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In the supplementary material, additional details that are not in-
cluded in the main paper due to space limits are provided as follows:

• Implementation details of the proposed anatomical prior
guided spatial contrastive learning (APSCL).

• Details of additional experimental results.

1 MORE IMPLEMENTATION DETAILS
To evaluate the performance of the proposed 2D segmentation
model on 3D organ scans, the evaluation protocol in prior meth-
ods [3, 4] is followed, where each 3D scan is reconverted to 2D
slices and rescaled to the spatial resolution of 256 × 256 pixels for
training and inference. Common conventions are followed in the
data preprocessing stages, namely, random rotation, translation,
and scaling. In addition, to tailor the pre-trained backbone, each 2D
slice is duplicated three times on channel dimension. The training
and testing pipelines for our method are illustrated in Fig. 1.

2 ADDITIONAL EXPERIMENTAL RESULTS
2.1 More Ablative Results
Effect of different backbones. To verify the effect of various
backbones, we conduct ablation experiments on three popular back-
bones, namely VGG-16 [5], ResNet-50, and ResNet-101 [1]. Ablation
results are summarized in Table 1, where these networks are all
pre-trained on MS-COCO [2]. As can be noticed, in the 1-way 1-
shot segmentation task, the model with ResNet-101 backbone has
achieved the best performance of 85.47% in terms of the mean Dice
Score on the CHAOS-T2 dataset, outperforming the model with the
VGG-16 backbone and the model with the ResNet-50 backbone by
7.53% and 4.63%, respectively. The reason is that ResNet-101 with
deeper layers is able to learn more discriminative features than
other backbones. This indicates that using ResNet-101 as the back-
bone is conducive to achieving higher segmentation performance.
Therefore, we choose ResNet-101 as our backbone.

∗*Corresponding authors
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Figure 1: Paradigm of few-shot semantic segmentation (FSS).

Table 1: Ablation results (in Dice score %) using different
backbones on the CHAOS-T2 dataset. The bold number de-
notes the best segmentation result.

Backbone Liver LK RK Spleen Mean
VGG-16 78.72 77.37 81.39 74.26 77.94
ResNet-50 80.72 80.07 83.80 78.77 80.84
ResNet-101 86.73 84.66 89.66 80.82 85.47

Table 2: Ablative results (in Dice score %) of different KL
losses on the CHAOS-T2 dataset.

Method Liver LK RK Spleen Mean

L𝑠
𝐾𝐿

84.07 82.01 87.58 78.20 82.97
L𝑞
𝐾𝐿

83.29 83.74 86.03 78.49 82.89
L𝑠
𝐾𝐿

+ L𝑞
𝐾𝐿

86.73 84.66 89.66 80.82 85.47

Effect of the combined KL divergence. To verify the effec-
tiveness of our combined KL divergence, 𝑖 .𝑒 ., 𝜆𝐾𝐿 + 𝜆𝑆𝐶𝐿 , we train
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Figure 2: Visual comparison of the proposed method with
other methods on the MS-CMRSeg dataset. GT is the ground
truth.

our APSCL with 𝜆𝐾𝐿 , 𝜆𝑆𝐶𝐿 , and 𝜆𝐾𝐿 + 𝜆𝑆𝐶𝐿 , respectively. The seg-
mentation results are presented in Table 2. As illustrated in Table
2, our combined KL divergence is more beneficial for anatomical
prior learning.

2.2 More Qualitative Results
We compare the proposed APSCL and the current state-of-the-art
methods in the 1-way 1-shot setting on the remaining medical
imaging dataset: MS-CMRSeg. Fig. 2 present the performance com-
parison between our proposed APSCL and other methods. It is
observed that the segmentation results of other methods on multi-
ple organs all exist incomplete boundaries and inconsistent shapes,
especially for SE-Net, while our method is resistant to interference
from complex backgrounds and accurately predicts segmentation
masks for query images.

2.3 Testing with Weak Annotations
We further assess our APSCL using the support set with weak an-
notations, including bounding boxes and scribbles. In the inference
stage, dense pixel-wise annotations in the support set are replaced
by bounding boxes or scribbles that are substituted from the origi-
nal dense annotated masks automatically. In particular, bounding
boxes refer to rectangular regions and scribbles refer to line-like
regions. As shown in Table 3, our APSCL performs well when rely-
ing only on weak annotations and is capable of resisting the noise
introduced by bounding boxes or scribbles. The performance with
two different weak annotations is comparable to that using costly
pixel-wise annotations, but the results using scribbles are on aver-
age 2.54%, 1.18%, and 2.98% higher than those using bounding boxes
on the three medical datasets in terms of Dice scores, respectively.
This is likely because scribbles provide more representative class
information, whereas bounding boxes tend to bring more noise.

For a more intuitive comparison, we visualize the experimental
results of different methods with various weak annotations in Fig.
3. Note that given different weak annotations, the model is still
capable of to reasonably recognise the rough boundaries and shapes
of new anatomical structures. This indicates the desirable ability of
our method to tackle FSS tasks in complex scenarios.

Table 3: Quantitative results (in mean Dice score %) with
different types of support annotations at inference time.

Annotation CHAOS-T2 MS-CMRSeg Synapse
Pixel-wise labels 85.47 77.99 81.50
Bounding boxes 81.20 74.36 77.26

Scribbles 83.74 75.54 80.24

Figure 3: Qualitative results of the proposed APSCL and
other methods on the MS-CMRSeg dataset with bounding
box and scribble annotations at inference time. GT indicates
the ground truth.
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