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Abstract

Spiking Neural Networks (SNNs) have attracted
great attention for their energy-efficient opera-
tions and biologically inspired structures, offering
potential advantages over Artificial Neural Net-
works (ANNs) in terms of energy efficiency and
interpretability. Nonetheless, similar to ANNs,
the robustness of SNNs remains a challenge, es-
pecially when facing adversarial attacks. Ex-
isting techniques, whether adapted from ANNs
or specifically designed for SNNs, exhibit lim-
itations in training SNNs or defending against
strong attacks. In this paper, we propose a novel
approach to enhance the robustness of SNNs
through gradient sparsity regularization. We ob-
serve that SNNs exhibit greater resilience to ran-
dom perturbations compared to adversarial per-
turbations, even at larger scales. Motivated by
this, we aim to narrow the gap between SNNs un-
der adversarial and random perturbations, thereby
improving their overall robustness. To achieve
this, we theoretically prove that this performance
gap is upper bounded by the gradient sparsity of
the probability associated with the true label con-
cerning the input image, laying the groundwork
for a practical strategy to train robust SNNs by
regularizing the gradient sparsity. We validate
the effectiveness of our approach through exten-
sive experiments on both image-based and event-
based datasets. The results demonstrate notable
improvements in the robustness of SNNs. Our
work highlights the importance of gradient spar-
sity in SNNs and its role in enhancing robustness.

1NERCVT, School of Computer Science, Peking University,
China 2National Key Laboratory for Multimedia Information
Processing, Peking University, China 3School of Computer Sci-
ence, Peking University, China 4Institution for Artificial Intelli-
gence, Peking University, China. Correspondence to: Zhaofei Yu
<yuzf12@pku.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Although Artificial Neural Networks (ANNs) have achieved
impressive performance across various tasks (He et al.,
2016; Mishra et al., 2021; Khan et al., 2023), they are of-
ten plagued by complex computations and limited inter-
pretability (Liu et al., 2021; Lipton, 2018). In recent years,
Spiking Neural Networks (SNNs) have garnered significant
attention in the field of artificial intelligence due to their
energy-efficient operations and biologically-inspired archi-
tectures (Maass, 1997; Zenke et al., 2021). In SNNs, neu-
rons simulate changes in membrane potentials and transmit
information through spike trains (Roy et al., 2019). These
characteristics allow for a certain level of biological inter-
pretation while avoiding the extensive and complex matrix
multiplication operations inherent in ANNs. Remarkably,
SNNs have achieved competitive performance with ANNs
on various classification datasets (Sengupta et al., 2019;
Fang et al., 2021a; Deng et al., 2022; Shao et al., 2023).

Similar to ANNs (Tanay & Griffin, 2016; Stutz et al., 2019;
Liu et al., 2022), the issue of robustness poses a significant
challenge for SNNs (Sharmin et al., 2019; 2020; Kundu
et al., 2021). When subjected to imperceptible perturba-
tions added to input images, SNNs can exhibit misclassifica-
tions, which are known as adversarial attacks. Developing
techniques to train adversarially robust SNNs remains an
ongoing problem in the research community. Some success-
ful techniques designed for ANNs have been adapted for
use with SNNs, including adversarial training (Madry et al.,
2018; Ho et al., 2022; Ding et al., 2022) and certified train-
ing (Zhang et al., 2020; 2021; Liang et al., 2022). Addition-
ally, there are SNN-specific methods proposed to improve
robustness, such as temporal penalty configurations (Leon-
tev et al., 2021), and specialized coding schemes (Sharmin
et al., 2020). However, these methods either prove challeng-
ing to train on SNNs (Liang et al., 2022) or exhibit limited
effectiveness against strong attacks (Sharmin et al., 2020).

In this paper, we present a novel approach to enhance the ro-
bustness of SNNs by considering the gradient sparsity with
respect to the input image. We find that SNNs exhibit greater
robustness to random perturbations, even at larger scales,
compared to adversarial perturbations. Building upon this
observation, we propose to minimize the performance gap
between an SNN subjected to adversarial perturbations and
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random perturbations, thereby enhancing its overall robust-
ness. The main contributions of our work are as follows and
the code of this work is accessible at https://github.
com/putshua/gradient_reg_defense.

• We analyze the robustness of SNNs and reveal that
SNNs exhibit robustness against random perturbations
even at significant scales, but display vulnerability to
small-scale adversarial perturbations.

• We provide theoretical proof that the gap between the
robustness of SNNs under these two types of pertur-
bations is upper bounded by the sparsity of gradients
of the probability associated with the true label with
respect to the input image.

• We propose to incorporate gradient sparsity regulariza-
tion into the loss function during training to narrow the
gap, thereby boosting the robustness of SNNs.

• Extensive experiments on the image-based and event-
based datasets validate the effectiveness of our method,
which significantly improves the robustness of SNNs.

2. Related Work
2.1. Learning Algorithms of SNNs

The primary objective of most SNN learning algorithms is
to achieve high-performance SNNs with low latency. Cur-
rently, the most effective and popular learning algorithms
for SNNs are the ANN-SNN conversion (Cao et al., 2015)
and supervised learning (Wu et al., 2018). The ANN-SNN
conversion method aims to obtain SNN weights from pre-
trained ANNs with the same network structure. By utilizing
weight scaling (Li et al., 2021; Hu et al., 2023), threshold
balancing (Diehl et al., 2015; Deng & Gu, 2021), quan-
tization training techniques (Bu et al., 2022), and spike
calibration (Hao et al., 2023b), well-designed ANN-SNN
algorithms can achieve lossless performance compared to
the original ANN (Han et al., 2020; Ho & Chang, 2021).
However, the converted SNNs often require larger timesteps
to achieve high performance, resulting in increased energy
consumption. Moreover, they lose temporal information
and struggle to process neuromorphic datasets. The super-
vised learning approach directly employs the backpropaga-
tion algorithm to train SNNs with fixed timesteps. Wu et
al., (2018; 2019) borrowed the idea from the Back Propaga-
tion Through Time (BPTT) in RNN learning and proposed
the Spatio-Temporal-Back-Propagation (STBP) algorithm.
They approximate the gradient of spiking neurons using
surrogate functions (Neftci et al., 2019). While supervised
training significantly improves the performance of SNNs on
classification tasks (Kim & Panda, 2021; Lee et al., 2020;
Fang et al., 2021b; Zheng et al., 2021; Guo et al., 2022;
Yao et al., 2022; Duan et al., 2022; Mostafa, 2017; Bohte
et al., 2000; Zhang & Li, 2020; Zhang et al., 2022; Xu et al.,

2022b; Zhu et al., 2022; 2023), SNNs still fall behind ANNs
in terms of generalization and flexibility. Challenges such
as gradient explosion and vanishing persist in SNNs.

