
APPENDIX

In the appendix, we provide more implementation details for our method, experimental results on
more datasets and settings, ablation studies, and qualitative analysis. The appendices cover the
following:
• Implementation Details: NeuralFuse Training Algorithm (Sec. A), NeuralFuse Generator (Sec.

B), SCALE-SIM (Sec. C)
• Qualitative Studies: Energy-Accuracy Tradeoff (Sec. D), Model Parameters and MAC Values

(Sec. E), Data Embeddings Visualization (Sec. J), Transformed Inputs Visualization (Sec. K),
Latency Reports (Sec. N)

• Additional Experimental Results: Ablation Studies (Sec. F), Relaxed Access (Sec. G), Re-
stricted Access (Sec. H), Reduced-precision Quantization (Sec. I), Adversarial Training (Sec. L),
Adversarial Weight Perturbation (Sec. M)

Our code can be found at https://anonymous.4open.science/r/neuralfuse/.

A TRAINING ALGORITHM OF NEURALFUSE

Algorithm 1 Training steps for NeuralFuse
Input: Base model M0; Generator G; Training data samples X ; Distribution of the perturbed
models Mp; Number of perturbed models N ; Total training iterations T
Output: Optimized parameters WG for the Generator G

1: for t = 0, ..., T − 1 do
2: for all mini-batches {x, y}Bb=1 ∼ X do
3: Create transformed inputs xt = F(x) = clip[−1,1]

(
x+ G(x)

)
.

4: Sample N perturbed models {Mp1
, ...,MpN

} from Mp under p% random bit error rate.
5: for all Mpi

∼ {Mp1
, ...,MpN

} do
6: Calculate the loss losspi

based on the output of the perturbed model Mpi
. Then calculate

the gradients gpi for WG based on losspi .
7: end for
8: Calculate the loss loss0 based on the output of the clean model M0. Then calculate the

gradients g0 for WG based on loss0.
9: Calculate the final gradient gfinal using (5) based on g0 and gp1

, ..., gpN
.

10: Update WG using gfinal.
11: end for
12: end for

B IMPLEMENTATION DETAILS OF NEURALFUSE GENERATOR

We consider two main goals in designing the NeuralFuse Generator: 1) efficiency (so the overall
energy overhead is decreased) and 2) robustness (so that it can generate robust patterns on the in-
put image and overcome the random bit flipping in subsequent models). Accordingly, we choose
to utilize an encode-decoder architecture in implementing the generator. The design of ConvL is
inspired by Nguyen & Tran (2020), in which the authors utilize a similar architecture to design an
input-aware trigger generator, and have demonstrated its efficiency and effectiveness. Furthermore,
we attempted to enhance it by replacing the Upsampling layer with a Deconvolution layer, leading to
the creation of DeConvL. The UNetL-based NeuralFuse draws inspiration from Ronneberger et al.
(2015), known for its robust performance in image segmentation, and thus, we incorporated it as one
of our architectures. Lastly, ConvS, DeConvS, and UNetS are scaled-down versions of the model
designed to reduce computational costs and total parameters. The architectures of Convolutional-
based and Deconvolutional-based are shown in Table 4, and the architecture of UNet-based gen-
erators is in Table 5. For the abbreviation used in the table, ConvBlock means the Convolution
block, Conv means a single Convolution layer, DeConvBlock means the Deconvolution block, De-
Conv means a single Deconvolution layer, and BN means a Batch Normalization layer. We use
learning rate = 0.001, λ = 5, and Adam optimizer. For CIFAR-10, GTSRB, and CIFAR-100, we
set batch size b = 25 for each base model. For ImageNet-10, we set b = 64 for ResNet18, ResNet50
and VGG11, and b = 32 for both VGG16 and VGG19.
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Table 4: Model architecture for both Convolution-based and Deconvolution-based generators. Each
ConvBlock consists of a Convolution (kernel = 3 × 3, padding = 1, stride = 1), a Batch Nor-
malization, and a ReLU layer. Each DeConvBlock consists of a Deconvolution (kernel = 4 × 4,
padding = 1, stride = 2), a Batch Normalization, and a ReLU layer.

