribution of token-level surprisal metrics for human-written vs. GPT-4-Turbo-generated essays. The left plot
shows the histogram of mean surprisal per essay, while the right plot shows the histogram of surprisal variance. Human-
written texts exhibit higher dispersion and heavier tails in both distributions, suggesting greater linguistic unpredictability
and stylistic diversity. In contrast, GPT-4-Turbo outputs are more concentrated and predictable, aligning with the likelihood-
maximization objective of language models.

0.0 0.2 0.4 0.6 0.8
Predicted Probability for Class 1

0

1

2

3

4

5

6

7

De
ns

ity

Entropy
True Label 0
True Label 1

0.00 0.25 0.50 0.75
Predicted Probability for Class 1

0

2

4

6

8

10

De
ns

ity

LogRank
True Label 0
True Label 1

0.2 0.4 0.6 0.8
Predicted Probability for Class 1

0

1

2

3

4

5

6

7

8

De
ns

ity

RADAR
True Label 0
True Label 1

0.00 0.25 0.50 0.75
Predicted Probability for Class 1

0

2

4

6

8

10

12

14

De
ns

ity

FastDetectGPT
True Label 0
True Label 1

0.0 0.5 1.0
Predicted Probability for Class 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

Binoculars
True Label 0
True Label 1

0.0 0.5 1.0
Predicted Probability for Class 1

0.0

0.5

1.0

1.5

2.0

De
ns

ity

DetectLLM
True Label 0
True Label 1

0.0 0.5 1.0
Predicted Probability for Class 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

DivEye
True Label 0
True Label 1

Figure 3: Distributions of predicted class probabilities for diverse AI-text detectors. Trained and evaluated on Testbed 4 of
the MAGE benchmark, DivEye shows stronger separation between Class 0 (human-written) and Class 1 (AI-generated),
indicating greater confidence and discriminative power.

et al., 2023) extends the curvature-based insight of DetectGPT by combining perturbation-based robustness testing with
multiple surrogate models, thus improving generalization in LLM families. It applies controlled rewrites to the input and
computes the variance in log probabilities across these perturbed samples under the hypothesis that AI-generated text resides
in regions of higher curvature and lower local stability. FastDetectGPT (Bao et al., 2024) eliminates the need for explicit
perturbations by directly measuring curvature in conditional probabilities, observing that AI text typically exhibits sharper
transitions between tokens compared to human writing. These observations are refined in DetectLLM (Su et al., 2023),
which introduces the Log-Likelihood Log-Rank Ratio (LRR) and Normalized Perturbed log-Rank (NPR) metrics to quantify
the distinguishability of AI-generated content using statistical features derived from token rankings.

Another line of work focuses on token predictability and entropy. LogRank (Ghosal et al., 2023) investigates the use of
token rank distributions and demonstrates that log-rank statistics, such as the frequency of top-ranked tokens, are reliable
signals of AI authorship. This builds on early work such as entropy-based detection (Lavergne et al., 2008) and GLTR
(Gehrmann et al., 2019), which showed that humans tend to use more surprising and diverse tokens, while LLMs often fall
back on high-probability continuations.

Moving beyond single-directional statistics, BiScope (Guo et al., 2024) proposes a bi-directional cross-entropy framework
that measures how well a model’s predicted logits align both with the ground truth next token (forward loss) and with the
previous token (backward loss). The key insight is that AI-generated text often exhibits predictable forward progression but
weaker backward association due to its autoregressive nature. A shallow classifier trained on the joint distribution of these
losses can reliably detect AI text with zero-shot generalization.

Finally, Binoculars (Hans et al., 2024) offers a model-agnostic strategy by comparing the statistical disagreement between
two LLMs on the same input. By contrasting the outputs of two diverse LLMs, the method detects anomalies in token
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distributions that are characteristic of synthetic text. This ensemble-based disagreement is found to correlate strongly with
model-generated samples, providing a powerful signal without the need for training data from either model.