2.2. Defense Methods of SNNs

Methods for improving the robustness of SNNs can be
broadly categorized into two classes. The first class draws
inspiration from ANNs. A typical representative is adver-
sarial training, which augments the training set with adver-
sarial examples generated by attacks (Madry et al., 2018;
Tramèr et al., 2018; Wong et al., 2020). This approach
has been shown to effectively defend against attacks that
are used in the training phase. Another method is certified
training, which utilizes certified defense methods to train a
network (Wong & Kolter, 2018; Xu et al., 2020). Certified
training has demonstrated promising improvements in the ro-
bustness of ANNs (Zhang et al., 2020), but its application to
SNNs remains challenging (Liang et al., 2022). The second
category consists of SNN-specific techniques designed to en-
hance robustness. On one hand, the choice of encoding the
continuous intensity of an image into 0-1 spikes can impact
the robustness of SNNs. Recent studies have highlighted
the Poisson encoder as a more robust option (Sharmin et al.,
2020; Kim et al., 2022). However, the Poisson encoder gen-
erally yields worse accuracy on clean images than the direct
encoding, and the robustness improvement caused by the
Poisson encoder varies with the number of timesteps used.
On the other hand, researchers have recognized the unique
temporal dimension of SNNs and developed strategies re-
lated to temporal aspects to improve robustness (Nomura
et al., 2022). Hao et al. (2023a) further pointed out the sig-
nificance of utilizing the rate and temporal information com-
prehensively to enhance the reliability of SNNs. Apart from
the studies on static datasets, there are works that attempt to
perform adversarial attacks and defenses on the Dynamic Vi-
sion Sensors (DVS) dataset (Marchisio et al., 2021b). In this
paper, we mainly focus on the direct encoding of input im-
ages. We propose a gradient sparsity regularization strategy
to improve SNNs’ robustness with theoretical guarantees.
Moreover, this strategy can be combined with adversarial
training to further boost the robustness of SNNs.

3. Preliminary
3.1. Neuron Dynamics in SNNs

Similar to previous works (Wu et al., 2018; Rathi & Roy,
2021), we consider the commonly used Leaky Integrate-and-
Fire (LIF) neuron model due to its efficiency and simplicity,
the dynamic of which can be formulated as follows:

ul
i[t] = τul

i[t− 1](1− sli[t− 1]) +
∑
j

wl−1
i,j sl−1

j [t], (1)

sli[t] = H(ul
i[t]− θ). (2)
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Equation (1) describes the membrane potential of the i-
th neuron in layer l, which receives the synaptic current
from the j-th neuron in layer l − 1. Here τ represents the
membrane time constant and t denotes the discrete time
step ranging from 1 to T . The variable ul

i[t] represents the
membrane potential of the i-th neuron in layer l at the time
step t. wi,j denotes the synaptic weight between the two
neurons, and sl−1

j [t] represents the binary output spike of
neuron j in layer l − 1. For simplicity, the resting potential
is assumed to be zero so that the membrane potential will be
reset to zero after firing. Equation (2) defines the neuron fire
function. At each time step t, a spike will be emitted when
the membrane potential ul

i[t] surpasses a specific threshold
θ. The function H(·) denotes the Heaviside step function,
which equals 0 for negative input and 1 for others.

3.2. Adversarial Attacks for SNNs

Preliminary explorations have revealed that SNNs are also
susceptible to adversarial attacks (Sharmin et al., 2020;
Kundu et al., 2021; Liang et al., 2021; Marchisio et al.,
2021a). Well-established techniques such as the Fast Gradi-
ent Sign Method (FGSM) and Projected Gradient Descent
(PGD) can generate strong adversaries that threaten SNNs.

FGSM (Goodfellow et al., 2015) is a straightforward none-
iterative attack method, expressed as follows:

x̂ = x+ ϵ sign(∇xL(f(x), y)), (3)

where x and x̂ represent the original image and the ad-
versarial example respectively, ϵ denotes the perturbation
bound, L refers to the loss function, f(·) represents the
neural network function, and y denotes the label data.

PGD (Madry et al., 2018) is an iterative extension of FGSM,
which can be described as follows:

x̂k = Πϵ{xk−1 + α sign(∇xL(f(xk−1), y))}, (4)

where k is the current iteration step and α is the step size.
The operator Πϵ projects the adversarial examples onto the
space of the ϵ neighborhood in the ℓ∞ norm around x.

4. Methodology
In this section, we first compare the vulnerability of SNNs to
random perturbations versus adversarial perturbations. We
highlight that SNNs exhibit significant robustness against
random perturbations but are more susceptible to adversar-
ial perturbations. Then we quantify the disparity between
adversarial vulnerability and random vulnerability, proving
that it is upper bounded by the gradient sparsity of the prob-
ability related to the true label concerning the input image.
Based on this, we propose a novel approach to enhance the
robustness of SNNs by introducing Sparsity Regularization
(SR) of gradients in the training phase and incorporating
this regularization into the learning rule of SNNs.
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SNN Random Robustness SNN Adversarial Robustness
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Figure 1: Comparison of the random vulnerability and adver-
sarial vulnerability of SNNs on CIFAR-10 and CIFAR-100.

4.1. Compare Random and Adversarial Vulnerability

The objective of adversarial attacks is to deliberately alter
the probability vector f(x) in order to change the classifi-
cation result. Since the classification result is determined
by the magnitude-based ordering of components in f(x),
attackers aim to substantially decrease the value of the com-
ponent corresponding to the true label of x. We suppose x
with label y belonging to the y-th class, so that the value of
fy(x) has a substantial impact on the classification result.
Therefore, the stability of fy(x) becomes crucial for the
robustness of SNNs, particularly in terms of the value of
|fy(x̂)− fy(x)| when subjected to small perturbation on x.

To initiate our analysis, we define the random and adversar-
ial vulnerability of an SNN, denoted as f , at a specific point
x under an ℓp attack of size ϵ.
Definition 4.1. (Random Vulnerability) The random vul-
nerability of f at point x to an ℓp attack of size ϵ is defined
as the expected value of (fy(x+ ϵ · δ)− fy(x))

2, where δ
follows a uniform distribution within the unit ℓp ball, and
y represents the class of x belonging to. Mathematically, it
can be expressed as:

ρrand(f,x, ϵ, ℓp) = E
δ∼U{∥δ∥p⩽1}

(fy(x+ ϵ · δ)− fy(x))
2
.