ConvL ConvS DeConvL DeConvS
Layers #CHs Layers #CHs Layers #CHs Layers #CHs

(ConvBlock)×2, MaxPool 32 ConvBlock, Maxpool 32 (ConvBlock)×2, MaxPool 32 ConvBlock, Maxpool 32
(ConvBlock)×2, MaxPool 64 ConvBlock, Maxpool 64 (ConvBlock)×2, MaxPool 64 ConvBlock, Maxpool 64
(ConvBlock)×2, MaxPool 128 ConvBlock, Maxpool 64 (ConvBlock)×2, MaxPool, 128 ConvBlock, Maxpool 64

ConvBlock, UpSample, ConvBlock 128 ConvBlock, UpSample 64 ConvBlock 128 DeConvBlock 64
ConvBlock, UpSample, ConvBlock 64 ConvBlock, UpSample 32 DeConvBlock, ConvBlock 64 DeConvBlock 32
ConvBlock, UpSample, ConvBlock 32 ConvBlock, UpSample 3 DeConvBlock, ConvBlock 32 DeConv, BN, Tanh 3

Conv, BN, Tanh 32 Conv, BN, Tanh 3 Conv, BN, Tanh 3

[Note] #CHs: number of channels.

Table 5: Model architecture for UNet-based generators. Each ConvBlock consists of a Convolution
(kernel = 3× 3, padding = 1, stride = 1), a Batch Normalization, and a ReLU layer. Other layers,
such as the Deconvolutional layer (kernel = 2×2, padding = 1, stride = 2), are used in UNet-based
models. For the final Convolution layer, the kernel size is set to 1.

UNetL UNetS
Layers #Channels Layers #Channels

L1: (ConvBlock)×2 16 L1: (ConvBlock)×2 8
L2: Maxpool, (ConvBlock)×2 32 L2: Maxpool, (ConvBlock)×2 16
L3: Maxpool, (ConvBlock)×2 64 L3: Maxpool, (ConvBlock)×2 32
L4: Maxpool, (ConvBlock)×2 128 L4: Maxpool, (ConvBlock)×2 64

L5: DeConv 64 L5: DeConv 32
L6: Concat[L3, L5] 128 L6: Concat[L3, L5] 64
L7: (ConvBlock)×2 64 L7: (ConvBlock)×2 32

L8: DeConv 32 L8: DeConv 16
L9: Concat[L2, L8] 64 L9: Concat[L2, L8] 32

L10: (ConvBlock)×2 32 L10: (ConvBlock)×2 16
L11: DeConv 16 L11: DeConv 8

L12: Concat[L1, L11] 32 L12: Concat[L1, L11] 16
L13: (ConvBlock)×2 16 L13: (ConvBlock)×2 8

L14: Conv 3 L14: Conv 3

C IMPLEMENTATION DETAILS OF SCALE-SIM

SCALE-SIM (Samajdar et al., 2020) is a systolic array based CNN simulator that can calculate the
number of memory accesses and the total time in execution cycles by giving the specific model
architecture and accelerator architectural configuration as inputs. In this paper, we use SCALE-SIM
to calculate the weights memory access of 5 based models (ResNet18, ResNet50, VGG11, VGG16,
VGG19), and 6 generators (ConvL, ConvS, DeConvL, DeConvS, UNetL, UNetS). While SCALE-
SIM supports both Convolutional and Linear layers, it does not yet support Deconvolution layers.
Instead, we try to approximate the memory costs of Deconvolution layers by Convolution layers. We
change the input and output from Deconvolution into the output and input of the Convolution layers.
Besides, we also change the stride into 1 when we approximate it. We also add padding for the
convolution layers while generating input files for SCALE-SIM. In this paper, we only consider the
energy saving on weights accesses, so we only take the value ”SRAM Filter Reads” from the output
of SCALE-SIM as the total weights memory accesses (T.W.M.A.) for further energy calculation.
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D THE ENERGY-ACCURACY TRADEOFF UNDER 1% BIT ERROR RATE

In Table 6, we report the total weight memory access (T.W.M.A.) calculated by SCALE-SIM. We
then showed the energy-accuracy tradeoff between all of the combinations of NeuralFuse and base
models under a 1% of bit error rate in Figure 5.

