APPENDIX

In the appendix, we provide more implementation details for our method, experimental results on
more datasets and settings, ablation studies, and qualitative analysis. The appendices cover the
following:

* Implementation Details: NeuralFuse Training Algorithm (Sec. [A), NeuralFuse Generator (Sec.
[B), SCALE-SIM (Sec. [O)

* Qualitative Studies: Energy-Accuracy Tradeoff (Sec. [D), Model Parameters and MAC Values
(Sec. E[), Data Embeddings Visualization (Sec. , Transformed Inputs Visualization (Sec. ,
Latency Reports (Sec. [N))

* Additional Experimental Results: Ablation Studies (Sec. [F), Relaxed Access (Sec. [G), Re-
stricted Access (Sec. [H), Reduced-precision Quantization (Sec. [[), Adversarial Training (Sec. [I)),
Adversarial Weight Perturbation (Sec. [M)

Our code can be found at https://anonymous.4open.science/r/neuralfuse/.

A TRAINING ALGORITHM OF NEURALFUSE

Algorithm 1 Training steps for NeuralFuse
Input: Base model Mj; Generator G; Training data samples X’; Distribution of the perturbed
models M,,; Number of perturbed models /V; Total training iterations 7'
Output: Optimized parameters Vg for the Generator G
1: fort =0,....,7 —1do
2:  for all mini-batches {x,y}> , ~ X do
3 Create transformed inputs x; = F(x) = clip;_; j (x+G(x)).
4: Sample N perturbed models {M,,, , ..., M, } from M,, under p% random bit error rate.
5
6

for all M, ~ {M,,,...,M,,} do
Calculate the loss loss,,; based on the output of the perturbed model M,,,. Then calculate
the gradients g,,, for Wg based on loss,, .

7: end for
8: Calculate the loss lossy based on the output of the clean model M. Then calculate the
gradients gy for Wg based on lossg.
9: Calculate the final gradient g ;y,4; using @) based on gg and g, , ..., gpn -
10: Update Wg using g final-
11:  end for
12: end for

B IMPLEMENTATION DETAILS OF NEURALFUSE GENERATOR

We consider two main goals in designing the NeuralFuse Generator: 1) efficiency (so the overall
energy overhead is decreased) and 2) robustness (so that it can generate robust patterns on the in-
put image and overcome the random bit flipping in subsequent models). Accordingly, we choose
to utilize an encode-decoder architecture in implementing the generator. The design of ConvL is
inspired by Nguyen & Tran|(2020), in which the authors utilize a similar architecture to design an
input-aware trigger generator, and have demonstrated its efficiency and effectiveness. Furthermore,
we attempted to enhance it by replacing the Upsampling layer with a Deconvolution layer, leading to
the creation of DeConvL. The UNetL-based NeuralFuse draws inspiration from [Ronneberger et al.
(2015)), known for its robust performance in image segmentation, and thus, we incorporated it as one
of our architectures. Lastly, ConvS, DeConvS, and UNetS are scaled-down versions of the model
designed to reduce computational costs and total parameters. The architectures of Convolutional-
based and Deconvolutional-based are shown in Table [] and the architecture of UNet-based gen-
erators is in Table |ﬂ For the abbreviation used in the table, ConvBlock means the Convolution
block, Conv means a single Convolution layer, DeConvBlock means the Deconvolution block, De-
Conv means a single Deconvolution layer, and BN means a Batch Normalization layer. We use
learning rate = 0.001, A\ = 5, and Adam optimizer. For CIFAR-10, GTSRB, and CIFAR-100, we
set batch size b = 25 for each base model. For ImageNet-10, we set b = 64 for ResNet18, ResNet50
and VGG11, and b = 32 for both VGG16 and VGG19.
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Table 4: Model architecture for both Convolution-based and Deconvolution-based generators. Each
ConvBlock consists of a Convolution (kernel = 3 x 3, padding = 1, stride = 1), a Batch Nor-
malization, and a ReLU layer. Each DeConvBlock consists of a Deconvolution (kernel = 4 x 4,
padding = 1, stride = 2), a Batch Normalization, and a ReLU layer.

ConvL ConvS DeConvL DeConvS
Layers #CHs Layers #CHs Layers #CHs Layers #CHs
(ConvBlock) x 2, MaxPool 32 | ConvBlock, Maxpool 32 |(ConvBlock)x2, MaxPool 32 |ConvBlock, Maxpool 32
(ConvBlock)x 2, MaxPool 64 | ConvBlock, Maxpool 64 |(ConvBlock)x2, MaxPool 64 |ConvBlock, Maxpool 64
(ConvBlock)x 2, MaxPool 128 | ConvBlock, Maxpool 64 [(ConvBlock)x2, MaxPool, 128 |ConvBlock, Maxpool 64
ConvBlock, UpSample, ConvBlock 128 |ConvBlock, UpSample 64 ConvBlock 128 DeConvBlock 64
ConvBlock, UpSample, ConvBlock 64 |ConvBlock, UpSample 32 |DeConvBlock, ConvBlock 64 DeConvBlock 32
ConvBlock, UpSample, ConvBlock 32 [ConvBlock, UpSample 3 | DeConvBlock, ConvBlock 32 | DeConv, BN, Tanh 3
Conv, BN, Tanh 32 Conv, BN, Tanh 3 Conv, BN, Tanh 3

[Note] #CHs: number of channels.

Table 5: Model architecture for UNet-based generators. Each ConvBlock consists of a Convolution
(kernel = 3 x 3, padding = 1, stride = 1), a Batch Normalization, and a ReLU layer. Other layers,
such as the Deconvolutional layer (kernel = 2 x 2, padding = 1, stride = 2), are used in UNet-based

models. For the final Convolution layer, the kernel size is set to 1.

UNetL UNetS
Layers #Channels Layers #Channels
L1: (ConvBlock)x2 16 L1: (ConvBlock)x2 8
L2: Maxpool, (ConvBlock)x2 32 L2: Maxpool, (ConvBlock)x2 16
L3: Maxpool, (ConvBlock) x2 64 L3: Maxpool, (ConvBlock)x2 32
L4: Maxpool, (ConvBlock)x2 128 L4: Maxpool, (ConvBlock)x2 64
L5: DeConv 64 L5: DeConv 32
L6: Concat[L3, L5] 128 L6: Concat[L3, L5] 64
L7: (ConvBlock)x?2 64 L7: (ConvBlock)x2 32
L8: DeConv 32 L8: DeConv 16
L9: Concat[L2, L8] 64 L9: Concat[L2, L8] 32
L10: (ConvBlock)x2 32 L10: (ConvBlock)x2 16
L11: DeConv 16 L11: DeConv 8
L12: Concat[L1, L11] 32 L12: Concat[L1, L11] 16
L13: (ConvBlock)x2 16 L13: (ConvBlock)x2 8
L14: Conv 3 L14: Conv 3

C IMPLEMENTATION DETAILS OF SCALE-SIM

SCALE-SIM (Samajdar et al., [2020) is a systolic array based CNN simulator that can calculate the
number of memory accesses and the total time in execution cycles by giving the specific model
architecture and accelerator architectural configuration as inputs. In this paper, we use SCALE-SIM
to calculate the weights memory access of 5 based models (ResNet18, ResNet50, VGG11, VGGI16,
VGG19), and 6 generators (ConvL, ConvS, DeConvL, DeConvS, UNetL, UNetS). While SCALE-
SIM supports both Convolutional and Linear layers, it does not yet support Deconvolution layers.
Instead, we try to approximate the memory costs of Deconvolution layers by Convolution layers. We
change the input and output from Deconvolution into the output and input of the Convolution layers.
Besides, we also change the stride into 1 when we approximate it. We also add padding for the
convolution layers while generating input files for SCALE-SIM. In this paper, we only consider the
energy saving on weights accesses, so we only take the value "SRAM Filter Reads” from the output
of SCALE-SIM as the total weights memory accesses (T.W.M.A.) for further energy calculation.
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D THE ENERGY-ACCURACY TRADEOFF UNDER 1% BIT ERROR RATE

In Table [ we report the total weight memory access (T.W.M.A.) calculated by SCALE-SIM. We
then showed the energy-accuracy tradeoff between all of the combinations of NeuralFuse and base
models under a 1% of bit error rate in Figure[3]

Table 6: The total weights memory access calculated by SCALE-SIM.