(5)
Definition 4.2. (Adversarial Vulnerability) The adversarial
vulnerability of f at point x to an ℓp attack of size ϵ is
defined as the supremum of (fy(x+ ϵ · δ)−fy(x))

2, where
δ follows a uniform distribution within the unit ℓp ball, and
y represents the class of x belonging to. Mathematically, it
can be expressed as:

ρadv(f,x, ϵ, ℓp) = sup
δ∼U{∥δ∥p⩽1}

(fy(x+ ϵ · δ)− fy(x))
2
.

(6)

To gain a deeper understanding of the disparity in vulner-
ability between random perturbations and adversarial per-
turbations in SNNs, we conduct a small-scale experiment
with a primary focus on ℓ∞ attacks. The results of the
experiment are depicted in Figure 1. We specifically priori-
tized ℓ∞ attacks over other ℓp attacks due to the widespread
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Figure 2: Illustration of (a) the proposed SR strategy, (b) gradient regularization and (c) adversarial training.

utilization of ℓ∞ constraints in various attack methods. Ad-
versarial examples generated under ℓ∞ attacks tend to be
more destructive compared to those generated under ℓ0 and
ℓ2 attacks (Madry et al., 2018). Therefore, focusing on ℓ∞
attacks allows us to assess the robustness of the SNN against
the most severe random and adversarial perturbations.

In our experiment, we evaluate the performance of a well-
trained SNN f with the VGG-11 architecture. Our primary
objective is to examine the impact of both random and ad-
versarial perturbations on the SNN’s classification results.
For a given image x, we added random perturbations uni-
formly drawn from a hyper-cube {δrand : ∥δrand∥∞ ⩽ ϵ} to
the original image, resulting in the perturbed image x̂rand.
Additionally, we employed a ϵ-sized FGSM attack to gen-
erate an adversarial example x̂adv from x. Subsequently,
we individually input both x̂rand and x̂adv into the network
f to observe any changes in the classification results. We
evaluate the classification accuracy of the perturbed images
on the test set of CIFAR-10 and CIFAR-100 under both ran-
dom and adversarial perturbations, respectively. The results,
as depicted in Figure 1, yield the following key findings:

Observation 1. SNNs exhibit robustness against random
perturbations even when the perturbation scale is signifi-
cant, but display vulnerability to small-scale adversarial
perturbations.

4.2. Quantify the Gap between Random Vulnerability
and Adversarial Vulnerability

Observation 1 indicates that SNNs exhibit notable robust-
ness to random perturbations in comparison to adversarial
perturbations. To enhance the adversarial robustness of
SNNs, a natural approach is to minimize the disparity be-
tween adversarial vulnerability and random vulnerability.

To measure the disparity in vulnerability between the SNN
f under adversarial perturbations and random noise, we
employ the ratio of ρadv(f,x, ϵ, ℓ∞) and ρrand(f,x, ϵ, ℓ∞).
We make the assumption that ρrand(f,x, ϵ, ℓ∞) ̸= 0, indi-
cating that f is not a constant function. This assumption
aligns with the practical reality of SNNs in real-world ap-
plications. Optimizing the ratio of ρadv(f,x, ϵ, ℓ∞) and
ρrand(f,x, ϵ, ℓ∞) directly is a challenging task. However,

we are fortunate to present a mathematical proof that estab-
lishes an upper bound for this ratio based on the sparsity of
∇xfy . Specifically, we have the following theorem.

Theorem 4.3. Suppose f is a differentiable SNN by sur-
rogate gradients, and ϵ is the magnitude of an attack, as-
sumed to be small enough. Given an input image x with
corresponding label y, the ratio of ρadv(f,x, ϵ, ℓ∞) and
ρrand(f,x, ϵ, ℓ∞) is upper bounded by the sparsity of∇xfy:

3 ⩽
ρadv(f,x, ϵ, ℓ∞)

ρrand(f,x, ϵ, ℓ∞)
⩽ 3∥∇xfy(x)∥0. (7)

The proof is provided in Appendix A. This theorem illus-
trates that the disparity between the adversarial vulnerability
and random vulnerability is upper bounded by the sparsity
of∇xfy. It provides valuable insights into the correlation
between gradient sparsity and the disparity in robustness
exhibited by SNNs when subjected to different perturba-
tions with ℓ∞ attacks. According to Theorem 4.3, we can
infer that a sparser gradient contributes to closing the robust-
ness gap between SNN f under worst-case scenarios and its
robustness under random perturbations.

From an intuitive perspective, minimizing the ℓ0 norm of
∇xfy(x) serves to bring x closer to a local minimum point.
In an ideal scenario, this would entail trapping x within
a local minimum, effectively rendering attackers unable
to generate adversarial examples through gradient-based
methods. By introducing the sparsity constraint for each
x in the training set, we encourage learning an SNN f
where input images tend to remain close to extreme points
or trapped in local minimums. This makes it challenging to
perturb fy(x) with small perturbations, thereby enhancing
the robustness of the SNN f .

4.3. Loss Function with Sparsity Regularization

To promote sparsity of the gradients, a straightforward ap-
proach is to incorporate the ∥∇xfy(x)∥0 term into the train-
ing loss, where fy(x) is the probability assigned by f to x
belonging to the true label y.

Consider an SNN f with a final layer denoted as L. The
total number of neurons in layer L is denoted by N , and the
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time-step t ranges from 1 to T . For a given input image x,
the output vector of the Lth layer depends on the collective
outputs across all time-steps:

fL(x) =

(
T∑

t=1

sL1 (t), . . . ,

T∑
t=1

sLN (t)

)T

. (8)

While regularizing ∥∇xf
L
y (x)∥0 is a straightforward way

to keep the stability of fL
y (x), it may be insufficient for

multi-classification tasks. This is because the classification
result is influenced not only by the value of fL

y , but also by
the magnitude of fL

y in comparison to the other components
of fL

y . To account for such relationships while maintaining
computational efficiency, we utilize two spike streams at the
last layer of f to calculate fy(x), as illustrated in Figure 2
(a). This is expressed as:

fy =
e
∑T

t=1 sLy (t)

e
∑T

t=1 sLy (t) + e
∑T

t=1 sLỹ (t)
,

fỹ =
e
∑T

t=1 sLỹ (t)

e
∑T

t=1 sLy (t) + e
∑T

t=1 sLỹ (t)
.

(9)

where ỹ represents the index of the maximum component in
{fL

i (x) : i ̸= y}.

