
Supplementary material369

PDE-Refiner: Achieving Accurate Long Rollouts with370

Neural PDE Solvers371

Table of Contents

A Broader Impact 16372

B Reproducibility Statement 16373

C PDE-Refiner - Pseudocode 17374

D Experimental details 19375

D.1 Kuramoto-Sivashinsky 1D dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19376

D.2 Parameter-dependent KS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23377

D.3 Kolmogorov 2D Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24378

E Supplementary Experimental Results 27379

E.1 Fourier Neural Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27380

E.2 Step Size Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28381

E.3 History Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29382

E.4 Uncertainty Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30383

E.5 Frequency Analysis for 2D Kolmogorov Flow . . . . . . . . . . . . . . . . . . . . . . 31384

E.6 Minimum noise variance in PDE-Refiner . . . . . . . . . . . . . . . . . . . . . . . . . 32385

E.7 Stability of Very Long Rollouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33386

15



A Broader Impact387

Neural PDE solvers hold significant potential for offering computationally cheaper approaches to388

modeling a wide range of natural phenomena than classical solvers. As a result, PDE surrogates389

could potentially contribute to advancements in various research fields, particularly within the natural390

sciences, such as fluid dynamics and weather modeling. Further, reducing the compute needed for391

simulations may reduce the carbon footprint of research institutes and industries that rely on such392

models. Our proposed method, PDE-Refiner, can thereby help in improving the accuracy of these393

neural solvers, particularly for long-horizon predictions, making their application more viable.394

However, it is crucial to note that reliance on simulations necessitates rigorous cross-checks and395

continuous monitoring. This is particularly true for neural surrogates, which may have been trained396

on simulations themselves and could introduce additional errors when applied to data outside of its397

original training distribution. Hence, it is crucial for the underlying assumptions and limitations of398

these surrogates to be well-understood in applications.399

B Reproducibility Statement400

To ensure reproducibility, we report the used model architectures, hyperparameters, and dataset401

properties in detail in Section 4 and Appendix D. We additionally include pseudocode for our proposed402

method, PDE-Refiner, in Appendix C. All experiments on the KS datasets have been repeated for403

five seeds, and three seeds have been used for the Kolmogorov Flow dataset. Plots and tables with404

quantitative results show the standard deviation across these seeds.405

As existing software assets, we base our implementation on the PDE-Arena [21], which implements406

a Python-based training framework for neural PDE solvers in PyTorch [60] and PyTorch Lightning407

[14]. For the diffusion models, we use the library diffusers [63]. We use Matplotlib [33] for plotting408

and NumPy [85] for data handling. For data generation, we use scipy [81] in the public code of409

Brandstetter et al. [8] for the KS equation, and JAX [6] in the public code of Kochkov et al. [42], Sun410

et al. [75] for the 2D Kolmogorov Flow dataset. The usage of these assets is further described in411

Appendix D. Since our code is proprietary, we include pseudocode in Appendix C, and will release412

the full code alongside the datasets in this paper upon publication.413

In terms of computational resources, all experiments have been performed on NVIDIA V100 GPUs414

with 16GB memory. For the experiments on the KS equation, each model was trained on a single415

NVIDIA V100 for 1 to 2 days. For the 2D Kolmogorov Flow dataset, we parallelized the models416

across 4 GPUs, with a training time of 2 days. The speed comparison for the 2D Kolmogorov Flow417

were performed on an NVIDIA A100 GPU with 80GB memory. Overall, the experiments in this paper418

required roughly 250 GPU days, with additional 400 GPU days for development, hyperparameter419

search, and the supplementary results in Appendix E.420

16



C PDE-Refiner - Pseudocode421

In this section, we provide pseudocode to implement PDE-Refiner in Python with common deep422

learning frameworks like PyTorch [60] and JAX [6]. The hyperparameters to PDE-Refiner are423

the number of refinement steps K, called num_steps in the pseudocode, and the minimum noise424

standard deviation �min, called min_noise_std. Further, the neural operator NO can be an arbitrary425

network architecture, such as a U-Net as in our experiments, and is represented by MyNetwork /426

self.neural_operator in the code.427

The dynamics of PDE-Refiner can be implemented via three short functions. The train_step428

function takes as input a training example of solution u(t) (named u_t) and the previous solution429

u(t � �t) (named u_prev). We uniformly sample the refinement step we want to train, and use the430

classical MSE objective if k = 0. Otherwise, we train the model to denoise u(t). The loss can431

be used to calculate gradients and update the parameters with common optimizers. The operation432

randn_like samples Gaussian noise of the same shape as u_t. Further, for batch-wise inputs,433

we sample k for each batch element independently. For inference, we implement the function434

predict_next_solution, which iterates through the refinement process of PDE-Refiner. Lastly,435

to generate a trajectory from an initial condition u_initial, the function rollout autoregressively436

predicts the next solutions. This gives us the following pseudocode:437

1 class PDERefiner:
2 def __init__(self, num_steps, min_noise_std):
3 self.num_steps = num_steps
4 self.min_noise_std = min_noise_std
5 self.neural_operator = MyNetwork(...)
6

7 def train_step(self, u_t, u_prev):
8 k = randint(0, self.num_steps + 1)
9 if k == 0:

10 pred = self.neural_operator(zeros_like(u_t), u_prev, k)
11 target = u_t
12 else:
13 noise_std = self.min_noise_std ** (k / self.num_steps)
14 noise = randn_like(u_t)
15 u_t_noised = u_t + noise * noise_std
16 pred = self.neural_operator(u_t_noised, u_prev, k)
17 target = noise
18 loss = mse(pred, target)
19 return loss
20

21 def predict_next_solution(self, u_prev):
22 u_hat_t = self.neural_operator(zeros_like(u_prev), u_prev, 0)
23 for k in range(1, self.num_steps + 1):
24 noise_std = self.min_noise_std ** (k / self.num_steps)
25 noise = randn_like(u_t)
26 u_hat_t_noised = u_hat_t + noise * noise_std
27 pred = self.neural_operator(u_hat_t_noised, u_prev, k)
28 u_hat_t = u_hat_t_noised - pred * noise_std
29 return u_hat_t
30

31 def rollout(self, u_initial, timesteps):
32 trajectory = [u_initial]
33 for t in range(timesteps):
34 u_hat_t = self.predict_next_solution(trajectory[-1])
35 trajectory.append(u_hat_t)
36 return trajectory

As discussed in Section 3.1, PDE-Refiner can be alternatively implemented as a diffusion model.
To demonstrate this implementation, we use the Python library diffusers [63] (version 0.15) in the
pseudocode below. We create a DDPM scheduler where we set the number of diffusion steps to the
number of refinement steps and the prediction type to v_prediction [67]. Further, for simplicity,

17



we set the betas to the noise variances of PDE-Refiner. We note that in diffusion models and in
diffusers, the noise variance �2

k at diffusion step k is calculated as:

�2
k = 1 � ↵̄k = 1 �

KY

=k

(1 � �) = 1 �
KY

=k

(1 � �2/K
min )

Since we generally use few diffusion steps such that the noise variance falls quickly, i.e. �2k/K
min �438

�2(k+1)/K
min , the product in above’s equation is dominated by the last term 1 � �2k/K

min . Thus, the noise439

variances in diffusion are �2
k ⇡ �2k/K

min . Further, for k = 0 and k = K, the two variances are always440

the same since the product is 0 or a single element, respectively. If needed, one could correct for the441

product terms in the intermediate variances. However, as we show in Appendix E.6, PDE-Refiner is442

robust to small changes in the noise variance and no performance difference was notable. With this in443

mind, PDE-Refiner can be implemented as follows:444

1 from diffusers.schedulers import DDPMScheduler
2

3 class PDERefinerDiffusion:
4 def __init__(self, num_steps, min_noise_std):
5 betas = [min_noise_std ** (k / num_steps)
6 for k in reversed(range(num_steps + 1))]
7 self.scheduler = DDPMScheduler(num_train_timesteps=num_steps,
8 trained_betas=betas,
9 prediction_type='v_prediction')

10 self.num_steps = num_steps
11 self.neural_operator = MyNetwork(...)
12

13 def train_step(self, u_t, u_prev):
14 k = randint(0, self.num_steps + 1)
15 noise_factor = self.scheduler.alphas_cumprod[k]
16 signal_factor = 1 - noise_factor
17 noise = randn_like(u_t)
18 u_t_noised = self.scheduler.add_noise(u_t, noise, k)
19 pred = self.neural_operator(u_t_noised, u_prev, k)
20 target = (noise_factor ** 0.5) * noise - (signal_factor ** 0.5) * u_t
21 loss = mse(pred, target)
22 return loss
23

24 def predict_next_solution(self, u_prev):
25 u_hat_t_noised = randn_like(u_prev)
26 for k in range(self.num_steps + 1):
27 pred = self.neural_operator(u_hat_t_noised, u_prev, k)
28 u_hat_t_noised = self.scheduler.step(pred, k, u_hat_t_noised)
29 u_hat_t = u_hat_t_noised
30 return u_hat_t
31

32 def rollout(self, u_initial, timesteps):
33 trajectory = [u_initial]
34 for t in range(timesteps):
35 u_hat_t = self.predict_next_solution(trajectory[-1])
36 trajectory.append(u_hat_t)
37 return trajectory

18



Training examples

0.0 14.5 29.1

Time (in seconds)

58.6

44.0

29.3

14.7

0.0

S
p
at

ia
l
d
im

en
si

on

0.0 14.7 29.3

Time (in seconds)

