
A Motivating Example

Figure 6 shows a graphic of a droplet microfluidic reactor [49] which is our main motivating example.

2 1K
N

Input Chemical Composition
Microreactor conditions, e.g. Droplet flow

rate, Light exposure, Heat exposure

SYSTEM INPUTS

SYSTEM OUTPUTS

Online outputs, e.g. Fluorescence,
Confocal microscopy, Infrared camera

Offline outputs, e.g.
Chromatographic assays

K - 1

K + 1

K - 2

Figure 6: Motivating example. Droplets flow into the micro-reactor where we control conditions
such as temperature and flow rate. The cost to change function inputs arises from how adjacent
droplets are coupled, e.g. rapidly changing the temperature after droplet K means waiting for system
equilibration before taking new measurements. Asynchronicity arises from choosing drops 2, 3, ..., N
before getting the results of droplet 1.

B General Approach

While we present SnAKe as a detailed algorithm, the ideas behind it are far more general. For
example, in Section C we create our batch by taking samples from three different GPs. Algorithm 3
presents a more general algorithm that could be used for any similar task.

Algorithm 3 General Ordering-Based Optimization
input: Optimization budget of T samples. Method for creating batch of queries. Method for
creating an ordering from a batch of queries. Method for updating paths.
begin: Create initial batch of size T and ordering, S
for t = 1, 2, 3, ..., T do

if there is new information then
Update surrogate model
Choose a batch of new points to query
Create a new path, S̃
S S̃

end if
Choose next query point from ordering: xt St

Evaluate f(xt)
end for

C Ypacarai Lake Experiment

A second motivating example for our research comes from optimization requiring spatially continuous
exploration. In this section, we examine the problem more closely, and show that SnAKe can easily
be extended to optimize multiple black-box functions simultaneously in the same search space.

The problem in question is an adaptation of the case study introduced by Samaniego et al. [41]. The
application is to use autonomous boats to find the largest source of contamination in Lake Ypacarai in
Paraguay. Figure 7 shows a visualization of the Lake, and three objectives we want to optimize over.
Each objective corresponds to a different measure of water contamination, examples might include
pH, turbidity, CO2 levels, and more. In Section 4.3 we explored optimizing over these examples
individually.

1

Table 2: Ypacarai experimental results. We present the average regret from 10 runs ± the standard
deviation multiplied by 103. MO1, MO2, MO3 represent the different maximums (one for each
function). All runs are terminated after the cost exceeds 10 units (approximately 100 km). SnAKe is
the only method with good regret in all metrics, as TrEI performs poorly in the first objective, and
EIpu performs poorly in the second.

Regret MO1 Regret MO2 Regret MO3
TrEI 13.636± 35.842 0.802± 0.828 0.162± 0.108
EIpu 0.995± 0.661 19.308± 55.901 0.212± 0.137

SnAKe 0.996± 2.743 1.740± 4.813 0.064± 0.053

In this section, we extend the problem to optimize over all of these simultaneously. This is important
because it is inefficient to run multiple objective runs when we are exploring the same search space.
At every iteration we choose one query xt, and obtain three outputs f1(xt), f2(xt), and f3(xt) one
for each objective.

We model each objective using an independent GP, meaning we can create Thompson Samples from

any objective. Therefore we extend SnAKe by creating the batch using a mixture of samples from
each objective. For the experiment we use the ratio 1:1:1. For TrEI and EIpu, we adapt to the
multi-objective case by optimizing the first objective until we have travelled 3.3 units (approximately
33km), after which we change to the subsequent objective. Table 2 shows the results.

Figure 7: Visualization of Ypacarai Lake, and the corresponding objectives we optimize over. We
show an example of an optimization path.

D Empirical Analysis of Escape Probability

D.1 Areas with stationary points

Figure 8 estimates the non-escape probability (see Definition 3.2) from the interval A = [0.1, 0.2].
The optimization objective is a bi-modal function. Once we have 15 samples in the interval [0.1, 0.2],
we estimate the escape probability to converge to p ⇡ 0.74.

D.2 Areas without stationary points

We now repeat the same experiment as in section D.1, this time we change the interval to A =
[0.0, 0.1] which does not contain any stationary points. One can observe a clear difference in the
behavior of pt as we include more information. This time, pt ! 0 very fast.

D.3 Resampling vs Point Deletion

Figure 10 empirically confirms the analysis of Section 3.7 showing the effectiveness of ✏-Point
Deletion, and displaying the effect of increasing the budget from 100 to 250 iterations.

2

Figure 8: We estimate the probability of non-escape by taking 5000 independent Thompson Samples
and counting the number of samples inside A (i.e. the MLE estimator of the Bernoulli distribution).
We do this for increasing number of training points in A (which are chosen randomly with a uniform
distribution in A). We repeat the experiment 10 times. The left plot shows the underlying function
and the Gaussian Process for 15 training points. The right plot shows the evolution of our estimate
as we increase training points inside A = [0.1, 0.2] (we plot the mean of each run ± the standard
deviation). This example makes it clear that pt does not converge to zero. Furthermore, it seems
to converge to just over 0.7 which a very large probability. This will make fully escaping the local
minimum very difficult without Point Deletion.

Figure 9: We estimate the probability of non-escape by taking 5000 independent Thompson Samples
and counting the number of samples inside A (i.e. the MLE estimator of the Bernoulli distribution).
We do this for increasing number of training points in A (which are chosen randomly with a uniform
distribution in A). We repeat the experiment 10 times. The left plot shows the underlying function
and the Gaussian Process for 15 training points. The right plot shows the evolution of our estimate
as we increase training points inside A = [0, 0.1] (we plot the mean of each run ± the standard
deviation). We can see that pt quickly converges to (almost) zero. We almost guaranteed to fully
escape the area after 15 time-steps, even for very large budgets.

E Implementation Details

This section outlines the implementation details and hyper-parameter choices for all the methods
compared in the paper. The code used in the paper is available at the following link: https:
//github.com/cog-imperial/SnAKe.

E.1 Computational Considerations (Extended)

Unfortunately, Algorithm 2 (SnAKe) is computationally expensive in two aspects. First, for large
budgets, we may struggle to train and sample the GPs. For our experiments, training was not an issue
and we were able to use full model GPs. However, we could use Sparse GPs [43] if needed. The
Wilson et al. [53] approach allows us to create GP samples efficiently, and possibly optimize them
using gradient methods. The sampling can be done in linear time (after the GP has been trained). We
use the Wilson et al. [53] method to create our samples, and then optimize the samples using Adam
[23].

3

https://github.com/cog-imperial/SnAKe
https://github.com/cog-imperial/SnAKe

(a) Optimization with Resampling. T = 100. (b) Optimization with 0.1-Point Deletion. T = 100.

(c) Optimization with Resampling. T = 250. (d) Optimization with 0.1-Point Deletion. T = 250.

Figure 10: We investigate the effect of Point Deletion, and empirically confirm our analysis from
Section 3.6. For Point Deletion, we calculate the escape prediction as pT , using p̂ ⇡ 0.74, which
we estimated in Section D.1. We can see that without Point Deletion, the escape happens until
until the very last iteration, independently of the budget (see Remark 3.4 for an explanation). With
Point Deletion, we can see that our escape predictions are accurate, and the exploration of the actual
optimum increases with the budget.