On one hand, the transformation in Equation (9) introduces
only one additional component in fL while preserving the
classification results derived from fL, as expressed by

argmax
i=1,...,N

fL
i (x) = argmax

i=y,ỹ
fi(x). (10)

On the other hand, since fy+fỹ = 1, so if fy is stable, fỹ is
also stable. Thus, it is sufficient to regularize ∥∇xfy(x)∥0
to enhance the adversarial robustness of the SNN f .

Therefore, the training loss can be written as:

L(x, y) = CE(fL(x), y) + λ∥∇xfy(x)∥0, (11)

where CE(·) is the cross-entropy loss, fL(x) is the output
of the last layer, and λ denotes the coefficient parameter
controlling the strength of the sparsity regularization.

Here we give the formulation of∇xfy(x) and the detailed
derivation is provided in Appendix B. Given an input image
x belonging to the class y, ∇xfy(x) can be formulated as:

∇xfy(x) =
∑
i=y,ỹ

 ∂fy
∂fL

i

 T∑
t=1

t∑
t̃=1

∇x[t̃]s
L
i [t]

 . (12)

It is worth noting that the optimization problem involving
the ℓ0 norm is known to be NP-hard (Natarajan, 1995). To
circumvent this challenge, we employ the ℓ1 norm as a
substitute for the ℓ0 norm because the ℓ1 norm serves as a

Algorithm 1 Training Algorithm
Input: Spiking neural network f(x, w) with parameter w
Learning rate η; Step size h of finite differences; Balance
weight λ
Output: Regularize trained parameter w

1: for epoch=0 to n do
2: Sample minibatch {(xi, yi)}i=1,...,m from Dataset
3: for i = 0 to m do
4: fL = f(xi, w)
5: ỹi = argmaxj ̸=y f

L
j

6: fyi = e
fL
yi /(e

fL
yi + e

fL
ỹi )

7: di = sign(∇xfyi)← the difference direction
8: x̂i = xi + hdi

9: L(xi, yi, w)=CE(fL, yi) + λ
h |fyi(x̂i)− fyi(xi)|

10: w ← w − η∇wL(xi, yi, w)
11: end for
12: end for

convex approximation to the ℓ0 norm (Ramirez et al., 2013).
However, the computational burden associated with calcu-
lating the back-propagation of ∥∇xfy(x)∥1 is significant.
Meanwhile, we find that SNNs are not trainable with such
a double backpropagation approach. Therefore, we adopt
a finite difference approximation for this term (Finlay &
Oberman, 2021). In our case, we approximate the gradient
regularization term using the following finite differences:

Proposition 4.4. Let d denote the signed input gradient di-
rection: d = sign(∇xfy(x)), and h be the finite difference
step size. Then, the ℓ1 gradient norm can be approximated
as:

∥∇xfy(x)∥1 ≈
∣∣∣∣fy(x+ h · d)− fy(x)

h

∣∣∣∣ . (13)

The proof is provided in the Appendix C. Finally, the train-
ing loss (Equation (11)) is rewritten as:

L(x, y) = CE(fL(x), y) + λ

∣∣∣∣fy(x+ h · d)− fy(x)

h

∣∣∣∣ .
(14)

The overall training algorithm is presented as Algorithm 1.

4.4. Differences with Related Works

We compare the proposed Sparsity Regularization (SR)
strategy with Gradient Regularization (GR) as proposed
by (Finlay & Oberman, 2021) and classic adversarial train-
ing (Madry et al., 2018) in Figure 2. While GR relies on
the selection of the multi-class calibrated loss function (e.g.,
cross-entropy or logistic loss), and adversarial training is
associated with the attack method used in generating ad-
versarial examples, the proposed SR strategy is both loss-
independent and attack-independent.
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Table 1: Comparison with the SOTA methods on classification accuracy (%) under attacks.

Dataset Arch. Defense Clean White Box Attack Black Box Attack

PGD10 PGD30 PGD50 APGD10 PGD10 PGD30 PGD50 APGD10

CIFAR-10 VGG-11
RAT 90.44 11.53 7.08 6.41 3.26 43.29 40.17 40.16 47.50
AT 89.97 18.18 14.79 14.63 10.36 44.02 43.38 43.40 52.90
SR∗ 85.91 30.54 28.06 27.66 21.91 51.21 50.85 51.06 59.87

CIFAR-10 WRN-16
RAT 92.70 10.52 5.14 4.33 2.19 38.35 31.04 30.40 36.42
AT 90.97 17.88 14.89 14.62 9.13 43.99 42.09 41.55 52.10
SR∗ 85.63 39.18 37.04 36.74 29.03 50.84 50.23 49.97 57.93

CIFAR-100 WRN-16
RAT 69.10 5.72 3.58 3.26 2.08 22.61 18.77 18.26 25.23
AT 67.37 10.07 8.12 7.86 4.88 25.17 23.76 23.50 35.96
SR∗ 60.37 19.76 18.39 18.11 13.32 28.38 28.01 27.94 36.69

SR Strategy vs. GR Strategy.. The main distinction be-
tween SR and GR strategies lies in that the regularization
term in SR is exclusively tied to the model itself, rather than
being dependent on the multi-class calibrated loss used dur-
ing the training phase, as shown in Figure 2 (b). To provide
further clarification, we can express the training loss of the
GR strategy as follows (defending against attacks):

ℓ(fL(x), y) + λ∥∇xℓ(f
L(x), y)∥21 (15)

where ℓ(fL(x), y) is the multi-class calibrated loss function
for the classification task (such as cross-entropy loss). Note
that the regularization term in GR varies depending on the
specific choices of multi-class calibrated loss. In contrast,
our proposed SR method introduces a regularization term
that remains independent of the choice of loss function.
Moreover, our method can be combined with adversarial
training to enhance the performance of adversarial training.

SR Strategy vs. Adversarial Training. The key distinction
between these two strategies lies in their approach. Ad-
versarial training involves generating adversarial examples
using specific attack methods, while the SR strategy is inde-
pendent of adversarial examples. Figure 2 (c) illustrates that
adversarial training aims to minimize the multi-class cali-
brated loss for adversarial images generated by attacks such
as FGSM or PGD. But the main idea of SR revolves around
regularizing the sparsity of∇xfy(x). Although we employ
the finite difference method (Equation (14)), to make the
regularization of ∥∇xfy(x)∥1 computationally feasible, it
is essential to recognize that the sample x+ hd fundamen-
tally differs from an adversarial example in both numerical
value and meaning. On one hand, x+hd is employed to cal-
culate the difference quotient instead of directly calculating
the multi-class calibrated loss. On the other hand, since h
serves as the step size for the approximation, it is advisable
to use a small value to obtain a more accurate estimation of
the ℓ1 norm. This contrasts with the requirement for a large
h when generating adversarial examples.

