
A Proof of Equation 13, Equation 15, and Equation 16

Equation 13 and and Equation 15 are the special cases of Equation 16 when n is 1 or 2, so we directly
provide the proof of Equation 16:

C
s
g(✓) =

TaX

i1=1

TaX

i2=1

. . .

TaX

in=1

pi1(g1|x, ✓)⇥
nY

k=2

Aik�1,ikpik(gk|x, ✓), g 2 Gn.

We begin with the definition of Cs
g(✓), which accumulates the n-gram g from all alignments:

C
s
g(✓) =

X

a2Y⇤

p(a|x, ✓)Cg(�
�1
s (a)),

where Cg(��1
s (a)) is the occurrence count of n-gram g in the collapsed sentence �

�1
s (a). We use

i1:n = {i1, ..., in} to denote the possible position of g = {g1, ..., gn} 2 Gn. There is an n-gram
g 2 Gn in the position i1:n if and only if aik = gk for all k 2 {1, ..., n} and all other words between
them are blank tokens. By traversing all possible positions, we can obtain the n-gram count as
follows:

Cg(�
�1
s (a)) =

TaX

i1=1

TaX

i2=1

. . .

TaX

in=1

1(ai1 = g1)⇥
nY

k=2

1(ik�1 < ik, aik = gk, aik�1+1:ik�1 = ✏), g 2 Gn.

where 1(·) is the indicator function that takes value 1 when the inside condition holds, otherwise it
takes value 0. Recall that Aij is the probability that all positions between i and j are blank tokens,
which satisfies the following equation:

Aik�1,ik = p(ik�1 < ik, aik�1+1:ik�1 = ✏|x, ✓).

Using the above equations, we can rewrite C
s
g(✓) as:

C
s
g(✓) =

X

a

p(a|x, ✓)Cg(�
�1
s (a))

=
TaX

i1=1

TaX

i2=1

. . .

TaX

in=1

X

a

p(a|x, ✓)1(ai1 = g1)⇥
nY

k=2

1(ik�1 < ik, aik = gk, aik�1+1:ik�1 = ✏)

=
TaX

i1=1

TaX

i2=1

. . .

TaX

in=1

p(ai1 = g1|x, ✓)⇥
nY

k=2

p(aik = gk|x, ✓)p(ik�1 < ik, aik�1+1:ik�1 = ✏)

=
TaX

i1=1

TaX

i2=1

. . .

TaX

in=1

pi1(g1|x, ✓)⇥
nY

k=2

Aik�1,ikpik(gk|x, ✓), g 2 Gn. ⇤

B The O(nT 2
a) algorithm for Equation 16

Here we give the O(nT 2
a) algorithm to calculate C

s
g(✓) according to Equation 16. Notice that

Equation 16 has a similar form with the n-step transition probability of a Markov chain, so we can
try a similar method as calculating the transition probability for a Markov chain. Specifically, we
introduce a set of state vectors sk , where k 2 {1, 2, ..., Ta} and the dimension of each vector sk is
Ta . We define the state vectors as follows:

sk(ik) =

(
pik(gk|x, ✓), k = 1PTa

ik�1=1 sk�1(ik�1)Aik�1,ikpik(gk|x, ✓), k > 1
.

From the above equation, the time complexity to calculate sk given sk�1 is O(T 2
a) and can be

efficiently calculated in matrix form. Therefore, the time complexity to sequentially calculate s1:n is
O(nT 2

a). Finally, we can easily obtain C
s
g(✓) by summing the last vector sn:

16

C
s
g(✓) =

TaX

i1=1

TaX

i2=1

. . .

TaX

in=1

pi1(g1|x, ✓)⇥
nY

k=2

Aik�1,ikpik(gk|x, ✓)

=
TaX

in=1

. . .

TaX

i2=1

TaX

i1=1

s1(i1)
nY

k=2

Aik�1,ikpik(gk|x, ✓)

=
TaX

in=1

. . .