The second bottleneck is solving the TSP, which is NP-hard, and we may need to solve it almost
at every iteration (for small values of tdelay). There are heuristic solutions that give approximate
solutions quickly. We use Simulated Annealing [24] which grows linearly with the budget size, T .
For small budgets, simulated annealing should find good solutions, but it could struggle as the budget
size increases. To solve this, note that we do not actually require a super-specific solution to the
problem: we are only expecting to query the first few points on a path before replacing it by an
entirely new path.

We build an adaptive grid (at each iteration) consisting of two separate parts. A very coarse grid,
⇠global, covers most of the search space, and a very fine grid, ⇠local,t, consisting of the Nl samples
closest to xt. This allows us to define the grid ⇠t = ⇠global [⇠local,t. The remaining T �Nl samples
will be assigned to the closest point in ⇠t (using the Euclidean distance).

The adaptive grid means we expect to have multiple samples assigned to the same point, specifically
in the coarse areas of our grid. But this is not important, because we expect our immediate attention
will be in the area around our current input where there should be little to no repetition. This will
allow the algorithm to focus on testing solutions which are relevant to our problem.

The adaptive grid introduces two hyper-parameters: the size of the global and local grids, respectively
Ng and Nl. Using this method, we run the TSP heuristics on a graph with at most min(Ng +Nl, T)
nodes. For the experiments, we create the global grid using a simple Sobol grid [45].

4

E.2 Gaussian Processes

For every GP, we use the RBF Kernel with an output-scale, ✓0:

kRBF (x1, x2) = ✓0 exp

✓
�1

2
(x1 � x2)

T⇥�2(x1 � x2)

◆

where ⇥ = diag(`1, ..., `d) and `i denotes the length-scale of the ith variable. For the prior mean,
we used a constant function with trainable value, µ0. We implemented them all using the package
GPyTorch [11].

E.3 Training the hyper-parameters of the Gaussian Processes

Our method is well suited for physical systems. Hence, we assume that there is good prior knowledge
of the hyper-parameters. In particular, we found it reasonable that each hyper-parameter would
be given a lower and upper bound. Normally, we would simply have a large initialization sample.
However, we believe this goes against the nature of the problem because we want to explore the space
slowly to avoid large input costs. So any type of initialization would be costly.

We simulate this in the following way: we first randomly sample max(T/5, 10d) points from the
d-dimensional input space, and train a GP on these data-points. The hyper-parameters of the GP are
optimized by maximizing the marginal log-likelihood [40] over 500 epochs using Adam [23] with a
learning rate of 0.01. The resulting hyper-parameters will correspond to the ‘educated guess’. We
then set the following bounds:

a) For the length-scale, the lower bound is half the educated guess, and the upper bound double
the ‘educated guess’.

b) For the output-scale, ✓0, the lower bound is half the educated guess, and the upper bound
double the ‘educated guess’.

c) For the initial mean, µ0, the lower bound is the educated guess minus a third of the initial
variance, the upper bound is the educated guess plus a third of the initial variance.

d) The noise parameter we simply set to be greater than 10�5.

We (partially) enforce the constraints by setting a SmoothedBoxPrior on each parameter, with a
variance of 0.001. Finally, under the constraints defined above, we re-estimate the hyper-parameters
every time we obtain 25 new observations.

To make sure all models receive fair initializations, we set the same seed for each run and function
pair.

E.4 SnAKe

We used Simulated Annealing [24] to solve the Travelling Salesman Problem. We implemented it
using the NetworkX package [16]. We initalized the cycle with the ‘greedy’ sub-algorithm and used
all default options.

We generated the Thompson Samples using the method introduced in Wilson et al. [53] which we
implemented ourselves. To optimize the samples we used Adam [23] and PyTorch [36] over 10d
epochs, with a learning rate of 0.01. We used 10d multi-starts for each sample. To create the samples,
we used ` = 1024 Fourier bases.

For `-SnAKe, we define an adaptive deletion constant, ✏t = min(`1,t, ..., `d,t), where `i,t denotes the
length scale of the ith variable at time t (recall we are re-training the hyper-parameters every new 25
observations, so the length scales change with time).

For the adaptive grid, we use Nl = 25 local samples, and a corse global Sobol grid [45] of Ng = 100
points.

E.5 Classical Bayesian Optimization

We used BoTorch [3] to implement all methods in this section. We optimized the acquisition functions
across 150 epochs using Adam [23] with a learning rate of 0.0001 using 7500 random multi-starts.

5

E.5.1 Expected Improvement

Expected Improvement [33] optimizes the acquisition function:

EI(x) = E [max(y � ybest, 0)] , y ⇠ f(x)

where ybest is our best observation so far.

Expected Improvement per Unit Cost [44] optimizes the acquisition function:

EI(x, xt�1) =
EI(x))

C(x, xt�1) + �

We set � = 1 in all experiments to address the fact that not moving incurs zero cost. Note that as
� !1, the method will behave closer to normal Expected Improvement, and as � ! 0 the method
will tend to stay closer and closer to the current input.

Truncated Expected Improvement [41] first maximizes the normal Expected Improvement acquisition
function. It then travels a distance of at most ` towards the proposed point, where ` is the GPs
length-scale. We exclude this method from synchronous SnAr, as it is not suited for general cost
functions.

E.5.2 Upper Confidence Bound

Upper Confidence Bound [46] optimizes the acquisition function:

UCB(x) = µt(x) + �t�t(x)

We set �t = 0.2d log(2t) following Kandasamy et al. [21].

E.5.3 Probability of Improvement

Probability of Improvement [25] optimizes the acquisition function:

PI(x) = P(y � ybest), y ⇠ f(x)

E.5.4 Truncated Expected Improvement

Truncated Expected Improvement was developed by [41] trying to solve the task of using an automated
boat to monitor the water quality of Ypacari Lake in Paraguay. The method seeks to take distance
travelled into account when doing Bayesian Optimization. It does by selecting a point using Expected
Improvement, setting a direct path from our current input to the new point, and then truncating the
path one length-scale away. That is:

pt = argmax
x2X

EI(x | Dt)

xt+1 = xt +
pt � xt

||pt � xt||
min(`, ||pt � xt||)

E.6 Asynchronous Bayesian Optimization

E.6.1 Local Penalization

We use the penalization method as is described in González et al. [14]. For the Lipschitz constant, we
estimate it by calculating the gradient of µt (using auto-differentiation) in a Sobol grid [45] of 50d
points and selecting L to be the maximum gradient in the grid.

UCB with Local Penalization We set �t = 0.2d log(2t) and M = ybest.

EIpu with Local Penalization We set � = 1.

E.6.2 Thompson Sampling

We use the sample procedure as in E.4, except we only optimize a single sample at every iteration.

6

E.7 Description of Benchmark Functions

We chose the benchmark functions to observe the behavior of SnAKe in a variety of scenarios. More
details of all the benchmark functions can be found in Surjanovic and Bingham [47].

E.7.1 Branin2D

The two-dimensional Branin function is given by. The function has three global maximums:

f(x) = a(x2 � bx2
1 + cx1 � r)2 + s(1� t) cos(x1) + s

where we optimize over X = [�5, 10] ⇥ [0, 15]. We set a = �1, = 5.1/(4⇡2), c = 5/⇡, r = 6,
s = �10, and t = 1/(8⇡).