62.3

46.7

31.1

15.6

0.0

S
p
at

ia
l
d
im

en
si

on

0.0 13.7 27.3

Time (in seconds)

60.5

45.4

30.2

15.1

0.0

S
p
at

ia
l
d
im

en
si

on

0.0 14.0 28.1

Time (in seconds)

57.5

43.1

28.7

14.4

0.0

S
p
at

ia
l
d
im

en
si

on

0.0 12.7 25.3

Time (in seconds)

67.9

50.9

33.9

17.0

0.0

S
p
at

ia
l
d
im

en
si

on

�2

0

2

�2

0

2

�2

0

2

�2

0

2

�2

0

2

Test examples

0.0 60.2 120.4

Time (in seconds)

65.7

49.3

32.8

16.4

0.0

S
p
at

ia
l
d
im

en
si

on

0.0 62.0 124.0

Time (in seconds)

65.5

49.2

32.8

16.4

0.0

S
p
at

ia
l
d
im

en
si

on

0.0 61.0 121.9

Time (in seconds)

69.0

51.7

34.5

17.2

0.0

S
p
at

ia
l
d
im

en
si

on

�2

0

2

�2

0

2

�2

0

2

Figure 7: Dataset examples of the Kuramoto-Sivashinsky dataset. The training trajectories are
generated with 140 time steps, while the test trajectories consist of 640 time steps. The spatial
dimension is uniformly sampled from [0.9·64, 1.1·64], and the time step in seconds from [0.18, 0.22].

0 25 50 75 100 125
Wavenumber

10�12

10�9

10�6

10�3

100

A
ve

ra
ge

am
p
li
tu

d
e

Float32 Precision

0 25 50 75 100 125
Wavenumber

10�12

10�9

10�6

10�3

100

A
ve

ra
ge

am
p
li
tu

d
e

Float64 Precision

Frequency spectrum of Kuramoto-Sivashinsky trajectories

1Figure 8: Frequency spectrum of the Kuramoto-Sivashinsky dataset under different precisions.
Casting the input data to float32 precision removes the high frequency information due to adding
noise with higher amplitude. Neural surrogates trained on float64 did not improve over float32,
showing that it does not affect models in practice.

D Experimental details445

In this section, we provide a detailed description of the data generation, model architecture, and hyper-446

parameters used in our three datasets: Kuramoto-Sivashinsky (KS) equation, parameter-dependent KS447

equation, and the 2D Kolmogorov flow. Additionally, we provide an overview of all results with cor-448

responding error bars in numerical table form. Lastly, we show example trajectories for each dataset.449

D.1 Kuramoto-Sivashinsky 1D dataset450

Data generation. We follow the data generation setup of Brandstetter et al. [8], which uses the451

method of lines with the spatial derivatives computed using the pseudo-spectral method. For each452

trajectory in our dataset, the first 360 solution steps are truncated and considered as a warmup for the453

solver. For further details on the data generation setup, we refer to Brandstetter et al. [8].454

Our dataset can be reproduced with the public code3 of Brandstetter et al. [8]. To obtain the training455

data, the data generation command in the repository needs to be adjusted by setting the number of456

training samples to 2048, and 0 for both validation and testing. For validation and testing, we increase457

the rollout time by adding the arguments --nt=1000 --nt_effective=640 --end_time=200,458

and setting the number of samples to 128 each. We provide training and test examples in Figure 7.459

3https://github.com/brandstetter-johannes/LPSDA#produce-datasets-for-kuramoto-
shivashinsky-ks-equation

19

https://github.com/brandstetter-johannes/LPSDA#produce-datasets-for-kuramoto-shivashinsky-ks-equation
https://github.com/brandstetter-johannes/LPSDA#produce-datasets-for-kuramoto-shivashinsky-ks-equation


Table 2: Detailed list of layers in the deployed modern U-Net. The parameter channels next to a layer
represents the number of feature channels of the layer’s output. The U-Net uses the four different
channel sizes c1, c2, c3, c4, which are hyperparameters. The skip connection from earlier layers in
a residual block is implemented by concatenating the features before the first GroupNorm. For the
specifics of the residual blocks, see Figure 9.

Index Layer
Encoder

1 Conv(kernel size=3, channels=c1, stride=1)
2 ResidualBlock(channels=c1)
3 ResidualBlock(channels=c1)
4 Conv(kernel size=3, channels=c1, stride=2)
5 ResidualBlock(channels=c2)
6 ResidualBlock(channels=c2)
7 Conv(kernel size=3, channels=c2, stride=2)
8 ResidualBlock(channels=c3)
9 ResidualBlock(channels=c3)

10 Conv(kernel size=3, channels=c3, stride=2)
11 ResidualBlock(channels=c4)
12 ResidualBlock(channels=c4)

Middle block
13 ResidualBlock(channels=c4)
14 ResidualBlock(channels=c4)

Decoder
15 ResidualBlock(channels=c4, skip connection from Layer 12)
16 ResidualBlock(channels=c4, skip connection from Layer 11)
17 ResidualBlock(channels=c3, skip connection from Layer 10)
18 TransposeConvolution(kernel size=4, channels=c3, stride=2)
19 ResidualBlock(channels=c3, skip connection from Layer 9)
20 ResidualBlock(channels=c3, skip connection from Layer 8)
21 ResidualBlock(channels=c2, skip connection from Layer 7)
22 TransposeConvolution(kernel size=4, channels=c3, stride=2)
19 ResidualBlock(channels=c2, skip connection from Layer 6)
20 ResidualBlock(channels=c2, skip connection from Layer 5)
21 ResidualBlock(channels=c1, skip connection from Layer 4)
22 TransposeConvolution(kernel size=4, channels=c3, stride=2)
23 ResidualBlock(channels=c1, skip connection from Layer 3)
24 ResidualBlock(channels=c1, skip connection from Layer 2)
25 ResidualBlock(channels=c1, skip connection from Layer 1)
26 GroupNorm(channels=c1, groups=8)
27 GELU activation
28 Convolution(kernel size=3, channels=1, stride=1)

The data is generated with float64 precision, and afterward converted to float32 precision for460

storing and training of the neural surrogates. Since we convert the precision in spatial domain, it461

causes minor artifacts in the frequency spectrum as seen in Figure 8. Specifically, frequencies with462

wavenumber higher than 60 cannot be adequately represented. Quantizing the solution values in463

spatial domain introduce high-frequency noise which is greater than the original amplitudes. Training464

the neural surrogates with float64 precision did not show any performance improvement, besides465

being significantly more computationally expensive.466

Model architecture. For all models in Section 4.1, we use the modern U-Net architecture from467

Gupta et al. [21], which we detail in Table 2. The U-Net consists of an encoder and decoder, which468

are implemented via several pre-activation ResNet blocks [24, 25] with skip connections between469

encoder and decoder blocks. The ResNet block is visualized in Figure 9 and consists of Group470

Normalization [86], GELU activations [26], and convolutions with kernel size 3. The conditioning471

parameters �t and �x are embedded into feature vector space via sinusoidal embeddings, as for472

20



Fe
at

ur
e

m
ap

x
`

G
ro

up
N

or
m

G
EL

U

C
on

vo
lu

tio
n

G
ro

up
N

or
m

Sc
al

e-
an

d-
Sh

ift

G
EL

U

C
on

vo
lu

tio
n

L

Fe
at

ur
e

m
ap

x
`+

1

Conditioning features

Figure 9: ResNet block of the modern U-Net [21]. Each block consists of two convolutions with
GroupNorm and GELU activations. The conditioning features, which are �t, �x for the KS dataset
and additionally ⌫ for the parameter-dependent KS dataset, influence the features via a scale-and-
shift layer. Residual blocks with different input and output channels use a convolution with kernel
size 1 on the residual connection.

Table 3: Hyperparameter overview for the experiments on the KS equation. Hyerparameters have
been optimized for the baseline MSE-trained model on the validation dataset, which generally worked
well across all models.

Hyperparameter Value
Input Resolution 256
Number of Epochs 400
Batch size 128
Optimizer AdamW [50]
Learning rate CosineScheduler(1e-4 ! 1e-6)
Weight Decay 1e-5
Time step 0.8s / 4�t
Output factor 0.3
Network Modern U-Net [21]
Hidden size c1 = 64, c2 = 128, c3 = 256, c4 = 1024
Padding circular
EMA Decay 0.995

example used in Transformers [80]. We combine the feature vectors via linear layers and integrate473

them in the U-Net via AdaGN [59, 62] layers, which predicts a scale and shift parameter for each474

channel applied after the second Group Normalization in each residual block. We represent it as a475

’scale-and-shift’ layer in Figure 9. We also experimented with adding attention layers in the residual476

blocks, which, however, did not improve performance noticeably. The implementation of the U-Net477

architecture can be found in the public code of Gupta et al. [21].4478

Hyperparameters. We detail the used hyperparameters for all models in Table 3. We train the models479

for 400 epochs on a batch size of 128 with an AdamW optimizer [50]. One epoch corresponds to480

iterating through all training sequences and picking 100 random initial conditions each. The learning481

rate is initialized with 1e-4, and follows a cosine annealing strategy to end with a final learning rate of482

1e-6. We did not find learning rate warmup to be needed for our models. For regularization, we use a483

weight decay of 1e-5. As mentioned in Section 4.1, we train the neural operators to predict 4 time484

steps ahead via predicting the residual �u = u(t) � u(t � 4�t). For better output coverage of the485

neural network, we normalize the residual to a standard deviation of about 1 by dividing it with 0.3.486

4https://github.com/microsoft/pdearena/blob/main/pdearena/modules/conditioned/
twod_unet.py

21

https://github.com/microsoft/pdearena/blob/main/pdearena/modules/conditioned/twod_unet.py
https://github.com/microsoft/pdearena/blob/main/pdearena/modules/conditioned/twod_unet.py


0 20 40 60 80 100 120
Rollout Time Step in seconds

10�8

10�6

10�4

10�2

100

M
S
E

L
os

s
to

G
ro

u
n
d

T
ru

th

KS Rollout Loss

Baseline

Pushforward

Di�usion

PDE-Refiner (ours)

Figure 10: Visualizing the average MSE error over rollouts on the test set for four methods: the
baseline MSE-trained model (blue), the pushforward trick (green), the diffusion model with standard
cosine scheduling (orange), and PDE-Refiner with 8 refinement steps. The markers indicate the time
when the method’s average rollout correlation falls below 0.8. The y-axis shows the logarithmic scale
of the MSE error. While all models have a similar loss for the first 20 seconds, PDE-Refiner has a
much smaller increase of loss afterwards.