5. Experiment
In this section, we evaluate the performance of the proposed
SR strategy on image classification tasks using the CIFAR-
10, CIRAR-100 and CIFAR10-DVS datasets. We adopt the
experiment setting used in the previous work (Ding et al.,
2022). Specifically, we use the VGG-11 architecture (Si-
monyan & Zisserman, 2014), WideResNet with a depth of
16 and width of 4 (WRN-16) (Zagoruyko & Komodakis,
2016). The timestep for the SNNs is set to 8. Throughout
the paper, we use the IF neuron with a hard-reset mechanism
as the spiking neuron. Further details regarding the training
settings can be found in the Appendix D.

To generate adversarial examples, we employ differ-
ent attacks, including FGSM (Goodfellow et al., 2015),
PGD (Madry et al., 2018), and AutoPGD (Croce & Hein,
2020), with a fixed attack strength of 8/255. For iterative
attacks, the number of iterations is indicated in the attack
name (e.g. PGD10). Since the choice of gradient approxi-
mation methods (Bu et al., 2023) and surrogate functions
can affect the attack success rate (Xu et al., 2022a), we con-
sider an ensemble attack for SNNs (Özdenizci & Legenstein,
2023). We utilize a diverse set of surrogate gradients and
consider both STBP-based (Esser et al., 2016) and RGA-
based (Bu et al., 2023) attacks. For each test sample, we
conduct multiple attacks using all possible combinations of
gradient approximation methods and surrogate functions,
and report the strongest attack. In other words, we consider
an ensemble attack to be successful for a test sample as
long as the model is fooled with any of the attacks from the
ensemble. Robustness is evaluated in two scenarios: the
white-box scenario, where attackers have knowledge of the
target model, and the black-box scenario, where the target
model is unknown to attackers. More detailed evaluation
settings can be found in the Appendix E. Moreover, for the
ensemble attack to be meaningful and reveal any impact
of gradient obfuscation, we run extensive experiment with
varying widths of surrogate functions in Appendix G.
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5.1. Compare with the State-of-the-art

We validate the effectiveness of our method by comparing
it with the current state-of-the-art approaches, including
Regularized Adversarial Training (RAT) (Ding et al., 2022)
and Adversarial Training (AT) (Kundu et al., 2021). We
use SR∗ to denote our sparsity regularization strategy with
adversarial training. For RAT-SNN, we replicate the model
following the settings outlined in the paper (Ding et al.,
2022). As for all SNNs trained with robustness training
strategies, we adopt a PGD5 attack with ϵ = 2/255.

Table 1 reports the classification accuracy of the compared
methods under ensemble attacks. Columns 5-8 highlight
the substantial enhancement in SNN robustness achieved
through our strategy in the white box scenario. Our pro-
posed method consistently outperforms other State-Of-The-
Art (SOTA) methods across all datasets and architectures.
For instance, when subjected to 10-steps PGD attacks, VGG-
11 trained with our strategy elevates classification accuracy
from 11.53% (RAT) to an impressive 30.54% on CIFAR-10.
Similarly, WRN-16 trained with SR* exhibits a remark-
able 15% boost in classification accuracy against PGD50 on
CIFAR-100. In comparison to the AT strategy, our method
demonstrates a noteworthy enhancement in adversarial ro-
bustness, with a 10-20 percentage point improvement on
both datasets under all attacks.

In contrast to white box attacks, all strategies exhibit better
adversarial robustness against black box attacks (columns
9-12 in Table 1). When considering the CIFAR-10 dataset,
models trained with any strategy achieve a classification
accuracy of over 30% when subjected to PGD50. However,
models trained with the SR∗ strategy consistently outper-
form other strategies in all scenarios. There exists a gap
of 10%-20% in performance between models trained with
RAT/AT and those trained with SR∗ on CIFAR-10, and a
5%-10% gap on CIFAR-100. These results demonstrate the
superiority of our approach over SOTA methods.

5.2. Experiments on Dynamic Vision Sensor Data

Since SNNs are suitable for application on neuromorphic
data, we evaluate the effectiveness of the gradient sparsity
regularization on CIFAR10-DVS dataset. Here, we use the
preprocessed neuromorphic data and each data point con-
tains ten frame-based data. The data batches are then fed
into a 10-timestep spiking neural network for training and
inference and we directly generate the adversarial noise on
the frame-based data. Similar to previous experiments, we
choose VGG-11 architecture and compare models trained
from defense approaches including vanilla model, adversar-
ial trained model and SR* strategy trained model. Here the
regularization coefficient parameter is set to λ = 0.002.

Table 2 demonstrate the performance comparsion under ad-

Table 2: Experiments on CIFAR10-DVS.

Defense Clean White Box Attack Black Box Attack

FGSM PGD50 FGSM PGD50

Vanilla 78.80 22.20 4.40 34.00 20.70
AT 76.80 60.00 51.60 71.50 65.50
SR 77.40 37.30 27.90 44.60 37.70

SR* 75.60 64.60 61.20 72.60 68.90

Table 3: Ablation study of the sparsity regularization.

SR AT Clean FGSM RFGSM PGD30 PGD50 APGD10

CIFAR-10 WRN-16

93.89 5.23 3.43 0.00 0.00 0.00
! 90.97 33.49 58.19 14.89 14.62 9.13

! 86.57 34.79 55.96 12.27 11.70 8.25
! ! 85.63 48.47 64.65 37.04 36.74 29.03

CIFAR-100 WRN-16

74.59 3.51 1.37 0.00 0.00 0.00
! 67.37 19.07 33.19 8.12 7.68 4.88

! 67.67 11.15 18.18 0.87 0.84 0.47
! ! 60.37 25.76 36.93 18.39 18.11 13.32

versarial attack with ϵ = 0.031. As can be seen from the
table, the vanilla SNN can be easily fooled by the PGD50
attack and the robust performance is only 4.4% under white-
box PGD50 attack. However, with the application of ad-
versarial training and gradient sparsity regularization, the
robust performance shows a significant improvement. The
adversarially trained model’s robustness increases to 51.6%
and further rises to 61.2% under PGD50 white-box attack.
The SR* strategy model also exhibits a substantial improve-
ment in adversarial robustness under black-box attacks, el-
evating the classification accuracy from 20.7% to 68.9%
when subjected to the PGD50. These successful defenses of
the sparse gradient method on the Dynamic Vision Sensor
dataset proves the effectiveness and possibility of applica-
tion of our method on neuromorphic datasets.