Base Model | ResNetl8 ResNet50  VGGlI VGG16 VGG19 -
T.W.M.A. \ 2,755,968 6,182,144 1,334,656 2,366,848 3,104,128 -
NeuralFuse \ ConvL ConvS DeConvLl  DeConvS UNetL UNetS
TWM.A. | 320,256 41,508 259,264 86,208 180,894 45,711
[Note] TW.M.A.: total weight memory access.
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Figure 5: The energy-accuracy tradeoff of different NeuralFuse implementations with all CIFAR-10
pre-trained based models. X-axis represents the percentage reduction in dynamic memory access
energy at low-voltage settings (base model protected by NeuralFuse), compared to the bit-error-free
(nominal) voltage. Y-axis represents the perturbed accuracy (evaluated at low voltage) with a 1% bit
error rate.

E MODEL PARAMETERS AND MAC VALUES

In addition to TW.M.A., the model’s parameters and MACs (multiply—accumulate operations) are
common metrics in measuring the energy consumption of machine learning models. |Yang et al.
(2017)) have also shown that the energy consumption of computation and memory accesses are both
proportional to MACs, allowing us to estimate the overall (or end-to-end) energy consumption.

Here, we use the open-source package pt £1ops (Sovrasov, 2018-2023) to calculate the parameters
and MAC values of all the base models and the NeuralFuse generators, in the same units as|/Bejnordi
et al.| (2020) used. The results are shown in Table[/| Note that we modified the base model archi-
tectures for ImageNet-10, as it has larger input sizes. For example, we use a larger kernel size = 7
instead of 3 in the first Convolution layer in ResNet-based models to enhance the learning abilities.
Therefore, the parameters of base models are different between different datasets. For NeuralFuse
generators, we utilize the same architectures for implementation (including ImageNet-10). As a
result, our proposed NeuralFuse generators are generally smaller than base models, either on total
model parameters or MAC values.
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Table 7: Parameter counts and MAC:s for all base models and generators in this paper.

Base Model
ResNet18 ResNet50 VGGl11 VGG16 VGG19 -
Parameter CIFAR-10 11,173,962 23,520,842 9,231,114 14,728,266 20,040,522
ImageNet-10 11,181,642 23,528,522 128,812,810 134,309,962 139,622,218
MACs CIFAR-10 557.14M 1.31G 153.5M 314.43M 399.47TM )
ImageNet-10 1.82G 4.12G 7.64G 15.53G 19.69G
NeuralFuse
ConvL ConvS DeConvL DeConvS UNetL UNetS
Parameter CIFAR-10 723,273 113,187 647,785 156,777 482,771 121,195
ImageNet-10
MACs CIFAR-10 80.5M 10.34M 64.69M 22.44M 41.41M 10.58M
ImageNet-10 3.94G 506.78M 3.17G 1.1G 2.03G 518.47M

MACs-Based Energy Saving Calculation. We can then use the MAC values to further approxi-
mate the end-to-end energy consumption of the whole model. Assume that all values are stored on
SRAM and that a MAC represents single memory access. The corresponding MACs-based energy
saving percentage (MAC-ES, %) can be derived from Eq. [f](c.f. Sec. [f-4), and results can be found
in Table[8] We can observe that most combinations can save a large amount of energy, except that
VGG11 with two larger NeuralFuse (ConvL and DeConvL) may increase the total energy. These re-
sults are consistent with the results reported in Table@ In addition, we also showed the MACs-based
energy-accuracy tradeoff between all of the combinations of NeuralFuse and base models under a
1% of bit error rate in Figure 6}

MACSbase model ENCTEY omina voliage — (MACsh,‘,,-C model EN€T8Y 0\ otiage-regime TMACSNeuralFuse ENEIEY NeyratFuse at nominal \'ulluge) % 100% 6)
MACSbase model “ENergy ominal voltage

MAC-ES =

Table 8: The MACs-Based energy saving percentage (%) for different combinations of base models
and NeuralFuse.

Base Model | ConvL ConvS DeConvL DeConvS UNetL UNetS
ResNet18 16.2 28.7 19.0 26.6 23.2 28.7
ResNet50 245 298 25.7 289 274 298
VGGl1 -21.8 23.9 -11.5 16.0 3.6 23.7
VGG16 50 273 10.0 235 174 272
VGG19 10.4 28.0 14.4 25.0 20.2 28.0
Comparison under 1% of bit error rate on CIFAR-10 Based on MACs
%0 VGG11+Convl Base Model
‘ . () ‘ ® VGG16+ConvlL VGG11
() . ®  VGG19+Convl A veeis
[ ) » ResNet18+ConvlL
‘ v o ©  ResNet50+Convl A veero
80 e © o VGG11+ConvS A ResNetts
\ » VGG16+Convs ResNet50
B ® VGG19+Convs
§ ® ResNet18+ConvS
- \ ) ®  ResNet50+Convs
_ [ (1 ® VGG11+DeConvl
2 @ © VGG16+DeConvl.
= . = ® VGG19+DeConvl
8 ® ResNet18+DeConvl
3 60 [ ( ®  ResNet50+DeConvl
§ . ’\QQ . ® VGG11+DeConvs
5 ® VGG16+DeConvs
2 [ Q ® VGG19+DeConvs
5 ® ResNet18+DeConvS
£ %0 ® ResNet50+DeConvs
o ® VGG11+UNetL
® VGG16+UNetL
. \ VGG19+UNetl
ResNet18+UNetL
“ A ResNet50+UNetL
A VGG11+UNetS
L VGG16+UNetS
VGG19+UNetS
30 ResNet18+UNetS
ResNet50+UNetS
-20 -10 [ 10 20 30

Energy Saving Percentage (%)

Figure 6: The MAC-Based energy-accuracy tradeoff of different NeuralFuse implementations with
all CIFAR-10 pre-trained based models. X-axis represents the percentage reduction in dynamic
memory access energy at low-voltage settings (base model protected by NeuralFuse), compared
to the bit-error-free (nominal) voltage. Y-axis represents the perturbed accuracy (evaluated at low
voltage) with a 1% bit error rate.
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F ABLATION STUDIES

Study for N in EOPM. Here, we study the effect of N used in EOPM (Eq. [5). In Figure [7]
we report the results for ConvL and ConvS on CIFAR-10 pre-trained ResNet18, under a 1% bit
error rate (B.E.R.). The results demonstrate that if we apply larger N, the performance increases
until convergence. Specifically, for ConvL (Figure [7a), larger N empirically has a smaller standard
deviation; this means larger N gives better stability but at the cost of time-consuming training. In
contrast, for the small generator ConvS (Figure , we can find that the standard deviation is still
large even trained by larger NNV; the reason might be that small generators are not as capable of
learning representations as larger ones. Therefore, there exists a trade-off between the stability of
the generator performance and the total training time. In our implementation, choosing N = 5 or
10 is a good balance.

ResNet18, CIFAR-10, BER=1% ResNet18, CIFAR-10, BER=1%
100
- —— ConvL m —¥ Convs
&
90
. ; ' B
H ]
q @ 4
i ]
o 40
L] 3
1 5 10 ) 15w = 50
N N
(a) Using ConvL (b) Using ConvS

Figure 7: The experimental results on using different sizes of N for EOPM.

Tradeoff Between Clean Accuracy (C.A.) and Perturbed Accuracy (P.A.). We conducted an
experiment to study the effect of different A values, which balance the ratio of clean accuracy and
perturbed accuracy. In Table[9] the experimental results showed that a smaller A can preserve clean
accuracy, but result in poor perturbed accuracy. On the contrary, larger A can deliver higher per-
turbed accuracy, but with more clean accuracy drop. This phenomenon has also been observed in
adversarial training (Zhang et al., 2019).