Thus, the neural operators predict the next time step via û(t) = u(t � 4�t) + 0.3 · NO(u(t � 4�t)).487

We provide an ablation study on the step size in Appendix E.2. For the modern U-Net, we set the488

hidden sizes to 64, 128, 256, and 1024 on the different levels, following Gupta et al. [21]. This gives489

the model a parameter count of about 55 million. Crucially, all convolutions use circular padding in490

the U-Net to account for the periodic domain. Finally, we found that using an exponential moving491

average (EMA) [40] of the model parameters during validation and testing, as commonly used in492

diffusion models [29, 37] and generative adversarial networks [15, 87], improves performance and493

stabilizes the validation performance progress over training iterations across all models. We set the494

decay rate of the moving average to 0.995, although it did not appear to be a sensitive hyperparameter.495

Next, we discuss extra hyperparameters for each method in Figure 3 individually. The history 2 model496

includes earlier time steps by concatenating u(t� 8�t) with u(t� 4�t) over the channel dimension.497

We implement the model with 4⇥ parameters by multiplying the hidden size by 2, i.e. use 128, 256,498

512, and 2048. This increases the weight matrices by a factor of 4. For the pushforward trick, we499

follow the public implementation of Brandstetter et al. [9]5 and increase the probability of replacing500

the ground truth with a prediction over the first 10 epochs. Additionally, we found it beneficial to501

use the EMA model weights for creating the predictions, and rolled out the model up to 3 steps. We502

implemented the Markov Neural Operator following the public code6 of Li et al. [49]. We performed503

a hyperparameter search over � 2 {0.2, 0.5, 0.8},↵ 2 {0.001, 0.01, 0.1}, k 2 {0, 1}, for which we504

found � = 0.5,↵ = 0.01, k = 0 to work best. The error correction during rollout is implemented505

by performing an FFT on each prediction, setting the amplitude and phase for wavenumber 0 and506

above 60 to zero, and mapping back to spatial domain via an inverse FFT. For the error prediction, in507

which one neural operator tries to predict the error of the second operator, we scale the error back to508

an average standard deviation of 1 to allow for a better output scale of the second U-Net. The DDPM509

Diffusion model is implemented using the diffusers library [63]. We use a DDPM scheduler with510

squaredcos_cap_v2 scheduling, a beta range of 1e-4 to 1e-1, and 1000 train time steps. During511

inference, we set the number of sampling steps to 16 (equally spaced between 0 and 1000) which we512

found to obtain best results while being more efficient than 1000 steps. For our schedule, we set the513

betas the same way as shown in the pseudocode of Appendix C. Lastly, we implement PDE-Refiner514

using the diffusers library [63] as shown in Appendix C. We choose the minimum noise variance515

�2
min = 2e-7 based on a hyperparameter search on the validation, and provide an ablation study on it516

in Appendix E.6.517

Results. We provide an overview of the results in Figure 3 as table in Table 4. Besides the high-518

correction time with thresholds 0.8 and 0.9, we also report the one-step MSE error between the519

5https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers/
6https://github.com/neuraloperator/markov_neural_operator/

22

https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers/
https://github.com/neuraloperator/markov_neural_operator/


Table 4: Results of Figure 3 in table form. All standard deviations are reported over 5 seeds excluding
Ensemble, which used all 5 baseline model seeds and has thus no standard deviation. Further, we
include the average one-step MSE error of each method on the test set. Notably, lower one-step MSE
does not necessarily imply longer stable rollouts (e.g. History 2 versus baseline).

Method Corr. > 0.8 time Corr. > 0.9 time One-step MSE
MSE Training

Baseline 75.4 ± 1.1 66.5 ± 0.8 2.70e-08 ± 8.52e-09
History 2 61.7 ± 1.1 54.3 ± 1.8 1.50e-08 ± 1.67e-09
4⇥ parameters 79.7 ± 0.7 71.7 ± 0.7 1.02e-08 ± 4.91e-10
Ensemble 79.7 ± 0.0 72.5 ± 0.0 5.56e-09 ± 0.00e+00

Alternative Losses
Pushforward [9] 75.4 ± 1.1 67.3 ± 1.7 2.76e-08 ± 5.68e-09
Sobolev norm k = 0 [49] 71.4 ± 2.9 62.2 ± 3.9 1.33e-07 ± 8.70e-08
Sobolev norm k = 1 [49] 66.9 ± 1.8 59.3 ± 1.5 1.04e-07 ± 3.28e-08
Sobolev norm k = 2 [49] 8.7 ± 0.9 7.3 ± 0.5 7.84e-04 ± 9.30e-05
Markov Neural Operator [49] 66.6 ± 1.0 58.5 ± 2.1 2.66e-07 ± 1.08e-07
Error correction [56] 74.8 ± 1.1 66.2 ± 0.9 1.46e-08 ± 1.99e-09
Error Prediction 75.7 ± 0.5 67.3 ± 0.6 2.96e-08 ± 2.36e-10

Diffusion Ablations
Diffusion - Standard Scheduler [29] 75.2 ± 1.0 66.9 ± 0.7 3.06e-08 ± 5.24e-10
Diffusion - Our Scheduler 88.9 ± 1.0 79.7 ± 1.1 2.85e-09 ± 1.65e-10

PDE-Refiner
PDE-Refiner - 1 step (ours) 89.8 ± 0.4 80.6 ± 0.2 3.14e-09 ± 2.85e-10
PDE-Refiner - 2 steps (ours) 94.2 ± 0.8 84.2 ± 0.4 5.24e-09 ± 1.54e-10
PDE-Refiner - 3 steps (ours) 97.5 ± 0.5 87.0 ± 0.9 5.80e-09 ± 1.65e-09
PDE-Refiner - 4 steps (ours) 98.3 ± 0.8 87.8 ± 1.6 5.95e-09 ± 1.95e-09
PDE-Refiner - 8 steps (ours) 98.3 ± 0.1 89.0 ± 0.4 6.16e-09 ± 1.48e-09
PDE-Refiner - 3 steps mean (ours) 98.5 ± 0.8 88.6 ± 1.1 1.28e-09 ± 6.27e-11

prediction û(t) and the ground truth solution u(t). A general observation is that the one-step MSE520

is not a strong indication of the rollout performance. For example, the MSE loss of the history 2521

model is twice as low as the baseline’s loss, but performs significantly worse in rollout. Similarly,522

the Ensemble has a lower one-step error than PDE-Refiner with more than 3 refinement steps, but is523

almost 20 seconds behind in rollout.524

As an additional metric, we visualize in Figure 10 the mean-squared error loss between predictions525

and ground truth during rollout. In other words, we replace the correlation we usually measure during526

rollout with the MSE. While PDE-Refiner starts out with similar losses as the baselines for the first 20527

seconds, it has a significantly smaller increase in loss afterward. This matches our frequency analysis,528

where only in later time steps, the non-dominant, high frequencies start to impact the main dynamics.529

Since PDE-Refiner can model these frequencies in contrast to the baselines, it maintains a smaller530

error accumulation.531

Speed comparison. We provide a speed comparison of an MSE-trained baseline with PDE-Refiner532

on the KS equation. We time the models on generating the test trajectories (batch size 128, rollout533

length 640�t) on an NVIDIA A100 GPU with a 24 core AMD EPYC CPU. We compile the models534

in PyTorch 2.0 [60], and exclude compilation and data loading time from the runtime. The MSE535

model requires 2.04 seconds (±0.01), while PDE-Refiner with 3 refinement steps takes 8.67 seconds536

(±0.01). In contrast, the classical solver used for data generation requires on average 47.21 seconds537

per trajectory, showing the significant speed-up of the neural surrogates. However, it should be noted538

that the solver is implemented on CPU and there may exist faster solvers for the 1D Kuramoto-539

Sivashinsky equation.540

D.2 Parameter-dependent KS dataset541

Data generation. We follow the same data generation as in Appendix D.1. To integrate the viscosity542

⌫, we multiply the fourth derivative estimate uxxxx by ⌫. For each training and test trajectory, we543

uniformly sample ⌫ between 0.5 and 1.5. We show the effect of different viscosity terms in Figure 11.544

23



Training trajectories

0.0 13.2 26.3

Time (in seconds)

60.1

45.1

30.1

15.0

0.0

S
p
at

ia
l
d
im

en
si

on

⌫=0.55

0.0 13.9 27.9

Time (in seconds)

70.1

52.6

35.0

17.5

0.0

S
p
at

ia
l
d
im

en
si

on

⌫=0.84

0.0 13.1 26.2

Time (in seconds)

62.0

46.5

31.0

15.5

0.0

S
p
at

ia
l
d
im

en
si

on

⌫=1.08

0.0 12.9 25.8

Time (in seconds)

69.9

52.4

34.9

17.5

0.0

S
p
at

ia
l
d
im

en
si

on

⌫=1.20

0.0 14.1 28.2

Time (in seconds)

57.4

43.1

28.7

14.4

0.0

S
p
at

ia
l
d
im

en
si

on

⌫=1.44

�4

�2

0

2

4

�2

0

2

�2

0

2

�2

0

2

�2

�1

0

1

2

Test trajectories

0.0 125.3 250.7

Time (in seconds)

64.0

48.0

32.0

16.0

0.0S
p
at

ia
l
d
im

en
si

on

⌫=0.73

0.0 116.2 232.4

Time (in seconds)

68.8

51.6

34.4

17.2

0.0S
p
at

ia
l
d
im

en
si

on

⌫=1.16

�2.5

0.0

2.5

�2.5

0.0

2.5

Figure 11: Dataset examples of the parameter-dependent Kuramoto-Sivashinsky dataset. The viscosity
is noted above each trajectory. The training trajectories are 140 time steps, while the test trajectories
are rolled out for 1140 time steps. Lower viscosities generally create more complex, difficult
trajectories.