E.7.2 Ackley4D

The four-dimensional Ackley function has a lot of local optimums, with the optima in the center of
the search space. The function is given by:

f(x) = a exp

0

@�b

vuut1

4

4X

i=1

x2
i

1

A+ exp

1

d

4X

i=1

cos(cxi)

!
� a� exp(1)

where we slightly shift the search space and optimize over X = [�1.8, 2.2]4. This is to avoid having
the optimum exactly at a point in the Sobol grid and giving SnAKe an unfair advantage. We set
a = 20, = 0.2, and c = 2⇡.

E.7.3 Michaelwicz2D

The two-dimensional Michalewicz function is characterized by multiple local maxima and a lot of
flat regions. The function is given by:

f(x) =
2X

i=1

sin(xi) sin
2m

✓
ix2

i

⇡

◆

where we set m = 10 and we optimize on the region X = [0,⇡]2.

E.7.4 Hartmann

We select this function to see how the algorithms behave in similar functions as dimension increases.
We do three versions of the Hartmann function, with dimensions d = 3, 4, and 6. The equation is
given by:

f(x) =
4X

i=1

↵i exp

0

@�
dX

j=1

Aij(xj � Pij)

1

A

where ↵ = (1, 1.2, 3, 3.2)T . For d = 3 we use:

A =

0

B@

3 10 30
0.1 10 35
3 10 30
0.1 10 35

1

CA P = 10�4

0

B@

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

1

CA

for d = 4 and d = 6 we use:

A =

0

B@

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

1

CA P = 10�4

0

B@

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

1

CA

They are all evaluated on the unit cube [0, 1]d.

7

E.7.5 Perm10D

We select the 10-dimensional version of the Perm benchmark to test the capabilities of the algorithms
in a very high-dimensional setting (by BO standards). The equation is given by:

f(x) = �10�21
10X

i=1

0

@
10X

j=1

(ji + �)

 ✓
xj

j

◆i

� 1

!1

A
2

where we set � = 10. We evaluate it on X = [�10, 10]d.

E.7.6 SnAr4D

We implement the simulation using Summit [10]. We control temperature between 40 and 120
degrees, concentration from 0.1 to 0.5 moles per liter, and residence time between 0.5 and 2 minutes.
We set the cost parameters for temperature ↵temp = 5,�temp = 1, �temp = 1, for concentration
↵conc = 2,�conc = 0.01, �conc = 1, and for residence time ↵residence = 3, �residence = 0.05 and
�residence = 1. We further optimize over the equivalents of pyrrolidine between 1 and 5 units, but
we assume changing it incurs no input costs.

Since the SnAr benchmark is a multi-objective problem, we optimize a weighted sum of the two
objectives:

SnAr(x) = !1 ⇥ yield� !2 ⇥ e-factor
where we set !1 = 10�4 and !2 = 0.1. We optimize over X = [40, 120]⇥[0.1, 0.5]⇥[0.5, 2]⇥[1, 5].

E.8 Ypacarai Implementation Details

As per [41] we model the Lake using the Shekel function which is given as:

f(x) =
mX

i=1

0

@
2X

j=1

(10xj � Cji)
2 + �i

1

A
�1

For the objective we use m = 2, m = 3, and m = 2. The other parameters are:

C(1) =

✓
2 6.7
9 2

◆
C(2) =

7 6
3.8 9.9
9 0.1

!
C(3) =

✓
4 3
8.5 4

◆

�(1) = (9 9) �(2) = (10 8 8) �(3) = (7 9)

Where C(i) and �(i) represent the parameters of the ith objective. All objectives are optimized across
on a subset of X = [0, 1]2. The subset is defined by creating grid of points mapping a high-resolution
black and white image of Lake Ypacarai onto X . For simplicity, we assume the cost of moving from
one point to another is simply the distance between the points, even though in practice we might need
to take a longer route to avoid land. For Truncated Expected Improvement, we simply project the
truncation into the closest point grid, to avoid sampling points outside of the Lake.

F Full Experiment Results

F.1 Tables of Results

F.1.1 Synchronous Experiments

This section includes the full tables of results of the synthetic synchronous experiments. The results
are shown in Table 3 and 4.

F.1.2 Asynchronous Experiments

In this section we include the full table results of all asynchronous experiments. The results are
shown in Table 5 and 6.

8

Table 3: Comparison of 2-norm cost for different BO benchmark functions. The best three perfor-
mances are shown in bold, and the best one in italics. We can see that SnAKe constantly achieves low
cost, especially for larger budgets. The best cost performance is achieved by 0.0-SnAKe, however,
we do this at the expense of worse regret. The only function for which SnAKe struggles is the very
high dimensional Perm10D.

Method Budget 0.0-SnAKe 0.1-SnAKe 1.0-SnAKe `-SnAKe EI EIpu TrEI UCB PI Random

Branin2D

15 4.5± 1.8 5.4± 1.6 5.8± 1.7 5.7± 1.5 6.7± 1.5 5.3± 1.2 5.1± 1.0 4.4 ± 1.6 1.0 ± 0.9 4.1 ± 0.4
50 5.8 ± 3.0 9.3± 3.1 10± 4 9.8± 3.2 17± 6 7.3 ± 1.7 13.4± 2.3 15± 7 4.0 ± 3.2 7.5± 0.4

100 5.4 ± 2.9 10± 4 10± 4 11± 4 37± 13 9.1 ± 1.7 25± 4 33± 17 12± 7 10.2 ± 0.5
250 7.1 ± 2.3 15.4± 3.4 16± 4 15.3 ± 2.8 112± 32 12.2 ± 2.0 59± 13 (9± 5)⇥ 101 32± 22 16.5± 0.7

Ackley4D

15 14.7 ± 1.2 14.9 ± 1.3 16.0± 1.0 16.4± 0.9 21.1± 0.8 15.4± 2.6 21.4± 0.8 19.5± 2.1 18.5± 3.4 8.0 ± 0.4
50 25 ± 5 28 ± 4 31± 6 30± 5 66± 6 60± 8 69.4± 1.9 60± 9 52± 9 19.5 ± 0.6

100 23 ± 5 27± 6 24 ± 6 23 ± 5 128± 9 123± 10 135.8± 3.2 107± 16 93± 10 32.6± 0.9
250 25 ± 8 32 ± 9 33 ± 8 33± 6 302± 28 311± 17 330± 6 221± 30 210± 10 59.9± 1.1

Michaelwicz2D

15 1.7 ± 1.1 1.9 ± 0.6 1.9± 0.8 2.1± 1.1 11.8± 2.6 0.8 ± 0.4 2.3± 0.4 6.7± 1.6 4.2± 3.3 3.9± 0.4
50 2.1 ± 0.8 3.0± 0.9 2.7 ± 0.8 3.1± 1.1 23± 4 1.58 ± 0.33 7.7± 0.9 24± 7 8± 12 7.5± 0.4

100 2.4 ± 1.2 3.9± 0.8 3.6 ± 1.0 3.7± 1.0 30± 11 2.1 ± 0.5 15.6± 2.0 36± 4 17± 23 10.5± 0.4
250 2.8 ± 1.4 5.8± 1.6 4.7 ± 1.6 5.4± 1.0 (6± 4)⇥ 101 3.1 ± 0.4 40.3± 2.6 107± 22 (6± 5)⇥ 101 16.4± 0.6

Hartmann3D

15 2.5 ± 1.0 3.4± 1.2 4.2± 1.3 3.6± 1.1 6.7± 3.0 2.6 ± 0.8 3.1 ± 0.6 5.9± 2.7 4.4± 3.1 6.24± 0.32
50 4.3 ± 2.1 5.7 ± 2.2 6.9± 3.4 7.0± 3.3 15.1± 3.4 4.9 ± 2.6 5.8± 1.7 14± 4 9± 4 13.7± 0.5