Table 9: Experimental results based on A value choosing. The results show that A\ = 5 can balance
the tradeoff between clean accuracy and perturbed accuracy.

Base ConvL
Model | » |CA PA 1 GA (NP PA (NF) RP
10 90.1 88.0+1.7 49.1
5 89.8 87.8 1.7 48.8
ResNet18 1 926 389+124 90.0 842 +38 453
0.1 91.6 65.7+9.3 26.8
0.01 92.2 43.6 £ 13 4.7
10 89.6 779+ 19 419
5 89.8 777+ 19 41.7
VGG19 1 90.5 36.0+12.0 89.9 73.1+ 19 37.1
0.1 89.1 512+ 16 15.2
0.01 90.2 36.8 + 12 0.8

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse,
and R.P.: total recover percentage of PA. (NF) v.s. PA.

Comparison to Universal Input Perturbation (UIP). Moosavi-Dezfooli et al.|(2017) has shown
that there exists a universal adversarial perturbation to the input data such that the model will make
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wrong predictions on a majority of the perturbed images. In our NeuralFuse framework, the uni-
versal perturbation is a special case when we set G(x) = tanh (UIP) for any data sample x. The
transformed data sample then becomes x; = clip_; j (x + tanh (UIP)), where x; € [—1,1]¢ and
UIP is a trainable universal input perturbation that has the same size as the input data. The ex-
perimental results with the universal input perturbation are shown in Table [I0] We observe that its
performance is much worse than our proposed NeuralFuse. This result validates the necessity of
adopting input-aware transformation for learning error-resistant data representations in low-voltage
scenarios.

Table 10: Performance of the universal input perturbation (UIP) trained by EOPM on CIFAR-10
pre-trained ResNet18.

Base Model | B.ER. | C.A. PA. | CA.(UIP) PA.(UIP) RP
ReNets | o0 | 926 00T ITe | o5 doei i1 o
ResNetsO | ode | 926 20T 0% | ol9 gar1r 14
vaall | gl | ssa g0t | RS eaiss  os
vaats | gl |3 T 8T | oo ersist 07
vaalo | el es 09T 0 | o0 et o

[Note] B.E.R.: the bit error rate of the base model, C.A. (%): clean accuracy, UIP: universal input trans-
formation parameter, P.A.(%): perturbed accuracy, and R.P.: total recover percentage of PA. (UIP) v.s.
PA.
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G ADDITIONAL EXPERIMENTAL RESULTS ON RELAXED ACCESS SETTINGS

We conducted more experiments on Relaxed Access settings to show that our NeuralFuse can protect
the models under different B.E.R. The results can be found in Sec. (CIFAR-10), Sec. [G2]
(GTSRB), Sec. [G.3] (ImageNet-10), and Sec. [G.4](CIFAR-100). For comparison, we also visualize
the experimental results in the figures below each table.

G.1 CIFAR-10

Table 11: Testing accuracy (%) under 1% and 0.5% of random bit error rate on CIFAR-10.

Base NE CA 1% B.E.R. 0.5% B.E.R.
Model o PA. CA.(NF) PA.(NF) RP.| PA. CA (NF) PA.(NF) RP
ConvL 89.8 87.8 1.7 488 90.4 879+22 178
ConvS 88.2 595+ 11 20.6 91.7 784+83 83
ResNet18 DeConvL 9.6 389 89.6 88.5+0.8 49.6| 70.1 90.2 90.0+£02 199
DeConvS + 124 82.9 688 +64 299 | £11.6 84.1 799+36 98
UNetL 86.6 84.6+0.8 456 89.7 863+24 162
UNetS 84.4 68.8+6.0 298 90.9 80.7+5.8 10.7
ConvL 85.5 532+ 22 271 90.3 86.5+32 255
ConvS 85.2 346+ 14 85 90.8 733+87 123
ResNet50 DeConvL 9.6 26.1 87.4 633+ 21 372 | 61.0 89.5 872+25 262
DeConvS +94 82.4 422+ 17 16.1 | £103 90.3 755+8.1 145
UNetL 86.2 755+ 12 494 89.9 839+3.6 229
UNetS 71.3 562+ 19 30.1 89.7 76.1£7.2 15.1
ConvL 89.6 872+£29 451 89.8 870+13 233
ConvS 84.9 66375 24.1 88.2 745+5.7 109
VGG11 DeConvL 88.4 42.2 89.3 872+£26 450 | 63.6 89.6 869+ 1.1 232
DeConvS ’ +11.6 85.6 682+71 260 | +£9.3 88.3 75.7+4.6 121
UNetL 87.1 83.6 13 414 88.0 824 +1.8 188
UNetS 85.5 72.7+£4.6 305 88.1 758 +£43 122
ConvL 90.1 86.0+6.2 503 90.2 885+09 219
ConvS 87.4 596+ 12 239 89.9 778 £48 11.1
VGGl6 DeConvL 903 35.7 89.7 855+6.8 498 | 66.6 89.7 882+10 214
DeConvS +79 86.8 665+ 11 30.8 | £8.1 90.0 784+47 118
UNetL 87.4 83.4+44 477 89.0 862+ 15 19.6
UNetS 87.4 712+82 355 89.0 80.2+35 137
ConvL 89.8 777+ 19 417 90.4 88.1+1.8 239
ConvS 87.3 527+ 17 16.7 89.6 745+9.0 103
VGG19 DeConvL 905 36.0 86.3 784+ 18 424 | 642 90.4 885+ 14 243
DeConvS ’ + 120 86.5 582+ 18 222 | £124 89.7 752+86 11.0
UNetL 86.3 82.1+4.8 46.0 89.1 85.0+2.7 208
UNetS 86.3 664+ 13 304 89.2 77.1+£73 129

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA. (NF) v.s.
PA.
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Figure 8: Experimental results on CIFAR-10
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G.2 GTSRB

Table 12: Testing accuracy (%) under 1% and 0.5% of random bit error rate on GTSRB.

Base NF CA 1% B.E.R. 0.5% B.E.R.
Model 1 PA. CA.NF) PA.(NF) RP.| PA. CA (NF) PA.(NF) RP
ConvL 95.7 91.1 £4.7 542 93.4 8905+ 19 143
ConvS 94.4 68.6+ 12 31.7 94.8 87.7+42 124
ResNet18 DeConvL 955 36.9 95.6 913+43 544 | 752 95.4 934+1.1 18.1
DeConvS ’ +16.0 95.7 78.1£9.1 412 | £127 95.8 90.1 £33 149
UNetL 96.2 938+ 1.0 569 96.2 935+1.6 183
UNetS 95.9 85.1+6.9 482 95.5 914+28 16.2
ConvL 95.6 71.6 £ 20 42.1 94.6 90.6 £3.7 16.6
ConvS 94.8 505+ 22 21.0 95.4 84.5+85 105
ResNet50 DeConvL 95.0 29.5 94.9 71.6 £ 21 420 | 740 94.7 91.6+£29 17.6
DeConvS +16.9 93.0 564+ 17 269 | £13.0 94.6 874+£59 135
UNetL 94.5 80.6 £ 15 51.1 96.5 93.7+£23 19.7
UNetS 94.7 647+ 22 352 95.9 90.6 £4.8 16.7
ConvL 94.8 85.7+7.2 50.9 93.9 926+£0.7 277
ConvS 91.1 622+ 11 273 90.9 80.5+3.5 157
VGG11 DeConvL 91.9 349 95.0 84.6+7.6 49.7| 649 93.6 919+£06 27.1
DeConvS ’ + 124 92.4 675+ 11 326 | £10.8 92.3 83.1+3.7 182
UNetL 922 832+6.0 483 94.8 90.6 £ 1.7 257
UNetS 94.7 734+ 10 385 94.6 889+22 241
ConvL 96.3 724+ 12 573 95.6 932+18 344
ConvS 94.1 398+ 13 246 94.3 822+62 234
VGG16 DeConvL 952 15.1 96.4 720+ 12 569 | 5838 95.6 93.1+£2.0 343
DeConvS ’ + 6.8 93.8 509+ 13 358 | £89 95.1 84.0+£53 252
UNetL 95.8 786+ 11 635 96.0 928 £2.0 34.0
UNetS 94.3 633+ 14 48.1 95.4 87.8+3.6 29.0
ConvL 96.0 883+7.2 517 95.6 934+21 242
ConvS 93.8 69.0+ 14 324 94.9 87.0+44 178
VGG19 DeConvL 955 36.6 95.4 872+75 506 | 69.1 95.5 924+£22 233
DeConvS ’ + 6.8 94.5 73.1£ 12 365 | £11.1 95.5 88.8+3.7 19.7
UNetL 95.4 88.2+6.7 517 94.9 91.7+£25 226
UNetS 94.6 80.6 £9.0 44.1 96.5 90.8 3.4 21.6

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA. (NF) v.s.