Table 5: Results of Figure 6 in table form. All standard deviations are reported over 5 seeds.
Method Viscosity Corr. > 0.8 time Corr. > 0.9 time

MSE Training

[0.5, 0.7) 41.8 ± 0.4 35.6 ± 0.6
[0.7, 0.9) 57.7 ± 0.6 50.7 ± 1.3
[0.9, 1.1) 73.3 ± 2.3 66.0 ± 2.5
[1.1, 1.3) 88.0 ± 1.5 76.7 ± 2.2
[1.3, 1.5] 97.0 ± 2.7 85.5 ± 2.2

PDE-Refiner

[0.5, 0.7) 53.1 ± 0.4 46.7 ± 0.4
[0.7, 0.9) 71.4 ± 0.3 64.3 ± 0.6
[0.9, 1.1) 94.5 ± 0.6 84.9 ± 0.6
[1.1, 1.3) 112.2 ± 0.9 98.5 ± 1.5
[1.3, 1.5] 130.2 ± 1.5 116.6 ± 0.7

Model architecture. We use the same modern U-Net as in Appendix D.1. The conditioning features545

consist of �t, �x, and ⌫. For better representation in the sinusoidal embedding, we scale ⌫ to the546

range [0, 100] before embedding it.547

Hyperparameters. We reuse the same hyperparameters of Appendix D.1 except reducing the548

number of epochs to 250. This is since the training dataset is twice as large as the original KS dataset,549

and the models converge after fewer epochs.550

Results. We provide the results of Figure 6 in table form in Table 5. Overall, PDE-Refiner551

outperforms the MSE-trained baseline by 25-35% across viscosities.552

D.3 Kolmogorov 2D Flow553

Data generation. We followed the data generation of Sun et al. [75] as detailed in the publicly554

released code7. For hyperparameter tuning, we additionally generate a validation set of the same size555

as the test data with initial seed 123. Afterward, we remove trajectories where the ground truth solver556

had NaN outputs, and split the trajectories into sub-sequences of 50 frames for efficient training. An557

epoch consists of iterating over all sub-sequences and sampling 5 random initial conditions from558

each. All data are stored in float32 precision.559

Model architecture. We again use the modern U-Net [21] for PDE-Refiner and an MSE-trained560

7https://github.com/Edward-Sun/TSM-PDE/blob/main/data_generation.md

24

https://github.com/Edward-Sun/TSM-PDE/blob/main/data_generation.md


Table 6: Hyperparameter overview for the experiments on the Kolmogorov 2D flow.
Hyperparameter Value
Input Resolution 64⇥64
Number of Epochs 100
Batch size 32
Optimizer AdamW [50]
Learning rate CosineScheduler(1e-4 ! 1e-6)
Weight Decay 1e-5
Time step 0.112s / 16�t
Output factor 0.16
Network Modern U-Net [21]
Hidden size [128, 128, 256, 1024]
Padding circular
EMA Decay 0.995

baseline, where, in comparison to the model for the KS equation, we replace 1D convolutions with561

2D convolutions. Due to the low input resolution, we experienced that the model lacked complexity562

on the highest feature resolution. Thus, we increased the initial hidden size to 128, and use 4 ResNet563

blocks instead of 2 on this level. All other levels remain the same as for the KS equation. This model564

has 157 million parameters.565

The Fourier Neural Operator [48] consists of 8 layers, where each layer consists of a spectral566

convolution with a skip connection of a 1 ⇥ 1 convolution and GELU activation [26]. We performed567

a hyperparameter search over the number of modes and hidden size, for which we found 32 modes568

with hidden size 64 to perform best. This models has 134 million parameters, roughly matching the569

parameter count of a U-Net. Models with larger parameter count, e.g. hidden size 128 with 32 modes,570

did not show any improvements.571

Hyperparameters. We summarize the chosen hyperparameters in Table 6, which were selected572

based on the performance on the validation dataset. We train the models for 100 epochs with a batch573

size of 32. Due to the increased memory usage, we parallelize the model over 4 GPUs with batch574

size 8 each. We predict every 16th time step, which showed similar performance to models with a575

time step of 1, 2, 4, and 8 while being faster to roll out. All models use as objective the residual576

�u = u(t) � u(t � 16�t), which we normalize by dividing with its training standard deviation of577

0.16. Thus, we predict the next solution via û(t) = u(t � 16�t) + 0.16 · NO(...). Each model is578

trained for 3 seeds, and the standard deviation is reported in Table 1.579

Results. We include example trajectories and corresponding predictions by PDE-Refiner in Figure 12.580

PDE-Refiner is able to maintain accurate predictions for more than 11 seconds for many trajectories.581

Speed comparison. All models are run on the same hardware, namely an NVIDIA A100 GPU582

with 80GB memory and an 24 core AMD EPYC CPU. For the hybrid solvers, we use the public583

implementation in JAX [6] by Kochkov et al. [42], Sun et al. [75]. For the U-Nets, we use PyTorch584

2.0 [14]. All models are compiled in their respective frameworks, and we exclude the compilation585

and time to load the data from the runtime. We measure the speed of each model 5 times, and report586

the mean and standard deviation in Section 4.3.587

25



Ground Truth
t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

�10

0

10

�10

0

10

�10

0

10

�10

0

10

�10

0

10

PDE-Refiner
t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

�10

0

10

�10

0

10

�10

0

10

�10

0

10

�10

0

10

Ground Truth
t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

�10

0

10

�10

0

10

�10

0

10

�10

0

10

�10

0

10

PDE-Refiner
t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

�10

0

10

�10

0

10

�10

0

10

�10

0

10

�10

0

10

Ground Truth
t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

�10

0

10

�10

0

10

�10

0

10

�10

0

10

�10

0

10

PDE-Refiner
t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

�10

0

10

�10

0

10

�10

0

10

�10

0

10

�10

0

10

Figure 12: Visualizing the vorticity of three example test trajectories of the 2D Kolmogorov flow, with
corresponding predictions of PDE-Refiner. PDE-Refiner remains stable for more than 10 seconds,
making on minor errors at 10.66 seconds. Moreover, many structures at 14 seconds are still similar to
the ground truth.

588

26



Base
lin

e

Histo
ry

2

4x
par

am
ete

rs

Ense
mble

Push
for

ward

Sob
ole

v k = 0

Sob
ole

v k = 1
MNO

Erro
r Corr

ect
ion

Erro
r Pred

ict
ion

1 ste
p

2 ste
ps

3 ste
ps

4 ste
ps

8 ste
ps

3 ste
ps

- Mean

Cosi
ne

Sch
edu

le

Our
Sch

edu
le

50

60

70

80

90

100

H
ig

h
-c

or
re

la
ti
on

ti
m

e
(i
n

se
co

n
d
s)

High-Correlation Rollout Times of FNOs on the Kuramoto-Sivashinsky equation

MSE Training

Alternative Losses

PDE-Refiner (Ours)

Di�usion Ablations

73.6s

67.3s

73.5s

80.6s

72.3s 70.6s 69.0s

75.9s 73.9s 73.6s

80.9s
83.7s 85.4s 85.3s 85.3s 85.4s

71.9s

80.6s

Figure 13: Experimental results of Fourier Neural Operators on the Kuramoto-Sivashinsky equation.
All methods from Figure 3 are included here. FNOs achieve similar results as the U-Nets for the
baselines. For PDE-Refiner and Diffusion, FNOs still outperforms the baselines, but with a smaller
gain than the U-Nets due to the noise objective.