Collectively, these techniques demonstrate that zero-shot detection can be achieved by carefully analyzing how text aligns
with the inductive biases and statistical signatures of language models, without any finetuning or access to the original
generator. They lay the foundation for our proposed method, DivEye, which further capitalizes on diversity-based statistical
properties to robustly differentiate AI- and human-written content.

Remark 1: Proof Sketch

Consider a text sequence X = (x1, x2, . . . , xn) generated either by a human or by a language model M . The language
model defines a probability distribution PM (X) =

∏n
t=1 PM (xt | x<t) where each token is chosen to maximize overall

likelihood.
Humans, however, produce language through a complex, multi-layered cognitive process that balances informativeness,
creativity, and contextual appropriateness, rather than strictly maximizing statistical likelihood.
Formally, the surprisal of token xt under model M is defined as:

SM (xt) = − logPM (xt | x<t)

Since M is trained to assign high probability to plausible continuations, its outputs tend to minimize surprisal on average,
implying that maximum likelihood generation compresses diversity:

EX∼PM
[SM (xt)] ≤ EX∼PH

[SM (xt)]

where PH denotes the distribution of human-generated text.
Similarly, human language exhibits higher variance in surprisal due to spontaneous creative choices, idiomatic expressions,
and stylistic variation, causing:

VarX∼PM
[SM (xt)] < VarX∼PH

[SM (xt)]

We validate this theoretical intuition through empirical experiments detailed below, which confirm statistically significant
differences in surprisal and diversity metrics between human-written and AI-generated texts.
We collect 200 human-written essays and 200 GPT-4-Turbo-generated essays on comparable topics, provided by BiScope
(Guo et al., 2024). For each essay, we computed the token-level surprisal scores using a fixed language model evaluator
(GPT-2) and then calculated the mean and variance of these surprisal values per essay. Figure 2a shows the histogram of
mean surprisal scores across the two sets, while Figure 2b displays the histogram of surprisal variances. The human-
written texts exhibit a noticeably wider spread and heavier tails in both metrics, indicating greater unpredictability and
stylistic variability. In contrast, the AI-generated essays cluster around lower mean surprisal and exhibit significantly
lower variance. These results empirically confirm our theoretical claim: human language inherently reflects higher
diversity and surprise, whereas AI-generated language, optimized for likelihood, tends toward more predictable
and homogeneous patterns.
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Figure 4: Ablation results on Testbed 4 of the MAGE benchmark showing the impact of temporal surprisal features. Adding
temporal dynamics to static surprisal statistics improves both accuracy (from 74.25% to 78.15%) and AUROC (from 0.82 to
0.88), demonstrating their complementary value for robust AI-generated text detection.

Algorithm 1 DivEye: Algorithm for Feature Extraction & Training

Require: Text dataset D = {(xi, ℓi)}Ni=1, where xi is a text input and ℓi ∈ {0, 1} indicates whether it is human-written
(ℓi = 1) or machine-generated (ℓi = 0)

Require: Pretrained auto-regressive language model gϕ (e.g., GPT-2)
Require: XGBoost classifier with hyperparameters Θ
Ensure: Trained binary classifier fθ
0: Initialize an empty feature matrix F ← [ ]
0: for each (xi, ℓi) ∈ D do
0: Compute token-level log-likelihoods: yi ← gϕ(xi)
0: Convert to token-level surprisals: si ← −yi
0: Compute diversity features DivEye(xi) ∈ R9 as described in Equation (3) using si
0: Append (DivEye(xi), ℓi) to F
0: end for
0: Train binary classifier fθ on feature set F using XGBoost with hyperparameters Θ
0: return fθ =0

B. Implementation of DivEye
We provide a detailed description of our DivEye implementation in Algorithm 1. This includes all steps from surprisal
computation to feature extraction and final classification. We use an XGBoost classifier for binary classification as a
preliminary choice, without extensive comparison to other classifiers, leaving exploration of alternative models for future
work. For completeness and reproducibility, we include all additional implementation details, such as hyperparameter
configurations, model architectures, and experimental testbeds, in Appendix F and Appendix E.