PA.
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Figure 9: Experimental results on GTSRB.
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G.3 IMAGENET-10

Table 13: Testing accuracy under 0.5% of random bit error rate on ImageNet-10.

Base 0.5% B.E.R.
Model NE 1 CA L pA CA(NF) PA (NF) RP
ConvL 940  88.0+£20 157
ConvS 918 836441 113
DeConvL 940  892+13 169
ResNetl8 | hoconys | 922 | 723+70  gre 875123 152
UNetL 940  881+14 158
UNetS 932 864+22 141
ConvL 22  800+58 406
ConvS 918 650+ 11 256
DeConvL 93.0  794+59 400
ResNet50 | peconys | 898 | 394+ 11 93.2 709+9.1 315
UNetL 922  805+58 411
UNetS 9024 73689 342
ConvL 2.0  861+37 383
ConvS 804  664+71 186
DeConvL 91.0 86.0 3.0 382
VGGIL | poconys | 210 | 478+ 13 g9y 725178 247
UNetL 904  83.0+35 352
UNetS 862 T35+ 60 257
ConvL 908 7714+ 11 387
ConvS 902 602+ 14 218
DeConvL. 912 7724+ 11 388
VGGI6 | poconys | 240 | 38417 o900 31 14 239
UNetL 90.6  SI1L+59 427
UNetS 864  723+88 339
ConvL 914 755+88 383
ConvS 888 565+ 13 193
DeConvL, 91.0  759+89 387
VGGI9 | piconys | 924 | 372+ 11 ge's a0+ 11 268
UNetL 804 779461 407
UNetS 876 659+ 10 287

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and
R.P.: total recover percentage of PA. (NF) v.s. PA.

——- Nominal (w/o NeuralFuse) Low voltage (w/o NeuralFuse) Nominal (w/ NeuralFuse) B Low voltage (w/ NeuralFuse)

ImageNet-10 pre-trained ResNet18 ImageNet-10 pre-trained ResNet50 ImageNet-10 pre-trained VGG11 ImageNet-10 pre-trained VGG16 ImageNet-10 pre-trained VGG19
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Figure 10: Experimental results on ImageNet-10, 0.5% Bit Error Rate.
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G.4 CIFAR-100

As mentioned in the previous section, larger generators like ConvL, DeConvL, and UNetL have
better performance than small generators. For CIFAR-100, we find that the gains of utilizing Neu-
ralFuse are less compared to the other datasets. We believe this is because CIFAR-100 is a more
challenging dataset (more classes) for the generators to learn to protect the base models. Neverthe-
less, NeuralFuse can still function to restore some degraded accuracy; these results also demonstrate
that our NeuralFuse is applicable to different datasets. In addition, although the recover percentage
is less obvious on CIFAR-100 (the more difficult dataset), we can still conclude that our NeuralFuse
is applicable to different datasets.

Table 14: Testing accuracy (%) under 1%, 0.5% and 0.35% of random bit error rate on CIFAR-100.

Base ‘ NF ‘ CA ‘ 1% B.E.R. ‘ 0.5% B.E.R. 0.35% B.E.R.
Model A1 PA. CA.(NF PA.(NF) RP.| PA. CA.(NF) PA (NF) RP | PA. CA.(NF) PA (NF) RP
ConvL 54.8 110£77 64 652  390+7.1 181 694  429+62 114
ConvS 497 42422 04 700  245+76 36 72.1 351473 3.7
ResNetlg | PeCOmVL | 752 | 46 552 119+82 73| 209 663  382+£69 173 | 314 692  429+55 114
DeConvS +£29 327 40+£22 06 |+£74 682 259468 5/+76 716  358+55 44
UNetL 50.6 145489 100 662  40.1+64 192 703 463+55 149
UNetS 26.8 46+25 -00 67.1 288468 7.9 709  383+64 69
ConvL 635 32417 01 684  288+67 7.6 720  408+75 5.1
ConvS 65.5 32416 0.1 719 231+69 19 730 374480 L7
ResNetso | DeComvL | oo o | 30 59.6 32417 02 213 68.1 286+70 74| 357 717 417+77 6.1
DeConvS | 77 | £18  6l.1 32417 01|+70 703  250+67 37 |+86 728  389+79 33
UNetL 39.0 50£17 19 666  365+62 153 708  453+67 9.6
UNetS 477 34418 03 69.1 26.1+66 48 726  396+78 39
ConvL 583 197+ 11 115 63.1 388+£93 150 639 424290 111
ConvS 56.6 104+£74 22 627 279+ 10 40 639  418+83 105
VGG11 | DeConvL | (1o | 82 603 212+ 11 130 | 239 639  400+£90 162 | 313 640  428+91 115
DeConvS | **° | £57 583 118+£79 35| £94 619  298+£99 59|+ 10 635 361+ 10 48
UNetL 51.1 221482 139 618  37.8+90 139 635  409+93 96
UNetS 51.9 131+£79 49 617  298+97 60 638  357+£99 45
ConvL 514 192+60 126 618  4l1+56 187 649  449+53 138
Convs 443 67+23 0.1 638  27.5+68 5.1 660  363+61 5.1
vGGle | DeComvL | oo | 7.0 53.1 208+62 142 | 224 628  421+55 198 | 311 650  466+52 155
DeConvs | *7° | £35 235 48417 -18|+70 621 299+67 75| +72 649 381463 70
UNetL 502 253+17 187 617  413+50 189 648  468+46 157
UNetS 277 99+21 33 616  313+63 89 650  398+59 87
ConvL 594 292481 186 656 4654168 125 669  492+74 70
ConvS 63.7 144+51 38 666 383168 42 677 453485 32
VGGlo | DeConvL | oo | 10.6 60.1 296+85 19.0 | 340 657  469+7.1 129 | 421 673  498+76 16
DeConvS | *° | £43 609 161£60 56| +£96 665 390£37 50| £94 677 45784 36
UNetL 587 302482 196 655 46965 129 674  500£75 79
UNetS 59.1 180+£62 74 663  401%£80 6.1 675  466+=84 45

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover per-
centage of PA. (NF) v.s. PA.

—--Nominal (w/o NeuralFuse) Low voltage (w/o NeuralFuse) Nominal (w/ NeuralFuse) B Low voltage (w/ NeuralFuse)

CIFAR-100 pre-trained ResNet1§ CIFAR-100 pre-trained ResNet50 CIFAR-100 pre-trained VGG11 CIFAR-100 pre-trained VGG16 CIFAR-100 pre-trained VGG19
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Figure 11: Experimental results on CIFAR-100.
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H ADDITIONAL EXPERIMENTAL RESULTS ON RESTRICTED ACCESS
SETTINGS (TRANSFERABILITY)

We conduct more experiments with Restricted Access settings to show that our NeuralFuse can be
transferred to protect various black-box models. The experimental results are shown in Sec.
(CIFAR-10), Sec. [H.2](GTSRB), and Sec. [H.3|(CIFAR-100).