E Supplementary Experimental Results589

In this section, we provide additional experimental results on the Kuramoto-Sivashinsky equation and590

the 2D Kolmogorov flow. Specifically, we experiment with Fourier Neural Operators as an alternative591

to our deployed U-Nets. We provide ablation studies on the predicted step size, the history information,592

and the minimum noise variance in PDE-Refiner on the KS equation. For the Kolmogorov flow, we593

provide the same frequency analysis as done for the KS equation in the main paper. Finally, we594

investigate the stability of the neural surrogates for very long rollouts of 800 seconds.595

E.1 Fourier Neural Operator596

Fourier Neural Operators (FNOs) [48] are a popular alternative to U-Nets for neural operator architec-597

tures. To show that the general trend of our results in Section 4.1 are architecture-invariant, we repeat598

all experiments of Figure 3 with FNOs. The FNO consists of 8 layers, where each layer consists of599

a spectral convolution with a skip connection of a 1 ⇥ 1 convolution and a GELU activation [26].600

Each spectral convolution uses the first 32 modes, and we provide closer discussion on the impact of601

modes in Figure 14. We use a hidden size of 256, which leads to the model having about 40 million602

parameters, roughly matching the parameter count of the used U-Nets.603

MSE Training. We show the results for all methods in Figure 13. The MSE-trained FNO baseline604

achieves with 73.6s a similar rollout time as the U-Net (75.4s). Again, using more history information605

decreases rollout performance. Giving the model more complexity by increasing the parameter count606

to 160 million did not show any improvement. Still, the ensemble of 5 MSE-trained models obtains a607

7-second gain over the individual models, slightly outperforming the U-Nets for this case.608

Alternative losses. The pushforward trick, the error correction and the error predictions again cannot609

improve over the baseline. While using the Sobolev norm losses decrease performance also for FNOs,610

using the regularizers of the Markov Neural Operator is able to provide small gains. This is in line611

with the experiments of Li et al. [49], in which the MNO was originally proposed for Fourier Neural612

Operators. Still, the gain is limited to 3%.613

PDE-Refiner. With FNOs, PDE-Refiner again outperforms all baselines when using more than 1614

refinement step. The gains again flatten for more than 3 steps. However, in comparisons to the U-Nets615

with up to 98.5s accurate rollout time, the performance increase is significantly smaller. In general,616

we find that FNOs obtain higher training losses for smaller noise values than U-Nets, indicating the617

modeling of high-frequent noise in PDE-Refiner’s refinement objective to be the main issue. U-Nets618

are more flexible in that regard, since they use spatial convolutions. Still, the results show that PDE-619

Refiner is applicable to a multitude of neural operator architectures.620

Diffusion ablations. Confirming the issue of the noise objective for FNOs, the diffusion models621

with standard cosine scheduling obtain slightly worse results than the baseline. Using our exponential622

noise scheduler again improves performance to the level of the one-step PDE-Refiner.623

27



8 16 32 64 128 32 64
Number of Modes in FNO

40

60

80

100

H
ig

h
-c

or
re

la
ti
on

ti
m

e
(i
n

se
co

n
d
s)

High-Correlation Rollout Times over Number of Fourier Modes

MSE Training PDE-Refiner (Ours)

44.0s

71.4s 73.6s 74.4s 73.5s

85.4s 84.4s

Figure 14: Investigating the impact of the choosing the number of modes in FNOs. Similar to our
analysis on the resolution in the U-Nets (Figure 5), we only see minor improvements of using higher
frequencies above 16 in the MSE training. Removing dominant frequencies above 8 significantly
decreases performance. Similarly, increasing the modes of FNOs in PDE-Refiner has minor impact.

0.2s 0.4s 0.8s 1.6s 3.2s 6.4s 12.8s 0.2s 0.4s 0.8s 1.6s
Predicted Time Step N�t

40

60

80

100

H
ig

h
-c

or
re

la
ti
on

ti
m

e
(i
n

se
co

n
d
s)

High-Correlation Rollout Times over Predicted Step Size

MSE Training PDE-Refiner (Ours)

77.5s 77.2s 75.4s
71.4s

66.1s
61.2s

38.7s

99.2s 99.2s 97.5s 95.6s

Figure 15: Comparing the accurate rollout times over the step size at which the neural operator
predicts. This is a multiple of the time step �t used for data generation (for KS on average 0.2s). For
both the MSE Training and PDE-Refiner, lower step size provides longer stable rollouts, where very
large time steps show a significant loss in accuracy. This motivates the need for autoregressive neural
PDE solvers over direct, long-horizon predictions.

Number of Fourier Modes. A hyperparameter in Fourier Neural Operators is the number of Fourier624

modes that are considered in the spectral convolutions. Any higher frequency is ignored and must625

be modeled via the residual 1 ⇥ 1 convolutions. To investigate the impact of the number of Fourier626

modes, we repeat the baseline experiments of MSE-trained FNOs with 8, 16, 32, 64, and 128 modes627

in Figure 14. To ensure a fair comparison, we adjust the hidden size to maintain equal number of628

parameters across models. In general, we find that the high-correlation time is relatively stable for 32629

to 128 modes. Using 16 modes slightly decreases performance, while limiting the layers to 8 modes630

results in significantly worse rollouts. This is also in line with our input resolution analysis of Figure 5,631

where the MSE-trained baseline does not improve for high resolutions. Similarly, we also apply a 64632

mode FNOs for PDE-Refiner. Again, the performance does not increase for higher number of modes.633

E.2 Step Size Comparison634

A key advantage of Neural PDE solvers is their flexibility to be applied to various step sizes of the635

PDEs. The larger the step size is, the faster the solver will be. At the same time, larger step sizes636

may be harder to predict. To compare the effect of error propagation in an autoregressive solver with637

training a model to predict large time steps, we repeat the baseline experiments of the U-Net neural638

operator on the KS equation with different step sizes. The default step size that was used in Figure 5639

is 4-times the original solver step, being on average 0.8s. For any step size below 2s, we model the640

residual objective �u = u(t) � u(t � �t), which we found to generally work better in this range.641

For any step size above, we directly predict the solution u(t).642

High-correlation time. We plot the results step sizes between 0.2s and 12.8s in Figure 15. We find643

that the smaller the step size, the longer the model remains accurate. The performance also decreases644

28



0 2 4 6 8 10 12 14
Rollout Time Step in seconds

10�9

10�8

10�7

10�6

10�5

10�4

10�3

10�2

M
S
E

L
os

s
to

G
ro

u
n
d

T
ru

th

KS Rollout Loss over Predicted Step Size

1�t = 0.2s

2�t = 0.4s

4�t = 0.8s

8�t = 1.6s

16�t = 3.2s

32�t = 6.4s

64�t = 12.8s

Figure 16: Visualizing the MSE error of MSE-trained models with varying step sizes over the rollout.
The models with a step size of 1�t, 2�t, and 4�t all obtain similar performance. For 8�t, the one-
step MSE loss is already considerably higher than, e.g. rolling out the step size 1�t model 8 times. For
larger time steps, this gap increases further, again highlighting the strengths of autoregressive solvers.

History 1 History 2 History 4 History 1 History 2 History 4
Number of conditioning time steps / history

40

50

60

70

80

90

H
ig

h
-c

or
re

la
ti
on

ti
m

e
(i
n

se
co

n
d
s)

High-Correlation Rollout Times over Input History

Time step 4�t = 0.8s Time step �t = 0.2s

75.4s

61.7s

56.7s

77.5s

52.5s

47.9s

Figure 17: Investigating the impact of using more history / past time steps in the neural operators, i.e.,
û(t) = NO(u(t � �t), u(t � 2�t), ...), for �t = 0.8 and �t = 0.2. Longer histories decrease the
model’s accurate rollout time. This drop in performance is even more significant for smaller time steps.

faster for very large time steps. This is because the models start to overfit on the training data and have645

difficulties learning the actual dynamics of the PDE. Meanwhile, very small time steps do not suffer646

from autoregressive error propagation any more than slightly larger time steps, while generalizing647

well. This highlights again the strength of autoregressive neural PDE solvers. We confirm this trend648

by training PDE-Refiner with different step sizes while using 3 refinement steps. We again find that649

smaller time steps achieve higher performance, and we obtain worse rollout times for larger time steps.650

MSE loss over rollout. To further gain insights of the impact of different step sizes, we plot in651

Figure 16 the MSE loss to the ground truth when rolling out the MSE-trained models over time.652

Models with larger time steps require fewer autoregressive steps to predict long-term into the future,653

preventing any autoregressive error accumulation for the first step. Intuitively, the error increases over654

time for all models, since the errors accumulate over time and cause the model to diverge. The models655

with step sizes 0.2s, 0.4s and 0.8s all achieve very similar losses across the whole time horizon. This656

motivates our choice for 0.8s as default time step, since it provides a 4 times speedup in comparison657

to the 0.2s model. Meanwhile, already a model trained with step size 1.6s performs considerable658

worse in its one-step prediction than a model with step size 0.2s rolled out 8 times. The gap increases659

further the larger the time step becomes. Therefore, directly predicting large time steps in neural PDE660

solvers is not practical and autoregressive solvers provide significant advantages.661

E.3 History Information662

In our experiments on the KS equation, we have observed that using more history information as input663

decreases the rollout performance. Specifically, we have used a neural operator that took as input the664

29



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Rollout Time Step in seconds

10�11

10�10

10�9

10�8

10�7

10�6

10�5

M
S
E

L
os

s
to

G
ro

u
n
d

T
ru

th

KS Rollout Loss over Input History

History 1

History 2

History 4

0 20 40 60 80 100
Rollout Time Step in seconds

10�9

10�7

10�5

10�3

10�1

M
S
E

L
os

s
to

G
ro

u
n
d

T
ru

th

KS Rollout Loss over Input History

History 1

History 2

History 4

Figure 18: Comparing models conditioned on different number of past time steps on their MSE loss
over rollouts. Note the log-scale on the y-axis. The markers indicate the time when the average
correlation of the respective model drops below 0.8. The left plot shows a zoomed-in version of the
first 4 seconds of the whole 100 second rollout on the right. While using more history information
gives an advantage for the first ⇠5 steps, the error propagates significantly faster through the models.
This leads to a significantly higher loss over rollout.