5.3. Ablation Study of the Sparsity Regularization

In the ablation study, we compare the robustness perfor-
mance of SNNs using different training strategies: vanilla
SNN, SR-SNN, AT-SNN, and SR*-SNN. The results on
CIFAR-10 and CIFAR-100 are presented in Table 3, and the
key findings are summarized as follows.

Firstly, it is crucial to note that vanilla SNNs exhibit poor
adversarial robustness, with their classification accuracy
dropping to a mere 5% when subjected to the FGSM at-
tack. However, the SR strategy significantly enhances this
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Figure 3: The influence of the coefficient parameter λ on
classification accuracy and gradient sparsity. (a): Fluctua-
tions in clean accuracy and adversarial accuracy under PGD
attacks across different values of λ. (b): The ℓ1 and ℓ2
norms of the gradient with varying λ.

performance, achieving a classification accuracy of 34.79%
on the CIFAR-10 dataset and 11.15% on the CIFAR-100
dataset. Furthermore, combining the SR strategy with the
AT strategy further boosts the robustness of SNNs, par-
ticularly against strong attacks like PGD50 and APGD10,
resulting in a notable 10%-30% improvement.

Additionally, it is observed that the classification accuracy
of robust SNNs on clean images may typically be slightly
lower than that of baseline models. This phenomenon is
consistent across all robustness training strategies. For ex-
ample, WRN-16 models trained using any strategy exhibit a
classification accuracy of less than 70% on clean images in
CIFAR-100. Striking a balance between adversarial robust-
ness and classification accuracy on clean images remains an
open challenge in the field, warranting further exploration.

5.4. Search for the Optimal Coefficient Parameter

We conduct an extensive exploration to determine the op-
timal coefficient parameter λ, trying to strike a balance
between robustness on adversarial images and classification
accuracy on clean images. The investigation specifically
targets the CIFAR-10 dataset and the SNN model employs
the WRN-16 architecture.

As described in Figure 3 (a), we test the impact of λ varying
within the range of 0.000 to 0.008. Notably, increasing the
value of λ led to a decrease in classification accuracy on
clean images but a significant improvement in adversarial
robustness. To be specific, when using a coefficient parame-
ter of λ = 0.008, the classification accuracy under PGD10
attack increases from zero to 16%, while maintaining over
85% accuracy on clean images.

Figure 3 (b) provides a visual representation of the effect

Vanilla AT SR*

CIFAR-10 CIFAR-100

Figure 4: The normalized distribution of∇xfy(x).

of λ on gradient sparsity after training. We computed the
average ℓ1 and ℓ2 norm of ∇xfy over the test dataset using
models trained with different λ. Values of both the ℓ1 norm
and ℓ2 decrease significantly as the coefficient parameter
increases, indicating the correctness of the approximation
method introduced in Proposition 4.4 and the effectiveness
of the gradient sparsity regularization.

Based on these findings, we select λ = 0.008 to train the
SR-WRN-16 on the CIFAR-10 dataset to strike a balance
between clean accuracy and adversarial robustness. It is
worth noting that the optimal choice of λ may vary for dif-
ferent datasets. For additional insights into the relationship
between λ, clean accuracy, and adversarial robustness on the
CIFAR-100 dataset, please refer to the line chart presented
in Appendix F.

5.5. Visualization of Gradient Sparsity

To validate the effectiveness of the proposed approxima-
tion method (Proposition 4.4), we compute the gradient
∇xfy(x) at x in three cases: f is a vanilla SNN, f is an
SNN with adversarial training (AT), and f is an SNN trained
with the proposed gradient sparsity regularization and adver-
sarial training (SR*). Figure 4 illustrates the overall distri-
bution of components in the gradient across all test samples
in the CIFAR-10 and CIFAR-100 datasets, respectively.

The results clearly show that the distribution of gradient
components’ values for SR*-SNNs is more concentrated
around zero compared to that of vanilla SNNs and AT-SNNs.
This indicates that SR*-SNNs exhibit sparser gradients with
respect to the input image, demonstrating the effectiveness
of the finite difference method proposed in Proposition 4.4
in constraining gradient sparsity. Meanwhile, these findings
suggest a correlation between the sparsity of gradients and
the robustness of SNNs to some extent: sparser gradients
contribute to the enhancement of SNN robustness.

To further substantiate the claim that SR-SNNs possess
sparser gradients compared to vanilla SNNs, we present
heatmaps of ∇xfy for several examples from CIFAR-
10 (Tsipras et al., 2019). In Figure 5, the first row displays
some original images selected from CIFAR-10, while the
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Figure 5: Heatmaps of ∇xfy where f is a villain SNN (top) or an SR-SNN (down).

second and third rows show the corresponding heatmaps of
∇xfy for vanilla SNN and SR-SNN, respectively.

Notably, the points on the heatmap of the vanilla SNN are
densely distributed, while the points on the heatmap of
the SR-SNN are more sparsely arranged. Moreover, the
heatmap of gradients of the vanilla SNN appears cluttered
to reflect any information about the image. However, the
heatmap of the gradient of the SR-SNN shows some clear
texture information of the image, which is beneficial to the
interpretability of SNN. Therefore, we infer that the gradient
sparsity regularization can not only improve the robustness
of SNNs, but also provide some interpretability for SNNs.

5.6. Impact of SR strategy to the Robustness Under
Random Attacks

We also investigate the impact of the SR strategy on the
robustness of SNNs under random attacks. Experiments are
conducted on CIFAR datasets using the WRN-16 architec-
ture as the baseline. Random perturbations are uniformly
drawn from a hyper-cube {δrand : ∥δrand∥∞ ⩽ ϵ}, with
ϵ = 0.1. The classification accuracy of the vanilla WRN-16,
SR-trained WRN-16, and SR*-trained (PGD5+SR) WRN-
16 under random attacks is presented in Table 4.

According to the table, both the SR and SR* strategies sig-
nificantly enhance the robustness of SNNs against random
attacks. For example, the single SR strategy improves the
classification accuracy by nearly 20% on the CIFAR-10
dataset. When combined with adversarial training, the SR*
strategy still increases the random robustness, achieving
81% classification accuracy. This indicates that the SR strat-
egy does not compromise robustness under random attacks
while narrowing the gap between adversarial and random
vulnerabilities.