100 4.9 ± 2.6 9± 5 8 ± 4 9± 5 46± 8 7.0 ± 2.8 9.4± 2.8 26± 10 29± 12 21.5± 0.6
250 4.9 ± 2.3 10 ± 4 8.5 ± 3.5 9.8± 3.4 96± 4 13.1± 3.5 20± 4 53± 31 (9± 4)⇥ 101 38.5± 1.3

Hartmann6D

15 6 ± 4 6 ± 4 8± 4 8± 4 18± 4 6.9 ± 3.1 9± 4 17± 4 17± 5 10.5± 0.5
50 11 ± 5 11 ± 4 12± 6 12 ± 4 61± 11 39± 9 32± 14 54± 9 49± 14 29.6± 0.8

100 11 ± 5 13 ± 6 15± 9 12 ± 6 117± 21 94± 19 65± 29 102± 11 91± 28 51.8± 1.0
250 13 ± 6 15 ± 7 15± 8 15 ± 9 (2.7± 0.6)⇥ 102 (2.5± 0.7)⇥ 102 (1.6± 0.7)⇥ 102 224± 24 (2.1± 0.7)⇥ 102 107.6± 1.3

Perm10D

15 22.2± 1.0 22.2± 1.1 22.3± 1.1 22.2± 1.2 23.7± 2.8 6.3 ± 0.5 2.0 ± 0.6 21.6± 2.8 14 ± 4 15.05± 0.27
50 65.7± 2.6 65.7± 2.3 67.6± 2.3 66.0± 2.7 85± 11 29.4 ± 3.5 6.8 ± 2.0 76± 7 48± 14 45.2 ± 0.7

100 118.5± 3.3 118.0± 3.2 129± 9 118± 4 173± 24 67 ± 7 14 ± 4 155± 12 98± 32 82.5 ± 0.9
250 254± 12 254± 11 282± 11 251± 9 (4.3± 0.5)⇥ 102 202 ± 24 35 ± 10 400± 32 (2.6± 0.8)⇥ 102 183.2 ± 1.2

Table 4: Comparison of final log(regret) for different BO benchmark functions. The best three
performances are shown in bold, and the best one in italics. We can see that SnAKe constantly
achieves regret comparable with classical Bayesian Optimization methods. The worst performance
happens when ✏ = 0, this could be explained by the method getting stuck in local optimums.

Method Budget 0.0-SnAKe 0.1-SnAKe 1.0-SnAKe `-SnAKe EI EIpu TrEI UCB PI Random

Branin2D

15 �3.9± 1.7 �3.5± 0.7 �3.7± 1.6 �3.4± 0.9 �4.7 ± 1.5 �4.5 ± 1.4 �4.4± 1.3 �5.0 ± 1.5 �3.2± 1.5 �3.3± 0.8
50 �6.2± 2.5 �8.1± 2.6 �7.9± 2.4 �8.3 ± 2.3 �8.7 ± 1.7 �7.0± 1.9 �6.1± 1.6 �8.5 ± 2.6 �6.2± 2.5 �4.4± 1.2
100 �9.1± 3.2 �11.2 ± 2.2 �11.4 ± 2.7 �10.7± 2.2 �13 ± 5 �7.4± 2.0 �7.0± 2.0 �10.7± 2.5 �10.8± 1.7 �5.1± 1.1
250 �12.3± 1.6 �13.2± 1.3 �13.6 ± 1.4 �13.5 ± 1.4 �15 ± 7 �7.9± 1.7 �8.1± 1.5 �11.9± 2.5 �12± 5 �6.3± 1.2

Ackley4D

15 1.62± 0.25 1.62± 0.25 1.62 ± 0.25 1.67± 0.18 1.71± 0.15 1.69± 0.20 1.73± 0.19 1.71± 0.15 1.59 ± 0.22 1.40 ± 0.11
50 1.64± 0.19 1.64± 0.19 1.64± 0.19 1.65± 0.19 1.59 ± 0.22 1.69± 0.20 1.73± 0.19 1.70± 0.14 1.34 ± 0.21 1.21 ± 0.14

100 1.70± 0.15 1.69± 0.15 1.69± 0.15 1.72± 0.11 1.54 ± 0.27 1.69± 0.20 1.73± 0.19 1.70± 0.14 1.21 ± 0.11 1.06 ± 0.17
250 1.52± 0.22 0.9 ± 0.8 1.2± 0.5 1.0± 0.5 1.4± 0.5 1.69± 0.20 1.73± 0.19 1.5± 0.4 0.85 ± 0.32 0.89 ± 0.20

Michaelwicz2D

15 �4.2± 1.7 �4.8± 1.6 �5.1± 1.8 �4.5± 1.9 �5.4 ± 1.1 �5.8 ± 1.1 �5.4± 1.0 �5.9 ± 1.3 �4.3± 1.6 �4.5± 1.0
50 �6.4± 1.5 �7.3 ± 1.4 �6.8± 1.3 �6.3± 1.4 �6.0± 1.3 �6.4± 1.1 �7.0 ± 1.1 �7.8 ± 1.9 �6.2± 1.7 �5.4± 0.4
100 �7.0± 2.2 �7.2± 1.7 �7.8 ± 1.8 �7.6 ± 1.9 �6.2± 0.8 �6.6± 1.2 �7.5± 1.1 �8.2 ± 2.0 �6.6± 1.9 �6.0± 0.4
250 �6.6± 1.6 �8.1 ± 2.2 �8.5 ± 2.2 �8.0± 2.2 �6.5± 0.7 �6.7± 1.3 �7.7± 1.0 �8.7 ± 2.5 �7.0± 1.4 �6.5± 0.7

Hartmann3D

15 �1.2± 1.5 �2.0± 1.9 �1.9± 1.7 �1.8± 1.6 �2.2 ± 1.6 �2.7 ± 1.5 �3.2 ± 1.5 �2.0± 1.7 �0.6± 1.1 �0.3± 0.6
50 �2.9± 2.6 �4.8± 3.0 �4.8± 2.4 �4.8± 2.3 �7.4 ± 1.6 �5.0± 1.5 �5.1± 1.1 �6.1 ± 2.5 �5.2 ± 2.0 �1.4± 0.8
100 �5.4± 2.9 �8.3 ± 1.5 �7.9± 2.4 �8.2± 2.1 �10.9 ± 1.3 �5.8± 1.5 �5.6± 1.0 �8.1± 3.2 �9.9 ± 2.6 �1.5± 0.5
250 �6± 4 �9.8± 2.7 �9.2± 2.5 �9.4± 2.0 �12.4 ± 2.0 �6.8± 1.8 �6.7± 1.2 �10 ± 4 �12.0 ± 2.1 �2.4± 0.7

Hartmann6D

15 0.6± 0.5 0.6 ± 0.5 0.6± 0.5 0.5 ± 0.6 0.88± 0.33 0.8± 0.5 0.5 ± 0.5 0.77± 0.32 0.8± 0.4 0.7± 0.4
50 0.3± 0.6 0.1 ± 0.7 �0.0 ± 0.8 0.0 ± 0.7 0.6± 0.4 0.3± 0.6 0.1± 0.6 0.4± 0.5 0.5± 0.6 0.49± 0.26