C. Motivation Behind Temporal Features
While static surprisal statistics such as mean, variance, skewness, and kurtosis provide useful summaries of token-level
unpredictability, they overlook the evolution of this unpredictability over time, a dimension critical to distinguishing human
and AI-generated text. Human authors naturally embed stylistic variability through temporal fluctuations, such as abrupt
topic shifts, tonal changes, and bursts of creativity, which manifest as distinctive temporal dynamics in surprisal sequences.

Intuitively, these temporal features, as listed in Section 3, expose rhythmic and non-stationary patterns characteristic of
human creativity and coherence, typically absent in the more uniform output of large language models. These second-order
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Figure 5: (a) Performance of DivEye across different base models (GPT-2, GPT-2-XL, Falcon-7B). (b) Inference time (in
sec) comparison of various methods.
features can be formally expressed as:

∆St = S(xt)− S(xt−1), ∆µ =
1

n− 1

n∑
t=2

∆St, ∆σ2 =
1

n− 1

n∑
t=2

(∆St − µ∆)
2 (4)

∆2St = ∆St −∆St−1, σ2
∆2 =

1

n− 2

n∑
t=3

(∆2St − µ∆2)2, H∆2 = −
∑
b

pb log pb, (5)

ρ(∆2St) =
E
[
(∆2St − µ∆2)(∆2St+1 − µ∆2)

]
σ2
∆2

(6)

where µ∆2 is the mean of second-order differences, and pb is the empirical probability of a value falling into bin b after
discretizing ∆2St for entropy computation.

Furthermore, through an ablation study on Testbed 4 of the MAGE benchmark (Figure 4), we empirically show that
augmenting static surprisal features with temporal metrics leads to a measurable improvement in classification accuracy.
This highlights the complementary value of temporal dynamics in enhancing the robustness of AI-generated text detection.
Moreover, an analysis of feature importance (Appendix D.6) reveals that temporal features collectively contribute more than
static features, consistently ranking among the most informative signals for distinguishing between human and AI-generated
text.

Overall, these findings motivate the inclusion of temporal surprisal features as integral components of our DivEye
framework.

D. Additional Results
In this section, we present additional supporting experiments that demonstrate the generalizability, robustness, and comple-
mentary strengths of DivEye through various ablation studies.

D.1. Domain-Specific Performance of DivEye

Figure 7 presents the AUROC performance of seven detection methods evaluated across ten text domains (Testbed 3 of
the MAGE benchmark). DivEye consistently achieves the highest AUROC scores in every domain—reaching up to 0.99
in WP, 0.97 in CMV, and 0.95 in SciXGen, outperforming other detectors by a notable margin. This highlights DivEye
’s adaptability and robustness in capturing domain-specific writing patterns that other methods frequently miss. These
results reinforce the advantage of leveraging surprisal features for more generalizable and context-sensitive detection of
AI-generated text.

D.2. Model-Specific Performance of DivEye

Figure 8 compares the AUROC performance of seven detection methods across text on generated by six different large
language models (Testbed 5 of the MAGE benchmark). DivEye achieves the highest AUROC scores across all six models,
demonstrating strong robustness (0.95 on GLB-130B, 0.89 on GPT-J, 0.85 on GPT-3.5-Turbo). This consistent performance
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Figure 6: (a) Performance of DivEye across different domains, generated by GPT-J-6B. (b) Performance of DivEye
across various generator models. Results are based on the MAGE benchmark.
Table 3: Performance of DivEye and baselines on adversarial benchmarks, MAGE & RAID. The RAID benchmark, which
independently tests each model, does not report an AUROC score.