In addition to the experiments reported in the main
manuscript, we also analyze the computational cost of the
SR strategy in Appendix H. We find that the training time
for the SR strategy is less than that of PGD5 adversarial

Table 4: Classification accuracy (%) of models trained with
different methods under random attacks on CIFAR datasets.

Vanilla SR SR*

CIFAR-10 67.467 86.327 81.885
CIFAR-100 26.270 49.900 48.678

training, indicating that the SR strategy is efficient. More
detailed explanations can be found in the appendix.

6. Conclusion and Limitation
Conclusion. This paper introduces a new perspective on
SNN robustness by incorporating the concept of gradient
sparsity. We theoretically prove that the ratio of adversar-
ial vulnerability to random vulnerability in SNNs is upper
bounded by the sparsity of the true label probability with
respect to the input image. Moreover, we propose the SR
training strategy to train robust SNNs against adversarial at-
tacks. Experimental results confirm the consistency between
the theoretical analysis and practical tests. This insight is
expected to inspire ongoing research focused on enhancing
SNN robustness by reducing gradient sparsity. Furthermore,
it may also spark interest in investigating the robustness of
event-driven SNNs, which naturally exhibit strong spike
sparsity.

Limitation. The limitation of this work is that the improve-
ment in adversarial robustness achieved by the SR strategy
comes at the cost of a notable accuracy loss on clean images.
In future work, we aim to strike a better balance between
classification accuracy and adversarial robustness. For in-
stance, we may employ the simulated annealing algorithm
or structure learning (Bellec et al., 2018; Shen et al., 2023)
in the SR strategy. Additionally, considering that biological
vision has strong robustness (Dapello et al., 2020; Yu et al.,
2024), proposing new SNN models by drawing inspiration
from the mechanisms of biological vision is an important
direction for the future.
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A. Proof of Theorem 4.3
Theorem 1. Suppose f represents an SNN and ϵ is the strength of an attack. Given an input image x with corresponding
label y, the ratio of ρadv(f,x, ϵ, ℓ∞) and ρrand(f,x, ϵ, ℓ∞) is upper bounded by the sparsity of∇xfy:

3 ⩽
ρadv(f,x, ϵ, ℓ∞)

ρrand(f,x, ϵ, ℓ∞)
⩽ 3∥∇xfy(x)∥0. (16)

Proof. We assume f to be differentiable, where the surrogate gradient is used. When ϵ is small, we can expand fy(x+ ϵ · δ)
at f(x) by the first-order Taylor expansion

fy(x+ ϵ · δ) ≈ fy(x) + ϵ∇fy(x)T δ. (17)

So, fy(x+ ϵ · δ)− fy(x) ≈ ϵ∇f(x)T δ. As δ ∈ Rm and δi ∼ Unif([−1, 1]), we have

E(δiδj) =

 0 i ̸= j

1

3
i = j.

(18)

Therefore, ρrand(f,x, ϵ, ℓ∞) can be approximated as follows:

ρrand(f,x, ϵ, ℓ∞) = Eδ∼Unif(cube) (fy(x+ ϵ · δ)− fy(x))
2 ≈ ϵ2∇fy(x)TEδ(δδ

T )∇fy(x) =
1

3
ϵ2∥∇f(x)∥22. (19)

On the other hand,

ρadv(f,x, ϵ, ℓ∞) = sup
δ∼Unif(cube)

(fy(x+ ϵ · δ)− fy(x))
2 ≈ ϵ2

(
sup

δ∼Unif(cube)

|∇fy(x)T δ|

)2

= ϵ2
(
∇fy(x)T sign(∇fy(x))

)2
= ϵ2∥∇fy(x)∥21.

(20)

Consequently, the gap between ρadv(f,x, ϵ, ℓ∞) and ρrand(f,x, ϵ, ℓ∞) can be measured by

ρadv(f,x, ϵ, ℓ∞)

ρrand(f,x, ϵ, ℓ∞)
≈ 3
∥∇fy(x)∥21
∥∇fy(x)∥22

, (21)

which can be bounded by

3 ≤ ρadv(f,x, ϵ, ℓ∞)

ρrand(f,x, ϵ, ℓ∞)
⩽ 3∥∇fy(x)∥0. (22)

[proof of the inequality] For an m-dimensional vector u ∈ Rm, we have ∥u∥1 ⩾ ∥u∥2. Because

∥u∥21 = (

m∑
i=1

|ui|)2 =

m∑
i=1

u2
i +

∑
i

∑
j ̸=i

|uiuj | ⩾
m∑
i=1

u2
i = ∥u∥22. (23)

Moreover, let a ∈ Rm be an m-dimensional vector with ai = sign(ui) Then

∥u∥1 =

m∑
i=1

|ui| =
m∑
i=1

uiai ⩽

(
m∑
i=1

u2
i

) 1
2
(

m∑
i=1

a2i

) 1
2

(Cauchy Schwartz inequality) = ∥u∥2
√
∥u∥0 (24)
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B. Derivation of Equation (12)
Let x denote the image, and {x[1],x[2], . . . ,x[T ]} represent the input image series. In our paper, we use x[t] = x for all
t = 1, . . . , T. The network is denoted by f and the output of the network f in the last layer is a vector fL(x) ∈ RN×1,
where N represents the number of classes, i.e.

fL(x) =

(
T∑

t=1

sL1 [t], . . . ,

T∑
t=1

sLN [t]

)
. (25)

Based on Equation (9), the component related to the true label y is defined as

fy(x) =
ef

L
y

ef
L
y + efỹL

=
e
∑T

t=1 sLy (t)

e
∑T

t=1 sLy (t) + e
∑T

t=1 sLỹ (t)
, (26)

According to the chain rule, the gradient of fy(x) with respect to the input x is

∇xfy(x) =
∂fy
∂fL

y

· ∇x

(∑
t

sLy [t]

)
+

∂fy
∂fL

ỹ

· ∇x

(∑
t

sLỹ [t]

)
. (27)

In this formula, the gradient of∇x

(∑
t s

L
i [t]
)
(i = y, ỹ) in the last layer can be further expresses as

∇x

(∑
t

sLi [t]

)
=
∑
t

∇xs
L
i [t] =

∑
t

t∑
t̃=1

∇x[t̃]s
L
i [t]. (28)

Finally, the gradient∇xfy(x,w) is written as

∇xfy(x) =
∑
i=y,ỹ

 ∂fy
∂fL

i

 T∑
t=1

t∑
t̃=1

∇x[t̃]s
L
i [t]

 . (29)