We find that using VGG19 as a white-box surrogate model has better transferability than ResNet18
for all datasets. In addition, we can observe that some NeuralFuse generators have downward appli-
cability if base models have a similar architecture. In other words, if we try to transfer a generator
trained on a large B.E.R. (e.g., 1%) to a model with a small B.E.R. (e.g., 0.5%), the performance
will be better than that of a generator trained with the original B.E.R. (e.g., 0.5%). For example,
in Table [T5] we could find that if we use VGG19 as a source model to train the generator ConvL
(1%), the generator could deliver better performance (in terms of P.A. (NF)) when applied to simi-
lar base models (e.g., VGG11, VGG16, or VGG19) under a 0.5% B.E.R., compared to using itself
as a source model (shown in Table [TT). We conjecture that this is because the generators trained
on a larger B.E.R. can also cover the error patterns of a smaller B.E.R., and thus they have better
generalizability across smaller B.E.Rs.

To further improve the transferability to cross-architecture target models, we also conduct an exper-
iment in Sec. [H.4]to show that using ensemble-based training can help the generator to achieve this
feature.

H.1 CIFAR-10
The results of CIFAR-10 in which NeuralFuse is trained at 1% B.E.R. are shown in Table[T3]

Table 15: Transfer results on CIFAR-10: NeuralFuse trained on S.M. with 1% B.E.R.

S.M. TM. | BER.|CA. PA. ConvL (1%) UNetL (1%)

CA.(NF) PA.(NF) RP | CA (NF) PA.(NF) RP
ResNetl8 | 05% | 926 701+ 116 | 898  895+02 194 | 866  862+03 161
Reeiso | 1% | g 261E 9A| oo 360= 19 99| o 388+ 19 127
0.5% 61.0 + 103 7504 10 14.1 771450 161
VoGt | 1% | gga B2EN6| g0, 625%84 203| _ o 6L1£85 189
ResNetl8 0.5% 63.6+ 93 81.0+46 174 737430 10.1
voGte | 1% | gps BTE 19| g 63E 8 276 o 99+ 16 242
0.5% 66.6+ 8.1 85.0+34 184 802+45 136
1% 36.0 = 12.0 507+ 22 147 SI1+ 16 151

VGG19 90.5 89.6 85.3
0.5% 642+ 12.4 802+87 160 765+78 123
reats | 1% | gy BOEDRA[ T 610+ 17 20| o0 697+ 11 308
0.5% 70.1 + 11.6 86.1 469 160 842430 141
reaso | 1% | g 260% 94| o7 0L 19 70| o M2E 17 I8l
0.5% 61.0+ 103 765+ 10 155 80.7+42 197
VGGI9 [ o T 1% | e, 225016 | oo 765570 33| o 19956 377
0.5% 636+ 93 88.0+2.1 244 854408 218

()

voote | 1% | oos BTE 19| g0 PSEI12 98| o 789+78 432
0.5% 66.6+ 8.1 8894+ 0.6 223 862403 196
VGGI9 | 05% | 905 642+ 124 | 898  896+87 254 | 84  88+04 226

[Note] S.M.: source model, used for training generators, TM.: target model, used for testing generators, B.E.R.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA. (NF) v.s.
PA.
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H.2 GTSRB

In Tables[16]and[T7] we show the results on GTSRB in which NeuralFuse is trained at 1.5% and 1%
B.E.R., respectively.

Table 16: Transfer results on GTSRB: NeuralFuse trained on S.M. with 1.5% B.E.R.

AL o | BER | ca oA ComvL (1.5%) UNetL (1.5%)
CA.(NF) PA.(NF) RP. | CA (NF) PA (NF) RP
reetts | 1% | gss 369F160 | o 93919 570 o 944+04 575
0.5% 752+ 12.7 957402 20.5 948+02 196
1% 295+ 169 370+ 22 75 71+ 23 176
ResNet50 95.0 944 944
esne 0.5% 74.0 + 13.0 775+ 13 35 848+95 108
ReNetls | vaan | 1% |9 MOEDRA[ T 452510 103 o . 505+ 13 156
0.5% 649+ 10.8 794458 145 83.9+42 190
1% 51+ 68 31+ 13 159 368+ 12 217
VGG16 95.2 95.4 94.6
0.5% 588+ 89 845+83 258 86.0+86 27.2
VGG | 1% |55 366% 68 | o7 S6AE 15 198] o o 608 15 242
0.5% 69.1+ 11.1 869 +34 178 877+38 186
oot | 1% | gs5 369E160 | oo 503+ 12 134] 0 @7+ 16 268
0.5% 752+ 12.7 779474 27 87.5+39 123
1% 295+ 169 207+ 17 02 404+ 21 109
ResNet50 95.0 87.5 92.5
esne 0.5% 740+ 13.0 679+ 17 6.1 775+ 15 3.5
vaio | vaan | 1% | g 9FR4 | o Il 2] o 600 12 251
0.5% 649+ 10.8 763451 114 86.0+38 21.1
1% 51+ 68 202+ 15 141 385+ 16 234
VGG16 95.2 93.0 93.0
0.5% 588+ 89 757+ 12 169 799483 211
VoG | 1% |ogs 366% 68| o 874560 S08| o o 887450 521
0.5% 69.1+ 11.1 924+24 233 04+22 233

[Note] S.M.: source model, used for training generators, TM.: target model, used for testing generators, B.E.R.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA. (NF) v.s.
PA.

Table 17: Transfer results on GTSRB: NeuralFuse trained on S.M. with 1% B.E.R.

SM. TM. |BER. | CA. PA. ConvL. (1%) UNetL (1%)
CA.(NF) PA.(NF) RP. |CA.(NF) PA.(NF) RP.
ResNetl8 | 05% | 955 7524127 | 957  953+05 201 | 962  957+03 205
ReNetso | 1% | g5 ZSEIGY [ oo 3562 61| oo 426+23 131
0.5% 74.0 + 13.0 788+ 13 48 873490 133
VoG | 1% [ g M9EDA[ T 45811 109 7 470+ 14 122
ResNet!8 0.5% 64.9 + 10.8 818450 169 842448 193
vaGie | 1% |95, 31E 68 oo 265+ 12 14| oo 324+ 11 173
0.5% 588+ 8.9 822490 234 854467 266
VGG | 1% | gss 306 68 o0 S32& 14 166 oo 609+ 15 243
0.5% 69.1+ 11.1 854+45 163 87.5+37 184
reetts | 1% | g5 09E160[ o S3IE 16 162] oo ° 634% 18 265
0.5% 752+ 127 839+76 87 807 +48 145
1% 205+ 169 306+ 18 L1 389+ 22 94
ResNet . 2. 4
esNetS0 | s | 20 qp0x130| 2 arx1s 07| 815+ 16 7.5
VGGIO [ o T 1% [ g, #9E124 | o 506+ 11 157 o 589+ 15 240
0.5% 64.9 + 10.8 823451 174 875437 226
VoG | 1% | s, I31E 68 o0 278+ 15 127 o 335+ 14 184
0.5% 588+ 8.9 790+ 12 202 81.8+7.8 23.0
VGGI9 | 05% | 955 691 +11.1| 960  940+22 249 | 954  939+21 248

[Note] S.M.: source model, used for training generators, T.M.: target model, used for testing generators, B.ER.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA. (NF) v.s.
PA.
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H.3 CIFAR-100

In Tables[18]and[T9] we show results on CIFAR-100 with NeuralFuse trained at 1% and 0.5% B.E.R.,
respectively.

Table 18: Transfer results on CIFAR-100: NeuralFuse trained on S.M. with 1% B.E.R.