Settings Methods AvgAcc AUROC

[MAGE] Testbed 8: Paraphrasing Attack

Paraphrased via GPT-3.5-Turbo
Longformer (Beltagy et al., 2020) 69.34% 0.76
BiScope (Guo et al., 2024) 69.30% 0.81
DivEye (Ours) 76.49% 0.87

[RAID] Adversarial Attacks

Paraphrase, Whitespace,
Misspelling, Homo-
glyph, Article Deletion
& more

Desklib AI (Desklib) 91.2% -
e5-small-lora (Dugan et al., 2024) 85.7% -
DivEye (Ours) 80.52% -
Binoculars (Hans et al., 2024) 69.32% -
RADAR (Hu et al., 2023) 63.9% -
GLTR (Gehrmann et al., 2019) 51.5% -

highlights DivEye’s effectiveness in capturing temporal surprisal patterns that generalize well across different language
model architectures, making it broadly applicable for reliable AI-generated text detection.

D.3. Adversarial Attack Analysis of DivEye

We evaluate DivEye against a wide range of adversarial attacks using the RAID benchmark, reporting average classification
accuracies across all attack categories listed in Table 4. DivEye achieves performance on par with the top-performing
fine-tuned models reported by the benchmark. While one might argue that LLMs can be manipulated to produce more
diverse text, potentially evading detection, our evaluation includes paraphrasing attacks, which are specifically designed
to do just that. Notably, it consistently surpasses all zero-shot detectors by a significant margin across every attack type,
demonstrating strong robustness against both diverse adversarial attacks.

D.4. Relative Importance of DivEye in a Boosted Model

Figure 9 illustrates the relative feature importance of DivEye when integrated into boosted ensembles with five existing AI
detectors: BiScope (Guo et al., 2024), OpenAI Detector (Solaiman et al., 2019), RADAR (Hu et al., 2023), DetectLLM (Su
et al., 2023), and Binoculars (Hans et al., 2024). DivEye contributes significantly to the overall model, with particularly
high importance when combined with RADAR (91.92%), OpenAI Detector (90.26%), and Binoculars (89.71%). Even in
ensembles with more advanced detectors like BiScope, DivEye still adds valuable signal (32.93%). These results affirm
the standalone strength of DivEye and its utility in hybrid detection frameworks.

D.5. Results with Different Propriety LLMs

Table 6 reports AUROC scores of DivEye on text generated by five proprietary LLMs, Claude-3 Opus, Claude-3 Sonnet,
Gemini 1.0-pro, GPT-3.5 Turbo, and GPT-4 Turbo, using data provided in the BiScope paper (Guo et al., 2024) across
five domains. DivEye achieves consistently strong performance on the Normal dataset (e.g., 1.000 on GPT-3.5 Turbo for
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Figure 7: AUROC performance profiles of seven AI-detection tools evaluated on text generated by ten diverse domains
generated by arbitrary LLMs. Each spider plot corresponds to a specific domain, with radial axes representing the AUROC
score (ranging from 0 to 1) and angular axes representing the detection tools: RADAR, Entropy, LogRank, FastDetectGPT,
DetectLLM, OpenAI Detector, and DivEye.
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Figure 8: AUROC performance profiles of seven AI-detection tools evaluated on text generated by six different LLMs. Each
spider plot corresponds to a specific language model, with radial axes representing the AUROC score (ranging from 0 to
1) and angular axes representing the detection tools: RADAR, Entropy, LogRank, FastDetectGPT, DetectLLM, OpenAI
Detector, and DivEye.
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Figure 9: Feature importance of DivEye when integrated with various existing detectors. The plot shows how much
DivEye contributes to the overall detection model when combined with BiScope, OpenAI Detector, RADAR, DetectLLM,
and Binoculars. Higher values indicate stronger complementary impact from DivEye ’s diversity-based features.
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Figure 10: Relative feature importances for the nine diversity-based features used in DivEye. The features, as listed in
Equation (3), represent distinct surprisal-based statistics. Higher percentages indicate greater influence in model decisions
when combined with existing detectors.