Table 6: The total weights memory access calculated by SCALE-SIM.

Base Model ResNet18 ResNet50 VGG11 VGG16 VGG19 -

T.W.M.A. 2,755,968 6,182,144 1,334,656 2,366,848 3,104,128 -

NeuralFuse ConvL ConvS DeConvL DeConvS UNetL UNetS

T.W.M.A. 320,256 41,508 259,264 86,208 180,894 45,711

[Note] T.W.M.A.: total weight memory access.

Figure 5: The energy-accuracy tradeoff of different NeuralFuse implementations with all CIFAR-10
pre-trained based models. X-axis represents the percentage reduction in dynamic memory access
energy at low-voltage settings (base model protected by NeuralFuse), compared to the bit-error-free
(nominal) voltage. Y-axis represents the perturbed accuracy (evaluated at low voltage) with a 1% bit
error rate.

E MODEL PARAMETERS AND MAC VALUES

In addition to T.W.M.A., the model’s parameters and MACs (multiply–accumulate operations) are
common metrics in measuring the energy consumption of machine learning models. Yang et al.
(2017) have also shown that the energy consumption of computation and memory accesses are both
proportional to MACs, allowing us to estimate the overall (or end-to-end) energy consumption.

Here, we use the open-source package ptflops (Sovrasov, 2018-2023) to calculate the parameters
and MAC values of all the base models and the NeuralFuse generators, in the same units as Bejnordi
et al. (2020) used. The results are shown in Table 7. Note that we modified the base model archi-
tectures for ImageNet-10, as it has larger input sizes. For example, we use a larger kernel size = 7
instead of 3 in the first Convolution layer in ResNet-based models to enhance the learning abilities.
Therefore, the parameters of base models are different between different datasets. For NeuralFuse
generators, we utilize the same architectures for implementation (including ImageNet-10). As a
result, our proposed NeuralFuse generators are generally smaller than base models, either on total
model parameters or MAC values.

15



Table 7: Parameter counts and MACs for all base models and generators in this paper.

Base Model
ResNet18 ResNet50 VGG11 VGG16 VGG19 -

Parameter CIFAR-10 11,173,962 23,520,842 9,231,114 14,728,266 20,040,522 -ImageNet-10 11,181,642 23,528,522 128,812,810 134,309,962 139,622,218

MACs CIFAR-10 557.14M 1.31G 153.5M 314.43M 399.47M -ImageNet-10 1.82G 4.12G 7.64G 15.53G 19.69G

NeuralFuse
ConvL ConvS DeConvL DeConvS UNetL UNetS

Parameter CIFAR-10
ImageNet-10 723,273 113,187 647,785 156,777 482,771 121,195

MACs CIFAR-10 80.5M 10.34M 64.69M 22.44M 41.41M 10.58M
ImageNet-10 3.94G 506.78M 3.17G 1.1G 2.03G 518.47M

MACs-Based Energy Saving Calculation. We can then use the MAC values to further approxi-
mate the end-to-end energy consumption of the whole model. Assume that all values are stored on
SRAM and that a MAC represents single memory access. The corresponding MACs-based energy
saving percentage (MAC-ES, %) can be derived from Eq. 6 (c.f. Sec. 4.4), and results can be found
in Table 8. We can observe that most combinations can save a large amount of energy, except that
VGG11 with two larger NeuralFuse (ConvL and DeConvL) may increase the total energy. These re-
sults are consistent with the results reported in Table 2. In addition, we also showed the MACs-based
energy-accuracy tradeoff between all of the combinations of NeuralFuse and base models under a
1% of bit error rate in Figure 6.