Table 7: Comparing the uncertainty estimate of PDE-Refiner to Input Modulation [5, 68] and Model
Ensemble [44, 68] on the MSE-trained models. The metrics show the correlation between the
estimated and actual accurate rollout time in terms of the R2 coefficient of determination and the
Pearson correlation. PDE-Refiner provides more accurate uncertainty estimates than Input Modulation
while being more efficient than an Model Ensemble.

Method R2 coefficient Pearson correlation

PDE-Refiner 0.857 ± 0.027 0.934 ± 0.014
Input Modulation [5, 68] 0.820 ± 0.081 0.912 ± 0.021
Model Ensemble [44, 68] 0.887 ± 0.012 0.965 ± 0.007

past two time steps, u(t��t) and u(t�2�t). To confirm this trend, we repeat the experiments with a665

longer history of 4 past time steps and for models with a smaller step size of 0.2s in Figure 17. Again,666

we find that the more history information we use as input, the worse the rollouts become. Furthermore,667

the impact becomes larger for small time steps, indicating that the autoregressive error propagation668

becomes a larger issue when using history information. The problem arising is that the difference669

between the inputs u(t � �t) � u(t � 2�t) is highly correlated with the model’s target �u(t), the670

residual of the next time step. The smaller the time step, the larger the correlation. This leads the671

neural operator to focus on modeling the second-order difference �u(t)��u(t�2�t). As observed672

in classical solvers [35], using higher-order differences within an explicit autoregressive scheme is673

known to deteriorate the rollout stability and introduce exponentially increasing errors over time.674

We also confirm this exponential increase of error by plotting the MSE error over rollouts in Figure 18.675

While the history information improves the one-step prediction by a factor of 10, the error of the676

history 2 and 4 models quickly surpasses the error of the history 1 model. After that, the error of the677

models continue to increase quickly, leading to an earlier divergence.678

E.4 Uncertainty Estimation679

We extend our discussion on the uncertainty estimation of Section 4.1 by comparing PDE-Refiner to680

two common baselines for uncertainty estimation of temporal forecasting: Input Modulation [5, 68]681

and Model Ensemble [44, 68]. Input Modulation adds small random Gaussian noise to the initial682

condition u(0), and rolls out the model on several samples. Similar to PDE-Refiner, one can determine683

the uncertainty by measuring the cross-correlation between the rollouts. A Model Ensemble compares684

the predicted trajectories of several independently trained models. For the case here, we use 4 trained685

models. For both baselines, we estimate the uncertainty of MSE-trained models as usually applied.686

We evaluate the R2 coefficient of determination and the Pearson correlation between the estimated687

30



60 80 100 120 140
Cross-correlation time (in seconds)

60

80

100

120

140

H
ig

h
-c

or
re

la
ti
on

ti
m

e
(i
n

se
co

n
d
s)

Linear fit

Trajectories

(a) PDE-Refiner (Ours) (b) Input Modulation (c) Model Ensemble

Figure 19: Qualitative comparison between the uncertainty estimates of PDE-Refiner, Input Modu-
lation, and the Model Ensemble. Both PDE-Refiner and the Model Ensemble achieve an accurate
match between the estimated and ground truth rollout times.

0 25 50 75 100 125
Wavenumber

10�7

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Samples

0 25 50 75 100 125
Wavenumber

10�7

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Di�erences

Std between samples

Di�erence to ground truth

Figure 20: Investigating the spread of samples of PDE-Refiner. The left plot shows the frequency
spectrum of 16 samples (each line represents a different sample), with the right plot showing the
average difference to the ground truth and to the mean of the samples. The deviation of the samples
closely matches the average error, showing that PDE-Refiner adapts its samples to the learned error
over frequencies.

stable rollout times and the ground truth rollout times in Table 7. We additionally show qualitative688

results in Figure 19. PDE-Refiner’s uncertainty estimate outperforms the Input Modulation approach,689

showing that Gaussian noise does not fully capture the uncertainty distribution. While performing690

slightly worse than using a full Model Ensemble, PDE-Refiner has the major advantage that it only691

needs to be trained, which is particularly relevant in large-scale experiments like weather modeling692

where training a model can be very costly.693

To investigate the improvement of PDE-Refiner over Input Modulation, we plot the standard deviation694

over samples in PDE-Refiner in Figure 20. The samples of PDE-Refiner closely differs in the same695

distribution as the actual loss to the ground truth, showing that PDE-Refiner accurately models its696

predictive uncertainty.697

E.5 Frequency Analysis for 2D Kolmogorov Flow698

We repeat the frequency analysis that we have performed on the KS equation in the main paper, e.g.699

Figure 4, on the Kolmogorov dataset here. Note that we apply a 2D Discrete Fourier Transform and700

show the average frequency spectrum. We perform this over the two channels of u(t) independently.701

Figure 21 shows the frequency spectrum for the ground truth data, as well as the predictions of PDE-702

Refiner and the MSE-trained U-Net. In contrast to the KS equation, the spectrum is much flatter,703

having an amplitude of still almost 1 at wavenumber 32. In comparison, the KS equation has a more704

than 10 times as small amplitude for this wavenumber. Further, since the resolution is only 64 ⇥ 64,705

higher modes cannot be modeled, which, as seen on the KS equation, would increase the benefit of706

PDE-Refiner. This leads to both PDE-Refiner and the MSE-trained baseline to model all frequencies707

accurately. The slightly higher loss for higher frequencies on channel 0 is likely due to missing high-708

frequency information, i.e., larger resolution, that would be needed to estimate the frequencies more709

accurately. Still, we find that PDE-Refiner improves upon the MSE-trained model on all frequencies.710

In Figure 22, we additionally plot the predictions of PDE-Refiner at different refinement steps. Similar711

31



0 10 20 30
Wavenumber

10�4

10�3

10�2

10�1

100

101

102

A
m

p
li
tu

d
e

Channel 0

0 10 20 30
Wavenumber

10�4

10�3

10�2

10�1

100

101

102

A
m

p
li
tu

d
e

Channel 1
Ground Truth

PDE-Refiner - Samples

PDE-Refiner - Errors

MSE Training - Samples

MSE Training - Errors

Frequency Spectrum on the Kolmogorov Flow

Figure 21: Frequency spectrum on the Kolmogorov Flow. The two plots show the two channels of
the Kolmogorov flow. Since the data has a much more uniform support over frequencies than the
KS equation, both the MSE-trained model and PDE-Refiner model the ground truth very accurately.
Thus, the Ground Truth (blue), PDE-Refiner’s prediction (orange) and the MSE-trained prediction
(red) overlap in both plots. Plotting the error reveals that PDE-Refiner provides small gains across all
frequencies.

0 10 20 30
Wavenumber

10�4

10�3

10�2

10�1

100

101

102

A
m

p
li
tu

d
e

Channel 0

0 10 20 30
Wavenumber

10�4

10�3

10�2

10�1

100

101

102

A
m

p
li
tu

d
e

Channel 1
Ground Truth

Initial Prediction

Refinement step 1

Refinement step 2

Refinement step 3

MSE Training - Errors

Frequency Spectrum of Intermediate Samples on the Kolmogorov Flow

Figure 22: Frequency spectrum of intermediate samples in the refinement process of PDE-Refiner,
similar to Figure 4 for the KS equation. The refinement process improves the prediction of the
model step-by-step. For the last refinement step, we actually see minor improvements for the lowest
frequencies of channel 0. However, due to flatter frequency spectrum, the high frequencies do not
improve as much as on the KS equation.

to the KS equation, PDE-Refiner improves its prediction step by step. However, it is apparent that no712

clear bias towards the high frequencies occur in the last time step, since the error is rather uniform713

across all frequencies. Finally, the last refinement step only provides minor gains, indicating that714

PDE-Refiner with 2 refinement steps would have likely been sufficient.715

E.6 Minimum noise variance in PDE-Refiner716

Besides the number of refinement step, PDE-Refiner has as a second hyperparameter the minimum717

noise variance �2
min, i.e., the variance of the added noise in the last refinement step. The noise variance718

determines the different amplitude levels at which PDE-Refiner improves the prediction. To show719

how sensitive PDE-Refiner is to different values of �2
min, we repeat the experiments of PDE-Refiner720

on the KS equation while varying �2
min. The results in Figure 23 show that PDE-Refiner is robust to721

small changes of �2
min and there exist a larger band of values where it performs equally well. When722

increasing the variance further, the performance starts to decrease since the noise is too high to model723

the lowest amplitude information. Note that the results on Figure 23 show the performance on the724

test set, while the hyperparameter selection, in which we selected �2
min = 2e-7, was done on the725

validation set.726

In combination with the hyperparameter of the number of refinement steps, to which PDE-Refiner727

showed to also be robust if more than 3 steps is chosen, PDE-Refiner is not very sensitive to the728

newly introduced hyperparameters and values in a larger range can be considered.729

32



1e-7 2e-7 4e-7 1e-6 4e-6 1e-5 4e-5 1e-4
Minimum Noise Variance �2

min

50

60

70

80

90

100

110

120

H
ig

h
-c

or
re

la
ti
on

ti
m

e
(i
n

se
co

n
d
s)

High-Correlation Rollout Times over Minimum Noise Variance

PDE-Refiner (Ours)

98.0s 97.5s 98.0s 98.5s
93.2s

88.9s 88.3s 87.5s

Figure 23: Plotting performance of PDE-Refiner over different values of the minimum noise variance
�2

min. Each PDE-Refiner is robust to small changes of �2
min, showing an equal performance in the

range of
⇥
10�7, 10�6

⇤
. Higher standard deviations start to decrease the performance, confirming our

analysis of later refinement steps focusing on low-amplitude information. For the experiments in
Section 4.1, we have selected �2

min =2e-7 based on the validation dataset.