100 �0.2 ± 0.8 �0.3 ± 1.0 �0.1± 0.9 �0.6 ± 0.8 0.2± 0.8 �0.1± 0.9 �0.1± 0.5 0.0± 0.6 0.0± 0.7 0.1± 0.5
250 �0.6± 0.8 �0.7± 1.5 �0.7± 1.0 �0.9 ± 1.0 �0.7± 1.0 �0.5± 1.0 �0.4± 0.6 �0.9 ± 0.8 �0.8 ± 0.9 �0.04± 0.34

Perm10D

15 �2.0± 1.7 �2.0± 1.7 �2.1± 1.7 �2.3± 1.7 �5.4± 1.8 �4.9± 1.0 �4.3± 2.6 �6.6 ± 1.6 �6.1 ± 2.0 �5.7 ± 1.1
50 �3.2± 1.9 �3.2± 1.9 �3.6± 2.0 �3.3± 1.8 �6.0± 2.2 �7.5 ± 1.9 �5.1± 2.5 �7.5 ± 1.7 �7.1± 1.9 �7.5 ± 1.7
100 �3.4± 1.4 �3.4± 1.4 �4.7± 1.7 �3.7± 1.3 �6.4± 2.2 �8.4 ± 1.7 �6.4± 2.0 �8.0± 1.7 �8.5 ± 1.8 �8.2 ± 1.2
250 �5.0± 2.3 �5.0± 2.3 �6.4± 2.3 �4.1± 2.1 �6.8± 2.4 �9.3 ± 1.2 �8.1± 1.0 �8.5± 1.9 �9.6 ± 1.9 �9.5 ± 1.6

F.1.3 SnAr Benchmark

We ran additional experiments on the SnAr benchmark. For the first one (which includes the example
looked at in the main paper) we tested on a budget of T = 100 iterations for different values of tdelay .
The results are included in Tables 7 and 8.

We also carried out synchronous results on the benchmark, for different budgets. The results are
included in Tables 9 and 10.

F.2 Graphs for results of Section 4.1

We include the full graphs of the sequential Bayesian Optimization experiments. Each row represents
a different budget. The left column shows the evolution of regret against the cost used, the middle
column shows the evolution of regret with iterations, and the right column shows the evolution of
the 2-norm cost. The results encompass Figures 11 to 16. The caption in each figure tells us the
benchmark function being evaluated. Each experiment is the mean ± half the standard deviation of
25 different runs.

9

Table 5: Comparison of 2-norm cost for different benchmark functions in the asynchronous set-

ting. The best three performances are shown in bold, and the best one in italics. SnAKe achieves
considerable lower cost with respect to other methods, achieving the top 3 lowest costs all but one
time.

Method Budget Delay 0.0-SnAKe 0.1-SnAKe 1.0-SnAKe `-SnAKe Random TS UCBwLP EIpuLP

Branin2D

100 10 7.0 ± 1.9 10.0 ± 2.2 10.6± 3.2 9.8 ± 2.6 10.4± 0.4 49± 5 27.5± 2.5 22± 5
100 25 7.8 ± 1.6 11.2± 2.7 9.6 ± 2.6 10.6± 2.4 10.2 ± 0.5 52± 6 51± 4 25± 7
250 10 7.6 ± 1.7 14.5 ± 1.9 15.9± 3.3 14.9 ± 2.9 16.6± 0.8 120± 12 37± 5 37± 14
250 25 8.8 ± 2.1 13.4 ± 1.5 14.7± 3.3 13.1 ± 2.7 16.6± 0.6 122± 10 56± 4 48± 14

Ackley4D

100 10 22.2 ± 2.3 23.7± 1.9 22.5 ± 2.0 22.4 ± 2.2 32.5± 0.8 110± 6 96± 8 100± 26
100 25 19.6 ± 2.4 24.0± 2.5 22.9 ± 3.2 23.3 ± 3.5 32.6± 0.9 101± 10 100± 4 59± 4
250 10 27 ± 4 30.1± 2.9 26.3 ± 2.6 26.2 ± 1.5 59.6± 1.1 219± 23 243± 25 (2.5± 0.7)⇥ 102

250 25 28.5 ± 3.3 32± 4 25.4 ± 2.3 25.6 ± 2.3 59.5± 0.9 (2.2± 0.5)⇥ 102 240± 20 175± 5

Michaelwicz2D

100 10 3.4 ± 1.4 5.0± 1.5 4.5 ± 1.0 4.7 ± 1.0 10.5± 0.4 17.8± 2.4 23.0± 2.6 54± 7
100 25 4.2 ± 1.1 6.0± 1.2 5.7 ± 1.3 5.9 ± 1.2 10.5± 0.5 25.8± 2.6 33.5± 2.9 47.4± 3.3
250 10 3.5 ± 1.7 5.9 ± 0.8 5.7 ± 1.3 6.4± 1.6 16.3± 0.9 27.2± 3.4 37± 7 67± 9
250 25 3.7 ± 1.1 6.6 ± 1.1 6.7± 1.2 6.6 ± 1.0 16.4± 0.7 35.3± 2.6 36.0± 2.8 96± 9

Hartmann3D

100 10 7.7 ± 3.4 11± 4 9.7 ± 3.2 10 ± 4 21.7± 0.6 20.6± 3.3 34± 6 28± 4
100 25 9.6 ± 2.9 13 ± 4 12.8 ± 3.2 14± 5 21.3± 0.5 32± 4 55± 5 49± 5
250 10 5.8 ± 2.4 11 ± 4 9.8 ± 3.1 11± 4 38.6± 0.7 27± 4 42± 5 36± 5
250 25 7.6 ± 2.3 12 ± 4 11.2 ± 3.1 12± 4 38.7± 0.9 38± 4 64± 9 57± 5

Hartmann4D

100 10 12 ± 5 18 ± 6 18 ± 5 21± 8 32.6± 0.7 39± 13 56± 9 47± 13
100 25 15 ± 4 20 ± 4 21 ± 5 23± 5 32.5± 0.8 42± 8 71± 9 58± 7
250 10 13 ± 7 22 ± 12 20 ± 10 22± 13 59.3± 1.0 (8± 5)⇥ 101 103± 28 (8± 4)⇥ 101

250 25 17 ± 11 28 ± 14 24 ± 11 31± 15 59.4± 1.1 (9± 4)⇥ 101 113± 20 96± 34

Hartmann6D

100 10 14.9 ± 3.5 17 ± 5 17.9± 3.5 18 ± 4 52.1± 1.2 39± 10 120± 19 124± 11
100 25 20.9 ± 2.7 22.4 ± 2.7 23.9± 3.2 24 ± 4 51.7± 1.0 56± 10 109± 11 114± 9
250 10 18 ± 5 18 ± 5 18 ± 4 20± 7 107.1± 1.6 53± 19 (2.6± 0.6)⇥ 102 (3.1± 0.5)⇥ 102

250 25 21 ± 5 23 ± 6 24± 6 23 ± 5 107.0± 1.8 74± 18 (2.7± 0.5)⇥ 102 306± 30

Table 6: Comparison of log(regret) for different benchmark functions in the asynchronous setting.
The best three performances are shown in bold, and the best one in italics. SnAKe achieves regret
comparable with other Bayesian Optimization methods.