MAC-ES =
MACsbase model·Energynominal voltage−

(
MACsbase model·Energylow-voltage-regime+MACsNeuralFuse·EnergyNeuralFuse at nominal voltage

)
MACsbase model·Energynominal voltage

× 100% (6)

Table 8: The MACs-Based energy saving percentage (%) for different combinations of base models
and NeuralFuse.

Base Model ConvL ConvS DeConvL DeConvS UNetL UNetS
ResNet18 16.2 28.7 19.0 26.6 23.2 28.7
ResNet50 24.5 29.8 25.7 28.9 27.4 29.8
VGG11 -21.8 23.9 -11.5 16.0 3.6 23.7
VGG16 5.0 27.3 10.0 23.5 17.4 27.2
VGG19 10.4 28.0 14.4 25.0 20.2 28.0

Figure 6: The MAC-Based energy-accuracy tradeoff of different NeuralFuse implementations with
all CIFAR-10 pre-trained based models. X-axis represents the percentage reduction in dynamic
memory access energy at low-voltage settings (base model protected by NeuralFuse), compared
to the bit-error-free (nominal) voltage. Y-axis represents the perturbed accuracy (evaluated at low
voltage) with a 1% bit error rate.
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F ABLATION STUDIES

Study for N in EOPM. Here, we study the effect of N used in EOPM (Eq. 5). In Figure 7,
we report the results for ConvL and ConvS on CIFAR-10 pre-trained ResNet18, under a 1% bit
error rate (B.E.R.). The results demonstrate that if we apply larger N , the performance increases
until convergence. Specifically, for ConvL (Figure 7a), larger N empirically has a smaller standard
deviation; this means larger N gives better stability but at the cost of time-consuming training. In
contrast, for the small generator ConvS (Figure 7b), we can find that the standard deviation is still
large even trained by larger N ; the reason might be that small generators are not as capable of
learning representations as larger ones. Therefore, there exists a trade-off between the stability of
the generator performance and the total training time. In our implementation, choosing N = 5 or
10 is a good balance.

(a) Using ConvL (b) Using ConvS

Figure 7: The experimental results on using different sizes of N for EOPM.

Tradeoff Between Clean Accuracy (C.A.) and Perturbed Accuracy (P.A.). We conducted an
experiment to study the effect of different λ values, which balance the ratio of clean accuracy and
perturbed accuracy. In Table 9, the experimental results showed that a smaller λ can preserve clean
accuracy, but result in poor perturbed accuracy. On the contrary, larger λ can deliver higher per-
turbed accuracy, but with more clean accuracy drop. This phenomenon has also been observed in
adversarial training (Zhang et al., 2019).

Table 9: Experimental results based on λ value choosing. The results show that λ = 5 can balance
the tradeoff between clean accuracy and perturbed accuracy.

Base
Model λ C.A. P.A. ConvL

C.A. (NF) P.A. (NF) R.P.

ResNet18

10

92.6 38.9 ± 12.4

90.1 88.0 ± 1.7 49.1
5 89.8 87.8 ± 1.7 48.8
1 90.0 84.2 ± 3.8 45.3

0.1 91.6 65.7 ± 9.3 26.8
0.01 92.2 43.6 ± 13 4.7

VGG19

10

90.5 36.0 ± 12.0

89.6 77.9 ± 19 41.9
5 89.8 77.7 ± 19 41.7
1 89.9 73.1 ± 19 37.1

0.1 89.1 51.2 ± 16 15.2
0.01 90.2 36.8 ± 12 0.8

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse,
and R.P.: total recover percentage of P.A. (NF) v.s. P.A.

Comparison to Universal Input Perturbation (UIP). Moosavi-Dezfooli et al. (2017) has shown
that there exists a universal adversarial perturbation to the input data such that the model will make
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wrong predictions on a majority of the perturbed images. In our NeuralFuse framework, the uni-
versal perturbation is a special case when we set G(x) = tanh (UIP) for any data sample x. The
transformed data sample then becomes xt = clip[−1,1]

(
x + tanh (UIP)

)
, where xt ∈ [−1, 1]d and

UIP is a trainable universal input perturbation that has the same size as the input data. The ex-
perimental results with the universal input perturbation are shown in Table 10. We observe that its
performance is much worse than our proposed NeuralFuse. This result validates the necessity of
adopting input-aware transformation for learning error-resistant data representations in low-voltage
scenarios.