TaX

i3=1

TaX

i2=1

s2(i2)
nY

k=3

Aik�1,ikpik(gk|x, ✓)

=

=
TaX

in=1

TaX

in�1=1

sn�1(in�1)⇥Ain�1,inpin(gn|x, ✓)

=
TaX

in=1

sn(in), g 2 Gn. ⇤

C Proof of Equation 20

Here we provide the proof of Equation 20:

Rg(✓) = C
s
g(✓)� Cg(✓) =

Ta�1X

t=1

pt(g1|x, ✓)pt+1(g1|x, ✓), g 2 G1,

which is equivalent to proving the following equation:

Cg(✓) = p1(g1|x, ✓) +
TaX

t=2

pt(g1|x, ✓)(1� pt�1(g1|x, ✓)), g 2 G1.

We begin with the definition of Cg(✓), which accumulates the n-gram g from all alignments:

Cg(✓) =
X

a2Y⇤

p(a|x, ✓)Cg(�
�1(a)).

Cg(��1(a)) is the occurrence count of n-gram g in the collapsed sentence �
�1(a). Besides blank

tokens, repeated words will also be removed by �
�1. Therefore, we call a word in the alignment a

valid word when it does not repeat the word before it. We can calculate the 1-gram count by collecting
all valid words, which will not be removed by the collapsing function:

Cg(�
�1(a)) = 1(a1 = g1) +

TaX

t=2

1(at = g1, at�1 6= g1), g 2 G1.

Using the above equation, we can rewrite Cg(✓) as:

Cg(✓) =
X

a

p(a|x, ✓)Cg(�
�1(a)) = p(a1 = g1|x, ✓) +

TaX

t=2

p(at = g1, at�1 6= g1|x, ✓)

= p1(g1|x, ✓) +
TaX

t=2

pt(g1|x, ✓)(1� pt�1(g1|x, ✓)), g 2 G1. ⇤

D Analysis

To better understand our method, we present a qualitative analysis to provide some insights into the
improvements of NMLA. We analyze the generated outputs of the WMT14 En-De test set in the
following experiments.

17

NMLA Handles Long Sequences Better We first investigate the performance of AT and NAT
models for different sequence lengths. We split the test set into different buckets based on target
sequence length and calculate BLEU for each bucket. We report the results in Table 6. The
first observation is that the performance of Vanilla-NAT drops drastically as the sequence length
increases. It is a well-known property of NAT and can be explained as the increased probability of
observing misalignment between model output and target as the target sequence becomes longer. The
misalignment in long sequences causes the inaccuracy of loss and therefore harms the translation
quality. We have a similar observation when comparing CTC with NMLA. The performance of CTC
is close to NMLA on short sequences, but the gap becomes larger as the sequence length increases.
Our explanation is that the longer the sequence, the more likely the monotonic assumption fails due
to the global word reordering, which causes the inaccuracy of loss and therefore harms the translation
quality. NMLA models non-monotonic alignments and alleviates the inaccuracy of loss on long
sequences, so it achieves strong improvements on long sequences and even outperforms AT by more
than 2 BLEU, which suffers from the error accumulation on long sequences.

Table 6: The performance of AT and NAT models with respect to the target sequence length. ‘Vanilla’
means Vanilla-NAT. ‘N’ denotes the target sequence length. ‘AT’ means autoregressive Transformer.

Length Vanilla CTC AT NMLA
1  N < 20 21.27 24.83 25.68 25.55
20  N < 40 19.49 26.81 28.05 27.82
40  N < 60 16.21 26.54 26.71 27.74
60  N 10.69 26.69 26.44 28.89
All 19.32 26.34 27.54 27.57

NMLA Improves Model Confidence NAT suffers from the multi-modality problem, which makes
the model consider many possible translations at the same time and become less confident in
generating outputs. We investigate whether our method alleviates the multi-modality problem by
measuring how confident the model is during the decoding. We use the information entropy to
measure the confidence, which is calculated as H(X) = �

P
x2X p(x) log p(x), and lower entropy

indicates higher confidence. We calculate the entropy in every position when decoding the WMT14
En-De test set and use the average entropy to represent the model confidence. We do not report the
entropy of AT since it varies with the decoding algorithm. The average entropy scores of NAT models
are reported in Table 7. We can see that the Vanilla-NAT has low prediction confidence, which is
substantially improved by CTC. NMLA further reduces the average entropy to 0.061, showing that
the model confidence can be improved by modeling non-monotonic latent alignments.