Method Budget Delay 0.0-SnAKe 0.1-SnAKe 1.0-SnAKe `-SnAKe Random TS UCBwLP EIpuLP

Branin2D

100 10 �9.6± 2.4 �9.7± 2.2 �10.3 ± 2.4 �10.1± 2.4 �5.7± 1.8 �11.7 ± 1.1 �12.1 ± 1.5 �7.3± 2.5
100 25 �7.1± 2.9 �8.3 ± 3.1 �7.5± 2.6 �7.1± 2.2 �5.4± 1.0 �11.7 ± 1.6 �8.2 ± 2.1 �5.4± 1.7
250 10 �11.9± 1.9 �12.9± 0.8 �12.8± 1.1 �13.3 ± 1.2 �5.9± 1.1 �13.8 ± 1.0 �14.2 ± 1.6 �9.3± 2.9
250 25 �11.6± 2.0 �11.6± 0.8 �12.1 ± 0.8 �12.1± 1.1 �6.2± 1.1 �15 ± 6 �14.8 ± 1.3 �8.9± 2.7

Ackley4D

100 10 1.0± 0.5 0.9 ± 0.7 0.9 ± 0.7 0.8 ± 0.7 1.05± 0.18 1.46± 0.15 1.08± 0.21 1.4± 0.4
100 25 1.21± 0.19 1.1 ± 0.4 1.15± 0.33 1.20± 0.23 1.03 ± 0.17 1.32± 0.16 1.02 ± 0.23 1.16± 0.17
250 10 �0.4 ± 0.8 �0.4 ± 1.0 0.0± 0.8 �0.2 ± 0.7 0.8± 0.4 0.7± 0.8 0.1± 0.8 1.3± 0.4
250 25 �0.3± 0.5 �0.9 ± 0.5 �0.6 ± 0.5 �0.6 ± 0.5 0.95± 0.13 0.4± 0.9 0.74± 0.29 1.02± 0.18

Michaelwicz2D

100 10 �7.1± 1.8 �7.1± 1.4 �6.8± 1.7 �7.4± 1.7 �6.2± 0.7 �7.9 ± 2.5 �9.0 ± 1.1 �7.9 ± 1.5
100 25 �7.1± 2.1 �7.4 ± 2.0 �7.0± 1.4 �6.8± 1.1 �5.86± 0.21 �7.4± 1.6 �11.2 ± 1.5 �9.2 ± 0.9
250 10 �6.8± 1.7 �8.3± 2.1 �8.5± 2.2 �8.4± 2.4 �6.5± 0.8 �8.5 ± 3.2 �9.0 ± 1.1 �9.9 ± 1.7
250 25 �6.8± 1.3 �8.1± 2.0 �8.6 ± 2.5 �8.4± 2.3 �6.6± 0.9 �7.9± 2.4 �11.2 ± 1.5 �10.3 ± 1.4

Hartmann3D

100 10 �5.3± 2.8 �7.8 ± 3.0 �6.8± 3.4 �7.4± 2.7 �1.9± 0.9 �9.5 ± 1.1 �10.0 ± 1.2 �5.5± 1.3
100 25 �4.7± 2.4 �6.0± 2.1 �6.1± 1.8 �6.4 ± 1.7 �1.6± 0.8 �8.6 ± 1.3 �6.3 ± 1.5 �4.3± 1.4
250 10 �5± 4 �7.9± 3.5 �8.0± 3.5 �8.6 ± 3.0 �2.6± 0.8 �10.7 ± 1.1 �12.8 ± 1.2 �6.3± 1.3
250 25 �6± 4 �8.4± 3.0 �8.8± 3.1 �8.9 ± 2.6 �2.4± 0.5 �10.5 ± 0.7 �12.4 ± 0.9 �6.2± 1.1

Hartmann4D

100 10 �3.1± 3.0 �2.9± 2.6 �3.5 ± 2.4 �2.8± 2.1 �1.1± 0.6 �6.5 ± 2.8 �4.5 ± 1.9 �2.6± 1.3
100 25 �2.1 ± 1.8 �2.0± 1.7 �2.0± 1.9 �1.9± 1.3 �1.0± 0.5 �4.2 ± 1.4 �2.1± 1.0 �2.2 ± 1.0
250 10 �6± 4 �6 ± 4 �6± 4 �4.2± 3.3 �1.2± 0.4 �8.7 ± 2.1 �7.2 ± 1.2 �4.6± 2.0
250 25 �6± 4 �6± 4 �6 ± 4 �5.5± 3.2 �1.4± 0.5 �8.7 ± 1.4 �6.5 ± 1.6 �4.2± 1.7

Hartmann6D

100 10 �0.2 ± 0.6 �0.3 ± 0.9 �0.2± 0.7 �0.3 ± 1.0 0.1± 0.4 �0.2± 0.9 �0.0± 0.7 0.3± 0.5
100 25 �0.3 ± 0.7 �0.2 ± 0.5 �0.2± 0.6 �0.2± 0.6 0.07± 0.29 �0.4 ± 0.6 0.0± 0.4 0.0± 0.5
250 10 �0.5± 1.1 �0.7± 1.0 �0.8 ± 0.7 �0.9 ± 1.6 �0.2± 0.5 �0.5± 1.0 �1.1 ± 0.7 �0.2± 0.8
250 25 �0.5± 0.8 �0.8± 0.9 �0.7± 1.1 �1.1 ± 1.5 �0.05± 0.30 �0.9 ± 0.9 �1.0 ± 0.6 �0.2± 0.5

Table 7: Comparison of cost on SnAr benchmark (asynchronous) for T = 100 and different values of
tdelay . The best three performances are shown in bold, and the best one in italics. SnAKe consistently
achieves lower cost than BO methods. EIpuLP achieves lower cost for small delays, suggesting
over-exploration in the early stages, and under-exploration once observations arrive.

delay 0.0-SnAKe 0.1-SnAKe 1.0-SnAKe `-SnAKe Random TS UCBwLP EIpuLP

5 (5.0 ± 1.1)⇥ 102 (5.7± 0.9)⇥ 102 (5.5 ± 0.8)⇥ 102 (6.2± 0.6)⇥ 102 596± 26 (1.12± 0.05)⇥ 103 (9.2± 0.6)⇥ 102 (1.6 ± 0.5)⇥ 102

10 (4.5 ± 0.8)⇥ 102 (5.3 ± 0.7)⇥ 102 (5.3± 0.7)⇥ 102 (5.8± 0.8)⇥ 102 600± 20 (1.11± 0.06)⇥ 103 (8.9± 0.8)⇥ 102 (1.9 ± 0.4)⇥ 102

25 (4.0 ± 0.7)⇥ 102 (4.8± 0.6)⇥ 102 (4.5 ± 0.8)⇥ 102 (5.1± 0.6)⇥ 102 603± 25 (1.09± 0.06)⇥ 103 (9.3± 0.9)⇥ 102 307 ± 31
50 (4.0 ± 0.5)⇥ 102 (4.5 ± 0.4)⇥ 102 (4.2 ± 0.6)⇥ 102 (4.6± 0.5)⇥ 102 606± 24 (1.12± 0.05)⇥ 103 (1.07± 0.06)⇥ 103 568± 27

10

Table 8: Comparison of regret on SnAr benchmark (asynchronous) for T = 100 and different
values of tdelay. The best three performances are shown in bold, and the best one in italics. SnAKe
consistently achieves regret comparable with BO methods. EIpuLP performs well for small delays,
but poorly as the delay is increased.

delay 0.0-SnAKe 0.1-SnAKe 1.0-SnAKe `-SnAKe Random TS UCBwLP EIpuLP
5 �4.5 ± 1.1 �4.5± 1.2 �4.3± 1.5 �3.5± 1.1 �0.93± 0.25 �4.6 ± 1.4 �4.9 ± 1.4 �4.1± 0.8
10 �3.5± 1.2 �3.9± 1.5 �3.7± 1.1 �4.0± 1.4 �1.1± 0.4 �4.3 ± 1.3 �4.0 ± 1.2 �4.2 ± 0.8
25 �3.8 ± 1.0 �3.7 ± 1.4 �3.3± 0.9 �3.6± 1.3 �0.9± 0.4 �4.2 ± 1.3 �2.9± 0.6 �3.1± 1.1
50 �3.2± 1.2 �3.7 ± 1.3 �3.1± 0.8 �3.5 ± 0.9 �1.1± 0.5 �4.3 ± 1.2 �3.2± 0.7 �2.3± 1.0

Table 9: Comparison of cost for SnAr benchmark (synchronous) for different budgets. The best three
performances are shown in bold, and the best one in italics. SnAKe’s performance is poor for small
budgets, but improves considerably for the later ones. EIpu achieves the lowest cost in every instance,
however Table 10 shows this is due to under-exploration.