0 25 50 75 100 125
Wavenumber

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 0.80s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 100.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 400.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 800.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

(a) 1 step (b) 125 steps (c) 500 steps (d) 1000 steps

0 25 50 75 100 125
Wavenumber

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 0.80s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 100.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 400.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10�5

10�3

10�1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 800.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

(e) 1 step (f) 125 steps (g) 500 steps (h) 1000 steps

Figure 24: Evaluating PDE solver stability over very long rollouts (800 seconds, corresponding to
1000 autoregressive prediction steps). (a-d) The frequency spectrum of predictions of an MSE-trained
model and PDE-Refiner. Over time, the MSE baseline’s overestimation of the high frequencies
accumulates. In comparison, PDE-Refiner shows to have an increase of extremely high frequencies,
which is likely caused by the continuous adding of Gaussian noise. (e-h) When we apply the error
correction [56] on our models by setting all frequencies above 60 to zero, PDE-Refiner remains stable
even for 1000 steps and does not diverge from the ground truth frequency spectrum.

E.7 Stability of Very Long Rollouts730

Besides accurate rollouts, another important aspect of neural PDE solvers is their stability. This refers731

to the solvers staying in the solution domain and not generating physically unrealistic results. To732

evaluate whether our solvers remain stable for a long time, we roll out an MSE-trained baseline and733

PDE-Refiner for 1000 autoregressive prediction steps, which corresponds to 800 seconds simulation734

time. We then perform a frequency analysis and plot the spectra in Figure 24. We compare the735

spectra to the ground truth initial condition, to have a reference point of common frequency spectra736

of solutions on the KS equation.737

For the MSE-trained baseline, we find that the high frequencies, that are generally overestimated by738

the model, accumulate over time. Still, the model maintains a frequency spectrum close to the ground739

truth for wavenumbers below 40. PDE-Refiner maintains an accurate frequency spectrum for more740

than 500 steps, but suffers from overestimating the very high frequencies in very long rollouts. This is741

likely due to the iterative adding of Gaussian noise, that accumulates high-frequency errors. Further,742

the U-Net has a limited receptive field such that the model cannot estimate the highest frequencies743

33



properly. With larger architectures, this may be preventable.744

However, a simpler alternative is to correct the predictions for known invariances, as done in McGreivy745

et al. [56]. We use the same setup as for Figure 3 by setting the highest frequencies to zero. This746

stabilizes PDE-Refiner, maintaining a very accurate estimation of the frequency spectrum even at747

800 seconds. The MSE-trained model yet suffers from an overestimation of the high-frequencies.748

In summary, the models we consider here are stable for much longer than they remain accurate to the749

ground truth. Further, with a simple error correction, PDE-Refiner can keep up stable predictions for750

more than 1000 autoregressive rollout steps.751

34



References752

[1] Troy Arcomano, Istvan Szunyogh, Alexander Wikner, Jaideep Pathak, Brian R Hunt, and753

Edward Ott. 2022. A Hybrid Approach to Atmospheric Modeling That Combines Machine754

Learning With a Physics-Based Numerical Model. Journal of Advances in Modeling Earth755

Systems, 14(3):e2021MS002712.756

[2] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. 2019. Learning data-757

driven discretizations for partial differential equations. Proceedings of the National Academy of758

Sciences, 116(31):15344–15349.759

[3] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel760

Zheng, Walter Talbot, and Eric Gu. 2023. TRACT: Denoising Diffusion Models with Transitive761

Closure Time-Distillation. arXiv preprint arXiv:2303.04248.762

[4] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik.763

2019. Prediction of aerodynamic flow fields using convolutional neural networks. Computational764

Mechanics, 64(2):525–545.765

[5] Neill E. Bowler. 2006. Comparison of error breeding, singular vectors, random perturbations766

and ensemble Kalman filter perturbation strategies on a simple model. Tellus A: Dynamic767

Meteorology and Oceanography, 58(5):538–548.768

[6] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal769

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao770

Zhang. JAX: composable transformations of Python+NumPy programs. 2018. Software URL:771

http://github.com/google/jax.772

[7] Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. 2023. Clifford773

Neural Layers for PDE Modeling. In The Eleventh International Conference on Learning774

Representations.775

[8] Johannes Brandstetter, Max Welling, and Daniel E Worrall. 2022. Lie Point Symmetry Data776

Augmentation for Neural PDE Solvers. In Proceedings of the 39th International Conference on777

Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 2241–778

2256. PMLR.779

[9] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. 2022. Message Passing Neural780

PDE Solvers. In International Conference on Learning Representations.781

[10] Steven L Brunton and J Nathan Kutz. 2023. Machine Learning for Partial Differential Equations.782

arXiv preprint arXiv:2303.17078.783

[11] Ashesh Chattopadhyay and Pedram Hassanzadeh. 2023. Long-term instabilities of deep784

learning-based digital twins of the climate system: The cause and a solution. arXiv preprint785

arXiv:2304.07029.786

[12] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on image synthesis.787

Advances in Neural Information Processing Systems, 34:8780–8794.788

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,789

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,790

Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers for791

Image Recognition at Scale. In International Conference on Learning Representations.792

[14] William Falcon and The PyTorch Lightning team. PyTorch Lightning. 2019. Software URL:793

https://github.com/Lightning-AI/lightning.794

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil795

Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Advances796

in Neural Information Processing Systems, volume 27. Curran Associates, Inc.797

[16] Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois,798

and Richard E Turner. 2019. Convolutional conditional neural processes. In International799

Conference on Learning Representations.800

[17] Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. 2019. Learning801

to Optimize Multigrid PDE Solvers. In International Conference on Machine Learning (ICML),802

pages 2415–2423.803

35



[18] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. 2020. Hippo: Recurrent804

memory with optimal polynomial projections. Advances in neural information processing805

systems, 33:1474–1487.806

[19] Albert Gu, Karan Goel, and Christopher Re. 2022. Efficiently Modeling Long Sequences with807

Structured State Spaces. In International Conference on Learning Representations.808

[20] Xiaoxiao Guo, Wei Li, and Francesco Iorio. 2016. Convolutional neural networks for steady809

flow approximation. In Proceedings of the 22nd ACM SIGKDD International Conference on810

Knowledge Discovery and Data Mining, pages 481–490.811

[21] Jayesh K Gupta and Johannes Brandstetter. 2022. Towards Multi-spatiotemporal-scale General-812

ized PDE Modeling. arXiv preprint arXiv:2209.15616.813

[22] Ernst Hairer and Gerhard Wanner. 1996. Solving ordinary differential equations. II, volume 14814

of Springer Series in Computational Mathematics.815

[23] Jiequn Han, Arnulf Jentzen, and Weinan E. 2018. Solving high-dimensional partial differential816

equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–817

8510.818

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for819

image recognition. In Proceedings of the IEEE conference on computer vision and pattern820

recognition, pages 770–778.821

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings in Deep822

Residual Networks. In Computer Vision – ECCV 2016, pages 630–645, Cham. Springer823

International Publishing.824

[26] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus). arXiv preprint825

arXiv:1606.08415.826

[27] Philipp Hennig, Michael A Osborne, and Hans P Kersting. 2022. Probabilistic Numerics:827

Computation as Machine Learning. Cambridge University Press.828

[28] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,829

Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. 2022. Imagen video:830

High definition video generation with diffusion models. arXiv preprint arXiv:2210.02303.831

[29] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic Models.832

In Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran833

Associates, Inc.834

[30] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim835

Salimans. 2022. Cascaded Diffusion Models for High Fidelity Image Generation. J. Mach.836

Learn. Res., 23(47):1–33.837

[31] Emiel Hoogeboom and Tim Salimans. 2023. Blurring Diffusion Models. In The Eleventh838

International Conference on Learning Representations.839

[32] Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. 2019.840

Learning Neural PDE Solvers with Convergence Guarantees. arXiv preprint arXiv:1906.01200.841

[33] J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineer-842

ing, 9(3):90–95. Software URL: https://github.com/matplotlib/matplotlib.843

[34] James M. Hyman and Basil Nicolaenko. 1986. The Kuramoto-Sivashinsky equation: A bridge844

between PDE’S and dynamical systems. Physica D: Nonlinear Phenomena, 18(1):113–126.845

[35] Arieh Iserles. 2009. A first course in the numerical analysis of differential equations. 44.846

Cambridge university press.847

[36] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu848

Yang. 2021. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440.849

[37] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. 2022. Elucidating the Design Space850

of Diffusion-Based Generative Models. In Advances in Neural Information Processing Systems.851

[38] Ryan Keisler. 2022. Forecasting Global Weather with Graph Neural Networks. arXiv preprint852

arXiv:2202.07575.853

36



[39] Ioannis G. Kevrekidis, Basil Nicolaenko, and James C. Scovel. 1990. Back in the Saddle Again:854

A Computer Assisted Study of the Kuramoto–Sivashinsky Equation. SIAM Journal on Applied855

Mathematics, 50(3):760–790.856

[40] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In857

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,858

May 7-9, 2015, Conference Track Proceedings.859

[41] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In 2nd860

International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April861

14-16, 2014, Conference Track Proceedings.862

[42] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan863

Hoyer. 2021. Machine learning–accelerated computational fluid dynamics. Proceedings of the864