SM. TM. | BER. | CA. PA. ConvL (1%) UNetL (1%)
CA.(NF) PA.(NF) RP |CA (NF) PA.(NF) RP.
0.5% 209+ 74 358+52 149 393+28 184
ResNetl8 | 03506 | 7 3144 76| >* w17437 103] % 533114 119
1% 30+ 18 220120 08 24119 06
ResNetS0 | 0.5% | 735 213+ 7.0 | 449  159+82 54| 415  171+7.1 -42
0.35% 357+ 86 B7+71 120 262456 9.5
1% 82+ 57 98+56 16 102+51 20
ResNetts | VOGII | 05% | 648 239+ 04| 412 242459 03| 375 245447 06
0.35% 313+ 10.0 200+54 23 282445 3.1
1% 70+ 35 79+37 09 101+45 31
VGG16 | 05% | 67.8 224+ 70| 440 224476 00| 395 263453 39
0.35% 31+ 72 281459  -3.0 306436 -0.5
1% 106+ 43 B35+61 29 56+£62 50
VGGI9 | 05% | 67.8 340+ 96| 442 279448 61| 407  293+46 -47
0.35% 21+ 94 332+ 48 89 328+39 93
1% 46+ 29 58+37 12 68144 22
ResNetl8 | 0.5% | 737 209+ 74| 555 246463 37| 573 281459 72
0.35% 314+ 76 31450  -03 364+45 50
1% 30+ 138 28421 02 37424 07
ResNet50 | 0.5% | 73.5 213+ 70| 561  189+86 -24| 561  228+85 15
0.35% 357+ 86 287482 7.0 3B7+70 20
VGG 1% 82+ 57 23184 41 154194 72
VGGI1 | 05% | 648 239+ 94| 528 300493 61| 539 333472 94
0.35% 313+ 10.0 365+77 52 388465 7.5
1% 70+ 35 12+44 42 36+52 66
VGG16 | 05% | 67.8 224+ 70| 536 324473 100 552 359462 I35
0.35% 31+ 72 394+63 83 £24+49 113
05% 340+ 96 502+3.1 162 91+35 151
VGO | hasa [ 78 it 04| P s31123 10| ¥ s20+31 99

[Note] S.M.: source model, used for training generators, TM.: target model, used for testing generators, B.E.R.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA. (NF) v.s.
PA.

Table 19: Transfer results on CIFAR-100: NeuralFuse trained on S.M. with 0.5% B.E.R.

SM. TM. | BER. | CA. PA. ConvL. (0.5%) UNetL. (0.5%)
C.A.(NF) PA.(NF) RP. | CA.(NF PA.(NF) RP
ResNetl8 | 035% | 737 314+ 7.6 | 652  477+49 163 | 662  492+41 178
ResNeiso | 09% | 13s 213E 70| o 240299 28| o 264+01 5l
0.35% 357+ 8.6 363+£89 0.6 394+81 37
VGGLL | 05% | oug 239E 94| oo 330£98 92] 342498 103
ResNet18 0.35% 313 £ 10.0 404487 9.1 414+90 101
VGGle | 05% | g 24% 70| o 3#7£80 123| . 315468 152
0.35% 3.1+ 72 429+60 118 453449 142
VGGlo | 05% | o 340E 06| 7 #37+62 96| . 450£63 110
0.35% 214+ 94 490455 68 505453 83
ResNetlg | 05% | 13, 209% T4[ 249467 40| o 217468 68
0.35% 314+ 76 344454 30 381456 67
ResNeiso | 09% | 13s 213E 70| 227:78 14| o 25480 42
0.35% 357+ 86 355477 02 388475 32
VGG1
GG19 [ o [ 05% | 0 2395 94| 00 293+ 10 54| 0 312+98 74
0.35% 313 £ 10.0 366495 5.3 381490 68
0
VGGle | 03% | g 224E 70| o 308%73 84| o 330£73 107
0.35% 3.1+ 72 400465 89 425459 113
VGG19 | 035% | 678 421+ 94| 656  520+62 98| 655  526+61 104

[Note] S.M.: source model, used for training generators, T.M.: target model, used for testing generators, B.ER.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA. (NF) v.s.
PA.
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H.4 GENERATOR ENSEMBLING

To improve the transferability performance on cross-architecture cases (e.g., using ResNet-based
models as surrogate models to train NeuralFuse and then transfer NeuralFuse to VGG-based target
models), we try to adopt ensemble surrogate models to train our NeuralFuse. The experimental
results are shown in Table 20} We use the same experimental settings mentioned in Table [I] but
change one source model (e.g., ResNet18 or VGG19) into two (ResNet18 with VGG19) for training.
The results show that the overall performance is better than the results shown in Table [I] which
means ensemble-based training can easily solve the performance degradation on cross-architecture
target models.

Table 20: Transfer results on CIFAR-10: NeuralFuse trained on two S.M. with 1.5% B.E.R.

SM. TM. | BER.|CA. PA. ConvL (1.5%) UNetL (1.5%)
CA.(NF) PA.(NF) RP. |CA.(NF) PA.(NF) RP.
reetts | 1% | gpe BOEDRA[ 7 S8IEL0 492 o 854105 465
0.5% 701+ 116 892402 19.1 861402 16.0
0],
reNerso | 1% | g 201 94| oo #0E 22 179] o 509+ 20 248
ResNet!8 0.5% 61.0 + 103 803467 193 786+39 17.6
+ VoGl | 1% | gga B2ENG| o 770£56 48| o 823441 401
VGG19 0.5% 63.6+ 93 87.5+1.6 239 85.0+0.6 214
vaGle | 1% | g0s 7% 79| o, S05:86 48| . 814155 457
0.5% 66.6+ 8.1 882407 216 85.0+07 184
0]
vaGlo | 1% | gps 00E120[ o0 TSIE 17 90| o 830434 470
0.5% 642+ 12.4 89.0+02 2438 859404 217

[Note] S.M.: source model, used for training generators, TM.: target model, used for testing generators, BE.R.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA. (NF) v.s.
PA.

I NEURALFUSE ON REDUCED-PRECISION QUANTIZATION AND RANDOM
B1T ERRORS

As mentioned in Sec. we explore the robustness of NeuralFuse to low-precision quantization
of model weights and consider the case of random bit errors. Here, we demonstrate that Neural-
Fuse can recover not only the accuracy drop due to reduced precision, but also the drop caused
by low-voltage-induced bit errors (0.5% B.E.R.) under low precision. We selected two NeuralFuse
generators (ConvL and UNetL) for our experiments, and these generators were trained with the
corresponding base models (ResNet18 and VGG19) at 1% B.E.R. (CIFAR-10, GTSRB) and 0.5%
B.E.R. (ImageNet-10). The experimental results are shown as follows: CIFAR-10 (Sec. [LT), GT-
SRB (Sec. [L.2), and ImageNet-10 (Sec. [.3). Similarly, for ease of comparison, we visualize the
experimental results in the figures below each table. Our results show that NeuralFuse can consis-
tently perform well in low-precision regimes as well as recover the low-voltage-induced accuracy
drop.

I.1 CIFAR-10
Table 21: Reduced-precision Quantization and with 0.5% B.E.R. on CIFAR-10 pre-trained models.

Base . ConvL (1%) UNetL (1%)
Model #Bits | C.A. P.A. C.A. (NF) PA.(NF) R.P. | CA.(NF) PA.(NF) R.P.
8 92.6 | 70.1 £ 11.6 89.8 89.5+ 02 194 86.6 86.2+ 03 16.1
7 92.5 | 68.8+10.4 89.8 89.5+ 1.7 20.7 86.5 86.0+ 05 172
6 92.6 | 684+ 11.2 89.7 89.5+ 02 21.1 86.6 859+ 03 175
ResNet18 5 92.4 | 52.7+ 14.1 89.7 90.0+ 0.7 373 86.5 855+ 0.8 328
4 91.8 | 26.3 £ 12.7 89.8 58.7+245 324 86.6 649 +22.5 38.6
3 84.8 | 11.3+ 1.8 89.8 128 £ 5.8 1.5 86.0 148 £10.0 3.5
2 10.0 | 10.0£ 0.0 10.0 100+ 0.0 0.0 10.0 100+ 0.0 0.0
8 90.5 | 642+ 124 89.8 89.6 £ 87 254 87.4 86.8 £ 04 226
7 903 | 66.5+ 8.5 89.8 89.6 + 0.2 23.1 87.4 86.7+ 0.3 202
6 90.1 | 59.8 £13.2 89.9 894+ 38 29.6 87.4 864+ 0.7 26.6
VGGI19 5 90.2 | 37.7 £ 14.1 89.8 78.0 £ 15.8 40.3 87.2 79.8 £+ 0.8 42.1
4 87.5 | 147+ 6.0 89.8 27.8 £189 13.1 87.2 3444205 19.7
3 783 | 105+ 1.5 89.7 109+ 26 04 86.8 11.0£ 29 05
2 10.0 | 10.0£ 0.0 10.0 100+ 0.0 0.0 10.0 100+ 00 0.0

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA.
(NF) v.s. PA.
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Figure 12: Results of Reduced-precision and bit errors (0.5%) on CIFAR-10 pre-trained base mod-

els.