C. Proof of Proposition 4.4
Proposition 1. Let d denote the signed input gradient direction: d = sign(∇xfy(x)), and h be the finite difference step
size. Then, the ℓ1 gradient norm can be approximated as:

∥∇xfy(x)∥1 ≈
∣∣∣∣fy(x+ h · d)− fy(x)

h

∣∣∣∣ (30)

Proof. The first order Taylor estimation of fy(x+ h · d) at point x is

fy(x+ h · d) ≈ fy(x) + h · ∇xf
T
y (x)d = fy(x) + h∥∇xfy(x)∥1. (31)

Therefore, ∥∇xfy(x)∥1 can be approximated by∣∣∣∣fy(x+ h · d)− fy(x)

h

∣∣∣∣ (32)

D. Training Settings
We use the same training settings for all architectures and datasets. Our data augmentation techniques include RandomCrop,
RandomHorizontalFlip, and zero-mean normalization. During training, we use the CrossEntropy loss function and Stochastic
Gradient Descent optimizer with momentum. The learning rate η is controlled by the cosine annealing strategy (Loshchilov
& Hutter, 2017). We utilize the Backpropagation Through Time (BPTT) algorithm with a triangle-shaped surrogate function,
as introduced by (Esser et al., 2016). When incorporating sparsity gradient regularization, we set the step size of the finite
difference method to 0.01. Also, we use a λ = 0.002 on CIFAR-10/CIFAR10-DVS and λ = 0.001 on CIFAR-100 for
SR* method. For vanilla SR, we set λ = 0.008 on CIFAR-10 and λ = 0.002 on CIFAR-100/CIFAR10-DVS. The detailed
training hyper-parameters are listed below.
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Table 5: Detailed training setting.

Timestep Initial LR Batchsize Weight Decay Epochs Momentum h AT ϵ PGD-step

CIFAR-10/100 Dataset

8 0.1 64 5e-4 200 0.9 0.01 PGD5 2/255 0.01

CIFAR10-DVS Dataset

10 0.1 24 5e-4 200 0.9 0.01 FGSM 2/255 /

E. Evaluation Settings
As mentioned in the main text, we consider an ensemble attack approach for SNNs. This involves utilizing a diverse set of
surrogate gradients and considering both STBP-based and RGA-based attacks. We conduct the following attacks as the
ensemble attack. We consider an ensemble attack to be successful for a test sample as long as the model is fooled with any
of the attacks from the ensemble.

• STBP-based attack with triangle-shaped surrogate function, with the hyper-parameter γ = 1 (Esser et al., 2016).

∂sli(t)

∂ul
i(t)

=
1

γ

∣∣|γ − ∣∣ul
i(t)− θ

∣∣|∣∣ . (33)

• STBP-based attack with sigmoid-shaped surrogate function, with the hyper-parameter γ being 4.

∂sli(t)

∂ul
i(t)

=
1

1 + exp (−γ(ul
i(t)− θ))

(34)

• STBP-based attack with arc tangent surrogate function, with the hyper-parameter γ set to 2.

∂sli(t)

∂ul
i(t)

=
γ

2(1 + (π2 γ(u
l
i(t)− θ))2)

(35)

• RGA-based attack with rate-based gradient estimation, where the setting follows the paper (Bu et al., 2023).

F. Coefficient Parameter Search on CIFAR-100
Figure 6 (left) shows the relationship between the coefficient parameter λ, clean accuracy, and adversarial accuracy on the
CIFAR-100 dataset. To make a trade-off between classification accuracy on clean images and adversarial images, we choose
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Figure 6: The influence of the coefficient parameter λ on classification accuracy and gradient sparsity. Left: Fluctuations in
clean accuracy and adversarial accuracy under PGD attacks. Right: The ℓ1 and ℓ2 norms of the gradient with varying λ.
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λ = 0.002 for SR-WRN-16 on the CIFAR-100 dataset. Figure 6 (right) illustrates that the ℓ1 and ℓ2 norm of∇xfy decrease
significantly with the increase of λ.

G. Extensive Evaluations With Varying Widths of Surrogate Functions
For the ensemble attack to be meaningful and reveal any impact of gradient obfuscation, we run an evaluation with different
widths γ in the surrogate function. Specifically, we apply the attack with γ ∈ [0.1, 3.0] in fine-grained steps of 0.1, and
report the results of the PGD10 attack on VGG-11 models with different training algorithms on the CIFAR-10 dataset in
Table 6.

Table 6: The classification accuracy (%) under the ensemble attack with different γ.

Attacks RAT AT SR*

PGD10 (w/o ensemble) 16.16 21.32 33.67
PGD10 (w/ ensemble) 11.53 18.18 30.54
PGD10 (γ ∈ [0.1, 3.0]) 11.87 16.16 27.06

We compare three different attack combinations to evaluate the impact of different surrogate functions on the attack strength.
We select RAT, PGD5-AT, and SR*(PGD5+SR) models as the target models. For PGD10(w/o ensemble), we only use the
Triangle-shaped surrogate function, which is identical to the one used in training. For PGD10 (w/ ensemble), we use the
attack combination as described in Section 5. For PGD10( γ ∈ [0.1, 3.0]), we incorporate 30 different Triangle-shaped
surrogate functions with widths ranging from [0.1, 30].

We find that both ensemble attack methods significantly improve attack performance and mitigate the impact of gradient
obfuscation. This indicates that both the shape and width of the surrogate function can influence the capability of
the adversary. Although the PGD10(γ ∈ [0.1, 3.0]) attack is slightly more effective than the ensemble attack used in
Section 5, it uses a 30-fold fine-grained grid search over attack hyperparameters for each image, which is considerably more
computationally expensive.

In conclusion, we demonstrate that changing the width of surrogate functions does not significantly influence the capability
of the adversary any better than using different surrogate gradient shapes. Additionally, the proposed SR* strategy exhibits
improved robustness under both scenarios.

H. Comparison in Computational Cost
The computational costs for one epoch training of various algorithms, including vanilla, PGD5 AT, RAT, SR, and
SR*(PGD5+SR), on the CIFAR-10 dataset using the VGG11 architecture are summarized in Table 7. From the ta-
ble, we observe that a single SR incurs a computational cost 1.5 times that of RAT but consumes less than half the time
needed by PGD5 AT. The computational cost of SR* is the highest among all training algorithms since it combines both SR
and AT. However, models trained with SR* achieve the best robustness compared to models trained with other methods.

Table 7: The computational cost in one epoch of different training algorithms.

Vanilla PGD5-AT RAT SR SR*

65s 459s 134s 193s 583s
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