National Academy of Sciences, 118(21):e2101784118.865

[43] Yoshiki Kuramoto. 1978. Diffusion-induced chaos in reaction systems. Progress of Theoretical866

Physics Supplement, 64:346–367.867

[44] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple and Scalable868

Predictive Uncertainty Estimation Using Deep Ensembles. In Proceedings of the 31st Interna-869

tional Conference on Neural Information Processing Systems, NIPS’17, page 6405–6416, Red870

Hook, NY, USA. Curran Associates Inc.871

[45] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortu-872

nato, Alexander Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al.873

2022. GraphCast: Learning skillful medium-range global weather forecasting. arXiv preprint874

arXiv:2212.12794.875

[46] Sangyun Lee, Hyungjin Chung, Jaehyeon Kim, and Jong Chul Ye. 2022. Progressive deblurring876

of diffusion models for coarse-to-fine image synthesis. arXiv preprint arXiv:2207.11192.877

[47] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,878

Andrew Stuart, and Anima Anandkumar. 2020. Neural operator: Graph kernel network for879

partial differential equations. arXiv preprint arXiv:2003.03485.880

[48] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-881

tacharya, Andrew Stuart, and Anima Anandkumar. 2021. Fourier Neural Operator for Paramet-882

ric Partial Differential Equations. In International Conference on Learning Representations.883

[49] Zongyi Li, Miguel Liu-Schiaffini, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli,884

Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. 2022. Learning885

Chaotic Dynamics in Dissipative Systems. In Advances in Neural Information Processing886

Systems.887

[50] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In Interna-888

tional Conference on Learning Representations.889

[51] Lu Lu, Pengzhan Jin, and George Em Karniadakis. 2019. DeepONet: Learning nonlinear890

operators for identifying differential equations based on the universal approximation theorem of891

operators. arXiv preprint arXiv:1910.03193.892

[52] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. 2021.893

Learning nonlinear operators via DeepONet based on the universal approximation theorem of894

operators. Nature Machine Intelligence, 3(3):218–229.895

[53] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and896

George Em Karniadakis. 2022. A comprehensive and fair comparison of two neural operators897

(with practical extensions) based on fair data. Computer Methods in Applied Mechanics and898

Engineering, 393:114778.899

[54] Hao Ma, Yuxuan Zhang, Nils Thuerey, Xiangyu Hu, and Oskar J Haidn. 2021. Physics-driven900

learning of the steady Navier-Stokes equations using deep convolutional neural networks. arXiv901

preprint arXiv:2106.09301.902

[55] James M. McDonough. 2007. Lectures in Computational Fluid Dynamics of Incompressible903

Flow: Mathematics, Algorithms and Implementations. 4. Mechanical Engineering Textbook904

Gallery.905

[56] Nick McGreivy and Ammar Hakim. 2023. Invariant preservation in machine learned PDE906

solvers via error correction. arXiv preprint arXiv:2303.16110.907

37



[57] Jonas Mikhaeil, Zahra Monfared, and Daniel Durstewitz. 2022. On the difficulty of learning908

chaotic dynamics with RNNs. In Advances in Neural Information Processing Systems, vol-909

ume 35, pages 11297–11312. Curran Associates, Inc.910

[58] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. 2023.911

ClimaX: A foundation model for weather and climate. arXiv preprint arXiv:2301.10343.912

[59] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising diffusion probabilis-913

tic models. In International Conference on Machine Learning, pages 8162–8171. PMLR.914

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,915

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-916

dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-917

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:918

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neu-919

ral Information Processing Systems, volume 32. Curran Associates, Inc. Software URL:920

https://github.com/pytorch/pytorch.921

[61] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,922

Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram923

Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. 2022. FourCastNet: A Global924

Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators. arXiv925

preprint arXiv:2202.11214.926

[62] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. 2018.927

FiLM: Visual Reasoning with a General Conditioning Layer. In Proceedings of the Thirty-928

Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of929

Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in930

Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press.931

[63] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,932

Mishig Davaadorj, and Thomas Wolf. 2022. Diffusers: State-of-the-art diffusion models.933

Software URL: https://github.com/huggingface/diffusers.934

[64] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed neural935

networks: A deep learning framework for solving forward and inverse problems involving936

nonlinear partial differential equations. Journal of Computational physics, 378:686–707.937

[65] Stephan Rasp and Nils Thuerey. 2021. Data-driven medium-range weather prediction with a938

resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances939

in Modeling Earth Systems, 13(2):e2020MS002405.940

[66] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,941

Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. 2022.942

Photorealistic text-to-image diffusion models with deep language understanding. Advances in943

Neural Information Processing Systems, 35:36479–36494.944

[67] Tim Salimans and Jonathan Ho. 2022. Progressive Distillation for Fast Sampling of Diffusion945

Models. In International Conference on Learning Representations.946

[68] Sebastian Scher and Gabriele Messori. 2021. Ensemble Methods for Neural Network-Based947

Weather Forecasts. Journal of Advances in Modeling Earth Systems, 13(2).948

[69] Jacob H Seidman, Georgios Kissas, George J Pappas, and Paris Perdikaris. 2023. Variational949

Autoencoding Neural Operators. arXiv preprint arXiv:2302.10351.950

[70] G.I. Sivashinsky. 1977. Nonlinear analysis of hydrodynamic instability in laminar flames—I.951

Derivation of basic equations. Acta Astronautica, 4(11):1177–1206.952

[71] Yiorgos S. Smyrlis and Demetrios T. Papageorgiou. 1991. Predicting Chaos for Infinite Dimen-953

sional Dynamical Systems: The Kuramoto-Sivashinsky Equation, A Case Study. Proceedings954

of the National Academy of Sciences of the United States of America, 88(24):11129–11132.955

[72] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. Deep956

unsupervised learning using nonequilibrium thermodynamics. In International Conference on957

Machine Learning, pages 2256–2265. PMLR.958

[73] Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim959

Salimans, Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. 2020. Metnet: A neural960

weather model for precipitation forecasting. arXiv preprint arXiv:2003.12140.961

38



[74] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and962

Ben Poole. 2021. Score-Based Generative Modeling through Stochastic Differential Equations.963

In International Conference on Learning Representations.964

[75] Zhiqing Sun, Yiming Yang, and Shinjae Yoo. 2023. A Neural PDE Solver with Temporal965

Stencil Modeling. arXiv preprint arXiv:2302.08105.966

[76] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani,967

Dirk Pflüger, and Mathias Niepert. 2022. PDEBench: An Extensive Benchmark for Scientific968

Machine Learning. In 36th Conference on Neural Information Processing Systems (NeurIPS969

2022) Track on Datasets and Benchmarks.970

[77] Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um.971

2021. Physics-based Deep Learning. arXiv preprint arXiv:2109.05237.972

[78] Jakub M Tomczak. 2022. Deep generative modeling. Springer.973

[79] Kiwon Um, Robert Brand, Yun (Raymond) Fei, Philipp Holl, and Nils Thuerey. 2020. Solver-974

in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers. In975

Advances in Neural Information Processing Systems, volume 33, pages 6111–6122. Curran976

Associates, Inc.977

[80] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,978

Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural979

Information Processing Systems, volume 30. Curran Associates, Inc.980

[81] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David981

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.982

van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, An-983

drew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,984

Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-985

riksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian986

Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-987

gorithms for Scientific Computing in Python. Nature Methods, 17:261–272. Software URL:988

https://github.com/scipy/scipy.989

[82] Sifan Wang and Paris Perdikaris. 2023. Long-time integration of parametric evolution equations990

with physics-informed deeponets. Journal of Computational Physics, 475:111855.991

[83] Sifan Wang, Hanwen Wang, and Paris Perdikaris. 2021. Learning the solution operator of992

parametric partial differential equations with physics-informed DeepONets. Science advances,993

7(40):eabi8605.994

[84] Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. 2022. Learning Fast995

Samplers for Diffusion Models by Differentiating Through Sample Quality. In International996

Conference on Learning Representations.997

[85] Jonathan A Weyn, Dale R Durran, and Rich Caruana. 2020. Improving data-driven global998

weather prediction using deep convolutional neural networks on a cubed sphere. Journal of999

Advances in Modeling Earth Systems, 12(9):e2020MS002109.1000

[86] Yuxin Wu and Kaiming He. 2018. Group Normalization. In Proceedings of the European1001

Conference on Computer Vision (ECCV).1002

[87] Yasin Yazıcı, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, and Vijay1003

Chandrasekhar. 2019. The Unusual Effectiveness of Averaging in GAN Training. In Interna-1004

tional Conference on Learning Representations.1005

39


	Introduction
	Challenges of Accurate Long Rollouts
	PDE-Refiner
	Formulating PDE-Refiner as a Diffusion Model

	Experiments
	Kuramoto-Sivashinsky 1D equation
	Parameter-dependent KS equation
	Kolmogorov 2D Flow

	Conclusion
	Broader Impact
	Reproducibility Statement
	PDE-Refiner - Pseudocode
	Experimental details
	Kuramoto-Sivashinsky 1D dataset
	Parameter-dependent KS dataset
	Kolmogorov 2D Flow

	Supplementary Experimental Results
	Fourier Neural Operator
	Step Size Comparison
	History Information
	Uncertainty Estimation
	Frequency Analysis for 2D Kolmogorov Flow
	Minimum noise variance in PDE-Refiner
	Stability of Very Long Rollouts