Table 7: The average prediction entropy of NAT models. ‘Vanilla’ means Vanilla-NAT.

Vanilla CTC NMLA
Entropy 2.098 0.260 0.061

NMLA Improves Generation Fluency Since NAT generates target words independently, generation
fluency is a main weakness of NAT. The multi-modality problem makes NAT consider many possible
translations at the same time and generate an inconsistent output, which further reduces the generation
fluency. We investigate whether our method improves the generation fluency with an n-gram language
model [20] trained on the target side of WMT14 En-De training data. We use the language model
to calculate the perplexity scores of model outputs and report the results in Table 8. We can see
that Vanilla-NAT and CTC have high perplexity which indicates low fluency. NMLA substantially
reduces the perplexity score, which is only 42.6 higher than the gold reference. For AT, its perplexity
score is even lower than the gold reference, which is consistent with prior works that autoregressive
NMT generally improves fluency at the cost of adequacy [8, 10].

Table 8: The perplexity scores of AT and NAT models on WMT14 En-De test set.

Vanilla CTC NMLA AT Gold
PPL 597.0 315.5 258.8 197.0 216.2

18

E Batch Speedup

For CTC-based models including NMLA, a common concern is that they require a larger number
of calculations than the autoregressive model due to the longer decoder length. Though there is a
significant speedup when decoding sentence by sentence, this advantage may disappear when we use
a larger decoding batch. In response to this concern, we measure the decoding speedup on WMT14
En-De test set under different batch sizes and report both BLEU and speedup in Figure 3. Under the
memory limit, the maximum batch size is 400. From Figure 3, NMLA still maintains 2.4⇥ speedup
under the maximum batch size while achieving comparable performance to the autoregressive model.
For NMLA+beam&lm, it simultaneously achieves superior translation quality and speed to the
autoregressive model, which addresses the concern on batch speedup for CTC-based models.

Figure 3: BLEU and speedup of NAT and AT models measured under different batch sizes on
WMT14 En-De test set.

F Combination of N-grams

In Table 1, we only finetune the baseline with different n-gram matching objectives respectively. Here
we combine different n-gram matching objectives to see whether the combination can improve the
model performance. First, we linearly combine 1-gram and 2-gram matching with a hyperparameter
↵:

L(✓) = ↵ · L1(✓) + (1� ↵) · L2(✓), L
s(✓) = ↵ · L

s
1(✓) + (1� ↵) · Ls

2(✓).

We train CTC and SCTC baselines with different ↵ and report the results in Table 9, which shows
that the combination of 1-gram and 2-gram underperforms simply using 2-gram matching.

Table 9: BLEU scores of SCTC and CTC under different ↵ on WMT14 En-De validation set.

↵ 0 0.25 0.5 0.75 1

SCTC 25.09 24.98 24.85 24.70 24.54
CTC 25.90 25.74 25.66 25.51 25.42

As n > 2 is allowed in SCTC, we further try to combine higher rank n-grams. We consider
n 2 {1, 2, 3, 4} and combine them with arithmetic average and geometric average respectively. The
BLEU scores of arithmetic average and geometric average are respectively 24.94 BLEU and 24.88
BLEU on WMT14 En-De validation set, which also underperforms simply using 2-gram matching.
Therefore, we conclude that simply combining different n-gram matching objectives cannot improve
the model performance.

19

	Introduction
	Background
	Non-Autoregressive Machine Translation
	NAT with Latent Alignments

	Approach
	Simplified Connectionist Temporal Classification
	Non-Monotonic Alignments under SCTC
	Bipartite Matching
	N-Gram Matching

	Non-Monotonic Alignments under CTC
	Training

	Experiments
	Experimental Setup
	Main Results
	Training Cost

	Related Work
	Conclusion
	Acknowledgement
	Proof of Equation 13, Equation 15, and Equation 16
	The O(nTa2) algorithm for Equation 16
	Proof of Equation 20
	Analysis
	Batch Speedup
	Combination of N-grams