Essay) and remains robust under paraphrased inputs, with AUROC scores generally above 0.95. These results highlight
DivEye’s ability to generalize across diverse generation models and domains, even under text transformations.

D.6. Feature Importance of DivEye

Figure 10 presents the relative importance of each of the nine diversity-based features incorporated in DivEye, which are
derived from surprisal statistics as detailed in Equation (3). The feature importances, ranging from approximately 8.1% to
13.0%, indicate that all features contribute meaningfully to model decisions, with temporal features such as, ∆µ, entropy of
second derivatives H∆2 , and autocorrelation ρ∆2 exhibiting the highest influence. This balanced contribution underscores
the complementary nature of these statistical descriptors in enhancing DivEye ’s detection capability when combined with
existing baseline detectors.

E. Testbed Details
We evaluate DivEye on a comprehensive testbed spanning three major AI-text detection benchmarks, MAGE (Li et al.,
2024), HC3 (Guo et al., 2023) & RAID (Dugan et al., 2024), covering a diverse range of domains, language models, and
adversarial attacks. These benchmarks allow us to assess the generalizability and robustness of our method across realistic
deployment scenarios. This section provides a comprehensive overview of the testbeds used in our evaluation, including
all domains, language models, and adversarial attacks featured in the MAGE and RAID benchmarks, along with relevant
configuration details.

Details about MAGE Benchmark. The MAGE benchmark (Li et al., 2024) comprises eight diverse testbeds designed for
evaluating machine-generated text detection. Testbeds 1 through 4 include standard train, validation, and test splits, while
Testbeds 5 through 8 serve as out-of-distribution (OOD) datasets, evaluated using models trained on Testbed 4. Notably,
Testbed 4, Arbitrary Domains & Arbitrary Models, is the most comprehensive, enabling evaluation across the full range of
domains and language models listed in the MAGE paper. Detailed information regarding dataset splits and sample counts is
available in the original benchmark documentation.

MAGE covers a wide array of domains, including CMV (Tan et al., 2016), Yelp (Zhang et al., 2015), XSum (Narayan et al.,
2018), TLDR, ELI5 (Fan et al., 2019), WP (Fan et al., 2018), ROC (Mostafazadeh et al., 2016), HellaSwag (Zellers et al.,
2019), SQuAD (Rajpurkar et al., 2016), and SciXGen (Chen et al., 2021a). The OOD domains include CNN/DailyMail (See
et al., 2017), DialogSum (Chen et al., 2021b), PubMedQA (Jin et al., 2019), and IMDb (Maas et al., 2011).

MAGE also incorporates text generated from over 27 different LLMs (Brown et al., 2020; Chung et al., 2022; et al., 2023;
Sanh et al., 2022; Touvron et al., 2023a; Zeng et al., 2023; Zhang et al., 2022), enabling rigorous and varied evaluations. For
further implementation specifics, readers are encouraged to consult the MAGE paper.
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Details about RAID Benchmark. The RAID benchmark comprises over 6.2 million samples, offering extensive coverage
across domains, language models, sample sizes, and adversarial attacks. It provides a clear separation into training,
validation, and testing splits to support rigorous evaluation. The benchmark spans a wide range of domains, including
scientific abstracts (Paul & Rakshit, 2021), book summaries (Bamman & Smith, 2013), BBC News articles (Greene &
Cunningham, 2006), poems (Arman, 2020), recipes (Bień et al., 2020), Reddit posts (Völske et al., 2017), movie reviews
(Maas et al., 2011), Wikipedia entries (Aaditya Bhat, 2023), Python code, Czech news (Boháček et al., 2022), and German
news articles (Schabus et al., 2017).