.2 GTSRB

Table 22: Reduced-precision Quantization and with 0.5% B.E.R. on GTSRB pre-trained models.

Base . ConvL (1%) UNetL (1%)
Model #Bits | C.A. PA. C.A. (NF) PA.(NF) R.P. | C.A.(NF) PA.(NF) R.P
8 955 | 752 +£12.7 95.7 953+ 0.5 20.1 96.2 957+ 0.3 20.5
7 95.5 | 69.5 £ 10.6 95.7 953+ 0.3 258 96.2 959+ 03 264
6 954 | 672+ 144 95.7 952+ 0.5 28.0 96.2 957+ 0.5 28.5
ResNet18 5 954 | 48.6 £18.2 95.8 926+ 5.1 440 96.2 948+ 2.5 462
4 92.6 | 246+ 9.8 95.9 75.6 +£16.2 51.0 96.2 86.6 = 9.5 62.0
3 67.7 534+ 35 95.4 184+ 153 13.1 96.2 253+225 200
2 3.8 38+ 0.0 4.1 38+ 00 0.0 3.8 38+ 00 00
8 95.5 | 69.1 £11.1 96.0 940+ 2.2 249 95.4 939+ 2.1 248
7 95.6 | 66.1 +14.8 96.0 922+ 57 261 95.4 92.6 + 3.7 26.5
6 953 | 642+ 84 96.0 922+ 57 280 95.4 923+ 2.3 28.1
VGGI19 5 95.2 | 482+ 14.0 96.0 922+ 57 440 95.4 862+ 84 38.0
4 92.0 | 182+ 143 93.0 922+ 57 740 95.0 49.6 £22.8 314
3 60.0 | 20+ 09 87.3 922+ 57 90.2 87.2 1.7+ 09 -03
2 5.9 38+ 0.0 5.9 38+ 00 0.0 59 38+ 00 00

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA.

(NF) v.s. PA.

=== Original Accuracy w/o NeuralFuse

GTSRB pre-trained ResNet18 (Nominal voltage, No Bit Error)

[ NeuralFuse (ConvL)

B NeuralFuse (UNetL)

GTSRB pre-trained ResNet18 (Low voltage, 0.5% BER)
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(a) Base Model: ResNetl18, no bit error.

GTSRB pre-trained VGG19 (Nominal voltage, No Bit Error)

Accuracy (%)

Bit Quantization Number

(b) Base Model: ResNetl18, 0.5% B.E.R.

GTSRB pre-trained VGG19 (Low voltage, 0.5% B.ER.)
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(c) Base Model: VGG19, no bit error.
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(d) Base Model: VGG19, 0.5% B.E.R.

Figure 13: Results of Reduced-precision and bit errors (0.5%) on GTSRB pre-trained base models.
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1.3 IMAGENET-10

Table 23: Reduced-precision Quantization and with 0.5% B.E.R. on ImageNet-10 pre-trained mod-
els.

Base . ConvL (0.5%) UNetL (0.5%)
Model | #Bits | CA- 1 PA- 1 oA (NF)  PA (NF) RP. | CA (NF) PA (NF) RP.
8 | 922|723+ 70| 940 880+ 20 157 | 940 881+ 14 158
7 | 924 |706+130| 942 867+ 41 161 | 936 878+ 35 172
6 | 924|689+ 99| 942 851+ 48 162 | 936 864+ 37 175
ResNetI8 | 5 | 910 | 609+130 | 942 825+ 68 21.6| 940 832+ 59 223
4 | 914|474+ 98| 938 686+ 98 212| 926 687+ 92 213
3852 |288+118| 892  441+140 153 | 894  427+142 139
2 1100|100+ 00| 100 100+ 00 00| 100 100+ 00 00
8 | 924 |372+110| 914 755+ 88 383 | 894 779+ 6.1 407
7 1920|273+ 66| 912  593+130 320| 894 6544100 38.1
6 | 924|279+ 64| 910 597+118 318 | 894 649+ 99 370
VGGI9 | 5 | 920|151+ 44| 916 231+ 07 80| 890 279+ 88 128
4 |894 | 122+ 27| 908 140+ 43 18| 896 146+ 49 24
3 | 468 | 99+ 05| 82 104+ 06 05| 842 99+ 07 00
2 1100|100+ 00| 100 100+ 00 00| 100 100+ 00 00

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of PA.
(NF) v.s. PA.

=== Original Accuracy w/o NeuralFuse I NeuralFuse (ConvL) B NeuralFuse (UNetL)

ImageNet-10 pre-trained ResNet18 (Nominal voltage, No Bit Error) ImageNet-10 pre-trained ResNet18 (Low voltage, 0.5% BER.)
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(a) Base Model: ResNetl18, no bit error. (b) Base Model: ResNetl18, 0.5% B.E.R.
ImageNet-10 pre-trained VGG19 (Nominal voltage, No Bit Error) ImageNet-10 pre-trained VGG19 (Low voltage, 0.5% B.ER.)

Accuracy (%)
Accuracy (%)

o 10,010,

’ 613;: Quantization Number Bit Quantization Number
(c) Base Model: VGG19, no bit error. (d) Base Model: VGG19, 0.5% B.E.R.

Figure 14: Results of Reduced-precision and bit errors (0.5%) on ImageNet-10 pre-trained base
models.
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J DATA EMBEDDINGS VISUALIZATION

To further understand how our proposed NeuralFuse works, we visualize the output distribution
from the final linear layer of the base models and project the results onto the 2D space using t-SNE
(van der Maaten & Hinton| 2008). Figure[T3]shows the output distribution from ResNet18 (trained
on CIFAR-10) under a 1% bit error rate. We chose two generators that have similar architecture:
ConvL and ConvS, for this experiment. We can observe that: (a) The output distribution of the
clean model without NeuralFuse can be grouped into 10 classes denoted by different colors. (b) The
output distribution of the perturbed model under a 1% bit error rate without NeuralFuse shows mixed
representations and therefore degraded accuracy. (c) The output distribution of the clean model with
ConvL shows that applying NeuralFuse will not hurt the prediction of the clean model too much (i.e.,
it retains high accuracy in the regular voltage setting). (d) The output distribution of the perturbed
model with ConvL shows high separability (and therefore high perturbed accuracy) as opposed to
(b). (e)/(f) shows the output distribution of the clean/perturbed model with ConvS. For both (e)
and (f), we can see nosier clustering when compared to (c) and (d), which means the degraded
performance of ConvS compared to ConvL. The visualization validates that NeuralFuse can help
retain good data representations under random bit errors and that larger generators in NeuralFuse
have better performance than smaller ones.

Clean model without NeuralFuse. Accuracy=92.6% Perturbed model without NeuralFuse. Accuracy=35.41% Clean model with NeuralFuse. Accuracy=89.78%

1
2
3
4

.5

.6
7
8
9
bt

(2) (b) (©

Perturbed model with NeuralFuse. Accuracy=89.22% Perturbed model with NeuralFuse. Accuracy=67.42%

CmuovswN

(d) (e) ®

Figure 15: t-SNE results for ResNet18 trained by CIFAR-10 under 1% of bit error rate. (a) Clean
model. (b) Perturbed model. (c) Clean model with ConvL. (d) Perturbed model with ConvL. (e)
Clean model with ConvS. (f) Perturbed model with ConvS.