Budget 0.0-SnAKe 0.1-SnAKe 1.0-SnAKe `-SnAKe EI EIpu UCB PI Random
10 98± 13 101± 16 104± 12 103± 11 89 ± 11 15 ± 8 103± 10 38 ± 12 91± 7
25 219± 35 230± 25 247± 21 250± 21 230± 23 46 ± 24 289± 19 108 ± 24 202 ± 10
50 (3.7 ± 0.7)⇥ 102 (4.0± 0.5)⇥ 102 (4.3± 0.6)⇥ 102 (4.1± 0.7)⇥ 102 503± 31 (1.2 ± 0.4)⇥ 102 (5.5± 0.4)⇥ 102 (3.9± 0.4)⇥ 102 360 ± 16

100 (6.0 ± 1.8)⇥ 102 (6.9± 1.3)⇥ 102 (7.0± 1.5)⇥ 102 (7.2± 1.3)⇥ 102 (1.12± 0.04)⇥ 103 (3.0 ± 0.9)⇥ 102 (1.11± 0.06)⇥ 103 (1.00± 0.05)⇥ 103 605 ± 26

F.3 Graphs for results of Section 4.1

We include the full graphs of the asynchronous Bayesian Optimization experiments. Each row
represents a different budget. The left column shows the evolution of regret against the cost used,
the middle column shows the evolution of regret with iterations, and the right columns show the
evolution of the 2-norm cost. The results encompass Figures 17 to 28. The caption in each figure
tells us the benchmark function being evaluated, and the time-delay for getting observations back.
Each experiment is the mean ± half the standard deviation of 10 different runs.

F.4 Graphs for results of SnAr Benchmark (section 4.2)

Figure 29 includes the whole set of results of the SnAr benchmark in the asynchronous setting. Figure
30 includes the results for the synchronous setting. Each experiment is the mean ± half the standard
deviation of 10 different runs.

Table 10: Comparison of log(regret) for SnAr benchmark (synchronous) for different budgets. The
best three performances are shown in bold, and the best one in italics. SnAKe achieves regret
comparable with Bayesian Optimization methods. EIpu achieves the worst non-random performance
in every instance.

Budget 0.0-SnAKe 0.1-SnAKe 1.0-SnAKe `-SnAKe EI EIpu UCB PI Random
10 �1.9± 0.9 �2.0± 0.9 �2.2 ± 1.1 �1.6± 0.8 �2.2 ± 1.0 �1.0± 0.8 �2.0 ± 1.0 �1.0± 1.0 �0.29± 0.26
25 �3.4 ± 0.8 �3.3± 0.7 �3.3± 1.1 �2.9± 0.8 �3.6 ± 0.7 �2.9± 0.9 �3.0± 0.8 �3.8 ± 1.3 �0.51± 0.27
50 �4.5± 1.1 �4.5 ± 1.0 �4.1± 1.2 �4.3± 1.0 �4.9 ± 0.8 �3.7± 1.0 �4.2± 0.9 �4.9 ± 0.7 �0.9± 0.5

100 �5.3± 1.3 �5.8± 1.1 �5.9 ± 1.2 �5.6± 1.0 �6.0 ± 0.8 �4.9± 1.0 �6.0 ± 0.5 �5.8± 0.7 �1.0± 0.4

11

(a) T = 15

(b) T = 50

(c) T = 100

(d) T = 250

Figure 11: Branin2D. Each row represents a different budget. The left column shows the evolution of
regret against the cost used. The middle column shows the evolution of regret with iterations, and the
right columns show the evolution of the 2-norm cost. As we increase the budget, SnAKe outperforms
two BO methods in regret, and outperforms all methods in cost. ✏ = 0 gives the smallest cost of all at
the expense of some regret.

12

(a) T = 15

(b) T = 50

(c) T = 100

(d) T = 250

Figure 12: Ackley4D. Each row represents a different budget. The left column shows the evolution of
regret against the cost used. The middle column shows the evolution of regret with iterations, and the
right columns show the evolution of the 2-norm cost. SnAKe performs badly for smaller budgets, this
may be because of the Thompson Sampling (see Figure 20, TS performs very badly in asynchronous
Ackely). For the largest budget SnAKe recovers and performs comparably with PI in terms of regret,
but achieves low cost.

13

(a) T = 15

(b) T = 50

(c) T = 100

(d) T = 250

Figure 13: Michaelwicz2D. Each row represents a different budget. The left column shows the
evolution of regret against the cost used. The middle column shows the evolution of regret with
iterations, and the right columns show the evolution of the 2-norm cost. SnAKe has regret comparable
with other methods for all budgets (UCB outperforms the rest for larger ones). SnAKe achieves
significantly less cost at all budgets, this may be due to SnAKe exploring the many local optimums
carefully. The first column shows that SnAKe achieves by far the best regret for low cost. In this
example, SnAKe and EIpu have similar performance.

14

(a) T = 15

(b) T = 50

(c) T = 100

(d) T = 250

Figure 14: Hartmann3D. Each row represents a different budget. The left column shows the evolution
of regret against the cost used. The middle column shows the evolution of regret with iterations, and
the right columns show the evolution of the 2-norm cost. Again, SnAKe achieves the best regret
at low cost for all budgets. ✏ = 0 struggles in this benchmark, showcasing the impact that Point
Deletion can have. EIpu and TrEI achieve higher cost and worse regret than SnAKe.

15

(a) T = 15

(b) T = 50

(c) T = 100

(d) T = 250

Figure 15: Hartmann6D. Each row represents a different budget. The left column shows the evolution
of regret against the cost used. The middle column shows the evolution of regret with iterations, and
the right columns show the evolution of the 2-norm cost. A high-dimensional example where SnAKe
performs exceedingly well, giving the best regret at low costs for all budgets except T = 15. The
final cost is considerably lower for SnAKe than any other method.

16

(a) T = 15

(b) T = 50

(c) T = 100

(d) T = 250

Figure 16: Perm10D. Each row represents a different budget. The left column shows the evolution of
regret against the cost used. The middle column shows the evolution of regret with iterations, and the
right columns show the evolution of the 2-norm cost. SnAKe struggles in this benchmark, however,
EI also struggles. As an interesting observation, if we did not update the model, we would achieve a
much better performance (as it would be equivalent to Random). We observe this behavior in the
asynchronous case, where having a time-delay helps the method perform better (see asynchronous
Ackley, Figure 20). EIpu and TrEI perform well in this example, we conjecture this is because they
are doing far more localized searches while SnAKe is trying to cover all the space available (which is
very difficult in higher dimensions).