RAID employs text generated from 11 diverse LLMs (Radford et al., 2019; MosaicML, 2023; Jiang et al., 2023; Cohere,
2024; Ouyang et al., 2022; Touvron et al., 2023b; et al., 2024), ensuring broad model representation. Additionally, it
includes over 11 adversarial attack strategies (Liang et al., 2023b;a; Wolff & Wolff, 2022; Bhat & Parthasarathy, 2020;
Krishna et al., 2023; Pu et al., 2023; Gagiano et al., 2021; Guerrero et al., 2022), designed to test the robustness of detectors
under challenging settings. Detailed results and descriptions of these attacks are provided in Appendix D.3. For further
implementation specifics, readers are encouraged to consult the RAID paper.

F. Hyperparameter Settings
Table 7 outlines the hyperparameter configurations used for our experiments. We utilize the XGBoost classifier with standard
but tuned settings to handle class imbalance and optimize detection performance. For our proposed method DivEye, we set
the number of bins for entropy computation to 20 and truncate input sequences at a maximum length of 1024 tokens. All
experiments were run on a single NVIDIA DGX A100 (40 GB), and reported results reflect the median of three runs.

G. Future Work, Limitations, Reproducibility & Ethical Considerations
Future Work. While DivEye demonstrates strong generalization across domains and models in zero-shot settings,
several extensions remain open. A key extension is evaluating DivEye’s robustness against paraphrasing attacks using
online rewriters and adversarial perturbation tools, which better simulate real-world evasion tactics. Another important
direction is assessing cross-lingual generalizability by applying DivEye to texts written in or translated to other languages,
as our current evaluation focuses only on English.

Limitations. Our approach relies on features derived from LLM token-level behavior, which may vary across model sizes,
architectures, and tokenization schemes. While our current performance is robust, it is unclear whether we are approaching
an optimal limit for AI-text detection, leaving room for further improvements across diverse models. Finally, we focus
primarily on English-language text, and the feature distributions may behave differently in other linguistic or cultural settings.
Furthermore, DivEye is optimized for English text; performance on multilingual content remains unexplored.

Reproducibility. We release all code and evaluation scripts to ensure full reproducibility. Detailed training, testing and
hyperparameter configurations are included in Appendices E and B.

Ethical Considerations. As with all AI-text detectors, DivEye is not infallible and may produce incorrect classifications.
We emphasize that detection outputs should be treated as probabilistic signals rather than definitive evidence. When used in
high-stakes settings, such as academic integrity or content moderation, additional human review and validation are essential.
We encourage responsible deployment of DivEye to support large-scale analysis, but caution against its use in critical
decision-making.
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Table 4: Performance of DivEye and open-source baselines on all listed adversarial attacks on the RAID benchmark.

Settings Methods AvgAcc

[RAID] Adversarial Attacks

Whitespace Attack

Desklib AI 94.9%
e5-small-lora 93.9%
DivEye (Ours) 79.8%
Binoculars 68.7%
RADAR 61.1%
GLTR 43.1%

Upper-Lower Attack

Desklib AI 87.2%
e5-small-lora 93.9%
DivEye (Ours) 85.3%
Binoculars 72.8%
RADAR 65.1%
GLTR 45.3%

Synonym Attack

Desklib AI 80.6%
e5-small-lora 85.6%
DivEye (Ours) 67.1%
Binoculars 42.1%
RADAR 62.7%
GLTR 28.7%

Paraphrase Attack

Desklib AI 83.7%
e5-small-lora 85.5%
DivEye (Ours) 74.4%
Binoculars N/A
RADAR 62.4%
GLTR 43.0%

Perplexity Misspelling

Desklib AI 92.9%
e5-small-lora 92.5%
DivEye (Ours) 90.6%
Binoculars 77.2%
RADAR 64.3%
GLTR 57.0%

Settings Methods AvgAcc

Number Attack

Desklib AI 93.0%
e5-small-lora 93.5%
DivEye (Ours) 92.1%
Binoculars 76.4%
RADAR 65.7%
GLTR 57.3%

Insert Paragraph

Desklib AI 94.9%
e5-small-lora 93.9%
DivEye (Ours) 92.2%
Binoculars 70.7%
RADAR 68.2%
GLTR 58.3%