K  QUALITATIVE ANALYSIS OF TRANSFORMED INPUTS

In this section, we conduct a qualitative study to visualize the images which are transformed by
NeuralFuse, and then present some properties of these images. We adopt six different architectures
of NeuralFuse generators trained with ResNet18 under a 1% bit error rate. In Figure [I6(a), we
show several images from the truck class in CIFAR-10. We observe that different images in the
same class transformed by the same NeuralFuse will exhibit a similar pattern. For example, the
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patterns contain several circles, which may symbolize the wheels of the trucks. In Figure [I6[b),
we show several images of a traffic sign category (No Overtaking) in GTSRB. We also oversee that
the transformed images contain similar patterns. In particular, in GTSRB, NeuralFuse will generate
patterns that highlight the shape of the sign with a green background, even if the original images are
of a dark background and under different lighting conditions.

In Figure [I7} we show the images from ten different classes in CIFAR-10 and GTSRB separately.
The transformed images have distinct patterns for each class. Therefore, we speculate that Neural-
Fuse effectively transforms images to some class-specific patterns such that the associated features
are robust to random bit errors and can be easily recognizable by the base model in low-voltage

settings.
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Figure 16: Visualization results of the transformed images from six different NeuralFuse generators
trained with ResNet18 under 1% bit error rate. (a) Truck class in CIFAR-10. (b) No Overtaking
(general) sign in GTSRB.
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Figure 17: Visualization results of the transformed images from six different NeuralFuse generators
trained by ResNet18 with 1% bit error rate. (a) Ten different classes sampled from CIFAR-10. (b)
Ten different traffic signs sampled from GTSRB.

In Figure [I8] we show several images from the apple class in CIFAR-100. We observe that the
different images transformed by the same NeuralFuse will provide the similar patterns. This obser-
vation is similar to CIFAR-10 and GTSRB mentioned above. In Figure [I9] we show more different
classes and their corresponding transformed results.
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Figure 18: Visualization results of the transformed images on CIFAR-100 from six different Neu-
ralFuse generators trained with ResNet18 under 1% of bit error rate.
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Figure 19: Visualization results of twenty different classes of the transformed images from CIFAR-
100 made by six different NeuralFuse generators, which are trained with ResNet18 under 1% of bit
error rate.
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L ADDITIONAL EXPERIMENTS ON ADVERSARIAL TRAINING

Adpversarial training is a common strategy to derive a robust neural network against certain pertur-
bations. By training the generator using adversarial training proposed in Stutz et al.| (2021), we
report its performance against low voltage-induced bit errors. We use ConvL as the generator and
ResNet18 as the base model, trained on CIFAR-10. Furthermore, we explore different K flip bits as
the perturbation on weights of the base model during adversarial training, and then for evaluation,
the trained-generator will be applied against 1% of bit errors rate on the base model. The results
are shown in Table[24] After careful tuning of hyperparameters, we find that we are not able to ob-
tain satisfactory recovery when adopting adversarial training. Empirically, we argue that adversarial
training may not be suitable for training generator-based methods.

Table 24: Performance of the generator trained by adversarial training under K flip bits on ResNet18
with CIFAR-10. The results show that the generator trained by adversarial training cannot achieve
high accuracy against bit errors under 1% bit error rate.

K-bits | C.A. PA. | CA.(NF) PA.(NF) RP
100 924  383+121 -0.6
500 92.1  387+125 -02

5000 | 926 389+124 | 926  389+125 0

20,000 60.1 230+ 81 -16

100,000 71.1 236+ 66 -16

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: Neu-
ralFuse, and R.P.: total recover percentage of PA. (NF) v.s. PA.

M ADDITIONAL EXPERIMENTS ON ROBUST MODEL TRAINED WITH
ADVERSARIAL WEIGHT PERTURBATION WITH NEURALFUSE

Previously, Wu et al. proposed that one could obtain a more robust model via adversarial weight
perturbation (Wu et al., [2020). To seek whether such models could also be robust to random bit
errors, we conducted an experiment on CIFAR-10 with the proposed adversarially trained PreAct
ResNet18. The experimental results are shown in Table [25] We find that the average perturbed ac-
curacy is 23% and 63.2% for PreAct ResNet18 under 1% and 0.5% B.E.R., respectively. This result
is lower than 38.9% and 70.1% from ResNet18 in Table 1] indicating their poor generalization
ability against random bit errors. Nevertheless, when equipped NeuralFuse on the perturbed model,
we could still witness a significant recover percentage under both 1% and 0.5% B.E.R. This result
further demonstrates that NeuralFuse could be adapted to various models (i.e., trained in different
learning algorithms).

Table 25: Performance of NeuralFuse trained with rubust CIFAR-10 pre-trained PreAct
ResNet18. The results show that NeuralFuse can be used together with a robust model and
further improve perturbed accuracy under both 1% and 0.5% B.E.R.

Base Model | BER. | NF | CA.  PA. | CA (NF) PA (NF) RP

ConvL 876 537+ 26 307

ConvS 831 3464+ 15 116

DeConvL 8§77 554+ 27 324

1% | Deconvs | 897 230+93 1 g9 Hat 14 94

UNetL 861 604+ 28 374

PreAct UNetS 804 519+ 24 289
ResNetl8

ConvL 802 878+ 1.1 246

ConvS 802 740165 108

DeConvL 800 874+ 1.1 242

05% | DeConys | 897 632+£87 | 299 4170 112

UNetL 875  8590+08 227

UNetS 882 804139 172

[Note] B.E.R.: the bit error rate of the base model, NF: NeuralFuse, C.A. (%): clean accuracy, P.A.
(%): perturbed accuracy, and R.P.: total recover percentage of PA. (NF) v.s. PA.
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N INFERENCE LATENCY OF NEURALFUSE

In Table26] we report the latency (batch_size=1, CIFAR-10/ImageNet- 10 testing dataset) of utilizing
the different NeuralFuse generators with two different base models, ResNet18 and VGG19. We can
see that although NeuralFuse indeed brings a certain degree of extra latency, we argue that this is an
unavoidable factor; however, since the latency is measured on a general-purpose GPU (i.e. V100),
when the base model and NeuralFuse are deployed on a custom accelerator, we believe this delay

will be further reduced.

Table 26: The Inference Latency of base model and base model with NeuralFuse.

| ResNet18 (CIFAR-10)

VGG19 (CIFAR-10)

ResNet18 (ImageNet-10)

VGGI19 (ImageNet-10)

Base Model | 5.84 ms 5.32 ms 6.21 ms 14.34 ms
+ ConvL 9.37 ms (+3.53) 8.96 ms (+3.64) 10.51 ms (+4.3) 17.66 ms (+3.32)
+ ConvS 7.86 ms (+2.02) 7.40 ms (+2.08) 8.28 ms (+2.07) 16.72 ms (+2.38)
+ DeConvL 9.18 ms (+3.34) 8.59 ms (+3.27) 10.07 ms (+3.86) 17.24 ms (+2.90)
+ DeConvS 7.49 ms (+1.65) 7.04 ms (+1.72) 7.79 ms (+1.58) 15.67 ms (+1.33)
+ UNetL 10.69 ms (+4.85) 10.06 ms (+4.74) 11.14 ms (+4.93) 18.54 ms (+4.20)
+ UNetS 10.63 ms (+4.79) 10.13 ms (+4.81) 11.36 ms (+5.15) 18.60 ms (+4.26)

O DISCUSSION FOR REAL-WORLD APPLICATION OR POTENTIAL USE CASES

In this section, we provide some possible real-world applications for using NeuralFuse under low-
voltage regimes. Previous works have pointed out some possible scenarios that suffer from energy
concerns and hence need some strategies to reduce energy consumption. For example, in[Yang et al.|
2019a)), the authors mention that due to the high computation cost of CNN processing and
some DNN-based vision algorithms, they will incur high energy consumption. This will signifi-
cantly reduce the battery life of battery-powered devices, indirectly impacting the user experience
of the devices. Therefore, to avoid the aforementioned issues, we can mitigate the device’s energy
consumption by lowering the operating voltage and then incorporating NeuralFuse to recover model
performance, reducing the side effects caused by low voltage.
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