17

(a) T = 100

(b) T = 250

Figure 17: Branin2D (Asynchronous), tdelay = 10. Each row represents a different budget. The left
column shows the evolution of regret against the cost used. The middle column shows the evolution of
regret with iterations, and the right columns show the evolution of the 2-norm cost. SnAKe achieves
significantly better regret than all other methods at low costs. The final regret of other BO methods
is slightly better, but this comes at the expense of much larger cost. EIpuLP performs poorly, as it
seems Local Penalization is over-powering the cost term.

(a) T = 100

(b) T = 250

Figure 18: Branin2D (Asynchronous), tdelay = 25. Each row represents a different budget. The left
column shows the evolution of regret against the cost used. The middle column shows the evolution
of regret with iterations, and the right columns show the evolution of the 2-norm cost. The results are
similar to the shorter delay seen in Figure 17.

18

(a) T = 100

(b) T = 250

Figure 19: Ackley4D (Asynchronous), tdelay = 10. Each row represents a different budget. The left
column shows the evolution of regret against the cost used. The middle column shows the evolution
of regret with iterations, and the right columns show the evolution of the 2-norm cost. For the larger
budget, SnAKe outperforms all other methods in both regret and cost. Interestingly, the performance
of SnAKe improves when adding delay (see Figure 12 for synchronous results). EIpuLP performs
poorly, as it seems Local Penalization is over-powering the cost term.

(a) T = 100

(b) T = 250

Figure 20: Ackley4D (Asynchronous), tdelay = 25. Each row represents a different budget. The left
column shows the evolution of regret against the cost used. The middle column shows the evolution
of regret with iterations, and the right columns show the evolution of the 2-norm cost. Results are
similar to the case when tdelay = 10, see Figure 19.

19

(a) T = 100

(b) T = 250

Figure 21: Michaelwicz2D (Asynchronous), tdelay = 10. Each row represents a different budget.
The left column shows the evolution of regret against the cost used. The middle column shows the
evolution of regret with iterations, and the right columns show the evolution of the 2-norm cost.
Surprisingly, EIpuLP achieves the best regret, but at considerable cost - suggesting local penalization
is over-powering any cost-awareness. For low cost, SnAKe achieves much better regret.

(a) T = 100

(b) T = 250

Figure 22: Michaelwicz2D (Asynchronous), tdelay = 25. Each row represents a different budget.
The left column shows the evolution of regret against the cost used. The middle column shows the
evolution of regret with iterations, and the right columns show the evolution of the 2-norm cost.
Similar results to shorter delay, see Figure 21.

20

(a) T = 100

(b) T = 250

Figure 23: Hartmann3D (Asynchronous), tdelay = 10. Each row represents a different budget.
The left column shows the evolution of regret against the cost used. The middle column shows
the evolution of regret with iterations, and the right columns show the evolution of the 2-norm
cost. SnAKe achieves the best regret for low cost, with Thompson Sampling also giving a good
performance. For the full optimization, UCBwLP achieves the best regret, at the expense of four times
the cost of SnAKe. EIpuLP performs poorly, again, it seems Local Penalization is over-powering the
cost term.

(a) T = 100

(b) T = 250

Figure 24: Hartmann3D (Asynchronous), tdelay = 25. Each row represents a different budget. The
left column shows the evolution of regret against the cost used. The middle column shows the
evolution of regret with iterations, and the right columns show the evolution of the 2-norm cost.
Similar results to the case with smaller delay, see Figure 23.

21

(a) T = 100

(b) T = 250

Figure 25: Hartmann4D (Asynchronous), tdelay = 10. Each row represents a different budget. The
left column shows the evolution of regret against the cost used. The middle column shows the
evolution of regret with iterations, and the right columns show the evolution of the 2-norm cost.
Similar results to other Hartmann benchmarks, see Figure 23.

(a) T = 100

(b) T = 250

Figure 26: Hartmann4D (Asynchronous), tdelay = 25. Each row represents a different budget. The
left column shows the evolution of regret against the cost used. The middle column shows the
evolution of regret with iterations, and the right columns show the evolution of the 2-norm cost.
Similar results to other Hartmann benchmarks, see Figure 23.

22

(a) T = 100

(b) T = 250

Figure 27: Hartmann6D (Asynchronous), tdelay = 10. Each row represents a different budget. The
left column shows the evolution of regret against the cost used. The middle column shows the
evolution of regret with iterations, and the right columns show the evolution of the 2-norm cost.
Similar results to other Hartmann benchmarks, see Figure 23.

(a) T = 100

(b) T = 250

Figure 28: Hartmann6D (Asynchronous), tdelay = 25. Each row represents a different budget. The
left column shows the evolution of regret against the cost used. The middle column shows the
evolution of regret with iterations, and the right columns show the evolution of the 2-norm cost.
Similar results to other Hartmann benchmarks, see Figure 23.

23

(a) tdelay = 5

(b) tdelay = 10

(c) tdelay = 25

(d) tdelay = 50

Figure 29: SnAr benchmark (Asynchronous) with T = 100. Each row represents a different tdelay.
The left column shows the evolution of regret against the cost used. The middle column shows the
evolution of regret with iterations, and the right columns show the evolution of the cost as defined in
Section 4.2. SnAKe achieves the better regret than classical BO algorithms at low cost for all budgets.
EIpuLP performs well for small delays, but poorly for larger delays.

24

(a) T = 10

(b) T = 25

(c) T = 50

(d) T = 100

Figure 30: SnAr benchmark (synchronous, tdelay = 1). Each row shows a different budget. The left
column shows the evolution of regret against the cost used. The middle column shows the evolution
of regret with iterations, and the right columns show the evolution of the cost as defined in Section
4.2. SnAKe is the only method achieving low regret and low cost especially for larger budgets. EIpu
generally achieves low cost but poor regret.

25

	Introduction
	Related Work
	Methods
	Problem Set-up
	General Approach
	Creating a Batch Through Thompson Sampling
	Creating a Path via the Travelling Salesman Problem
	Naively Updating the Optimization Path
	Escape Analysis
	Escaping with -Point Deletion
	SnAKe
	Computational Considerations

	Experimental Results
	Synthetic Functions
	Reaction Control on SnAr Benchmark
	Finding Contamination Sources in Ypacarai Lake

	Conclusion and Discussion
	Motivating Example
	General Approach
	Ypacarai Lake Experiment
	Empirical Analysis of Escape Probability
	Areas with stationary points
	Areas without stationary points
	Resampling vs Point Deletion

	Implementation Details
	Computational Considerations (Extended)
	Gaussian Processes
	Training the hyper-parameters of the Gaussian Processes
	SnAKe
	Classical Bayesian Optimization
	Expected Improvement
	Upper Confidence Bound
	Probability of Improvement
	Truncated Expected Improvement

	Asynchronous Bayesian Optimization
	Local Penalization
	Thompson Sampling

	Description of Benchmark Functions
	Branin2D
	Ackley4D
	Michaelwicz2D
	Hartmann
	Perm10D
	SnAr4D

	Ypacarai Implementation Details

	Full Experiment Results
	Tables of Results
	Synchronous Experiments
	Asynchronous Experiments
	SnAr Benchmark

	Graphs for results of Section 4.1
	Graphs for results of Section 4.1
	Graphs for results of SnAr Benchmark (section 4.2)