Homoglyph Attack

Desklib AI 99.7%
e5-small-lora 11.1%
DivEye (Ours) 61.6%
Binoculars 36.1%
RADAR 44.8%
GLTR 20.3%

Article Deletion

Desklib AI 90.5%
e5-small-lora 92.0%
DivEye (Ours) 88.0%
Binoculars 73.3%
RADAR 63.0%
GLTR 48.9%

Alt. Spelling Attack

Desklib AI 94.3%
e5-small-lora 93.4%
DivEye (Ours) 92.01%
Binoculars 77.6%
RADAR 65.5%
GLTR 58.2%

Zero Width Space

Desklib AI 87.5%
e5-small-lora 93.9%
DivEye (Ours) 92.0%
Binoculars 98.4%
RADAR 78.4%
GLTR 97.9%
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Table 5: Integration with DivEye consistently boosts performance across detectors, particularly on diverse domains
(Testbed 4) and paraphrasing attacks (Testbed 7).

Methods HumanAcc MachineAcc AvgAcc AUROC δ: Boost

Testbed 4: Arbitrary Domains & Arbitrary Models

RADAR 47.74% 74.86% 61.30% 0.62 -
DetectLLM 64.74% 69.02% 66.88% 0.75 -
FastDetectGPT 93.65% 41.73% 67.69% 0.7 -
Binoculars 76.1% 54.89% 65.49% 0.71 -
BiScope 91.54% 58.70% 75.12% 0.86
DivEye 73.72% 82.57% 78.15% 0.88 -
DivEye + RADAR 74.69% 85.31% 80% 0.90 18.7%
DivEye + DetectLLM 75.44% 84.23% 79.34% 0.9 12.96%
DivEye + FastDetectGPT 79.42% 83.90% 81.66% 0.91 13.97%
DivEye + Binoculars 69.81% 83.47% 76.64% 0.87 11.15%
DivEye + BiScope 80.69% 88.31% 84.5% 0.93 9.38%

Testbed 7: Paraphrasing Attacks

BiScope 48.80% 89.79% 69.30% 0.81 -
DivEye 69.75% 83.22% 76.49% 0.87 -
DivEye + BiScope 65.38% 90.84% 78.11% 0.89 8.81%

Table 6: AUROC scores achieved by DivEye on five commercial LLMs across various domains. Results are shown for both
the Normal and Paraphrased datasets.

Domain Normal Dataset Paraphrased Dataset
Claude-3 Opus Claude-3 Sonnet Gemini 1.0-pro GPT-3.5 Turbo GPT-4 Turbo Claude-3 Opus Claude-3 Sonnet Gemini 1.0-pro GPT-3.5 Turbo GPT-4 Turbo

Arxiv 0.9942 0.9770 0.9795 0.9658 0.9793 0.9778 0.9552 0.9616 0.9689 0.9558
Code 0.7528 0.8557 0.7824 0.9577 0.9044 0.8456 0.9053 0.7521 0.9279 0.9302
Creative 0.9888 0.9773 0.9835 0.9951 0.9608 0.9930 0.9900 0.9957 0.9917 0.9949
Essay 0.9950 0.9988 0.9972 1.0000 0.9823 0.9975 0.9877 0.9814 0.9895 0.9559
Yelp 0.8855 0.8813 0.9220 0.8384 0.8942 0.9543 0.9780 0.9683 0.8524 0.9571

Table 7: Hyperparameters used for the XGBoost Classifier and DivEye.

XGBoost Hyperparameter Value

random state 42
scale pos weight (len(Ytrain)−

∑
Ytrain)/

∑
Ytrain

max depth 12
n estimators 200
colsample bytree 0.8
subsample 0.7
min child weight 5
gamma 1.0

DivEye Parameter Value

Entropy bins 20
Tokenizer Max Length 1024 + Truncation
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