Table 10: Performance of the universal input perturbation (UIP) trained by EOPM on CIFAR-10
pre-trained ResNet18.

Base Model B.E.R. C.A. P.A. C.A. (UIP) P.A. (UIP) R.P.

ResNet18 1% 92.6 38.9 ± 12.4 91.8 37.9 ± 11 -1.0
0.5% 70.1 ± 11.6 92.5 70.6 ± 11 0.5

ResNet50 1% 92.6 26.1 ± 9.4 80.7 21.0 ± 5.9 -5.1
0.5% 61.0 ± 10.3 91.9 62.4 ± 12 1.4

VGG11 1% 88.4 42.2 ± 11.6 86.9 43.0 ± 11 0.8
0.5% 63.6 ± 9.3 88.2 64.2 ± 8.8 0.6

VGG16 1% 90.3 35.7 ± 7.9 90.1 37.1 ± 8.5 1.4
0.5% 66.6 ± 8.1 90.4 67.3 ± 8.1 0.7

VGG19 1% 90.5 36.0 ± 12.0 89.9 35.3 ± 12 -0.7
0.5% 64.2 ± 12.4 90.1 64.4 ± 12 0.2

[Note] B.E.R.: the bit error rate of the base model, C.A. (%): clean accuracy, UIP: universal input trans-
formation parameter, P.A.(%): perturbed accuracy, and R.P.: total recover percentage of P.A. (UIP) v.s.
P.A.
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G ADDITIONAL EXPERIMENTAL RESULTS ON RELAXED ACCESS SETTINGS

We conducted more experiments on Relaxed Access settings to show that our NeuralFuse can protect
the models under different B.E.R. The results can be found in Sec. G.1 (CIFAR-10), Sec. G.2
(GTSRB), Sec. G.3 (ImageNet-10), and Sec. G.4 (CIFAR-100). For comparison, we also visualize
the experimental results in the figures below each table.

G.1 CIFAR-10

Table 11: Testing accuracy (%) under 1% and 0.5% of random bit error rate on CIFAR-10.

Base
Model NF C.A. 1% B.E.R. 0.5% B.E.R.

P.A. C.A. (NF) P.A. (NF) R.P. P.A. C.A. (NF) P.A. (NF) R.P.

ResNet18

ConvL

92.6

89.8 87.8 ± 1.7 48.8 90.4 87.9 ± 2.2 17.8
ConvS 88.2 59.5 ± 11 20.6 91.7 78.4 ± 8.3 8.3

DeConvL 38.9 89.6 88.5 ± 0.8 49.6 70.1 90.2 90.0 ± 0.2 19.9
DeConvS ± 12.4 82.9 68.8 ± 6.4 29.9 ± 11.6 84.1 79.9 ± 3.6 9.8

UNetL 86.6 84.6 ± 0.8 45.6 89.7 86.3 ± 2.4 16.2
UNetS 84.4 68.8 ± 6.0 29.8 90.9 80.7 ± 5.8 10.7

ResNet50

ConvL

92.6

85.5 53.2 ± 22 27.1 90.3 86.5 ± 3.2 25.5
ConvS 85.2 34.6 ± 14 8.5 90.8 73.3 ± 8.7 12.3

DeConvL 26.1 87.4 63.3 ± 21 37.2 61.0 89.5 87.2 ± 2.5 26.2
DeConvS ± 9.4 82.4 42.2 ± 17 16.1 ± 10.3 90.3 75.5 ± 8.1 14.5

UNetL 86.2 75.5 ± 12 49.4 89.9 83.9 ± 3.6 22.9
UNetS 77.3 56.2 ± 19 30.1 89.7 76.1 ± 7.2 15.1

VGG11

ConvL

88.4

89.6 87.2 ± 2.9 45.1 89.8 87.0 ± 1.3 23.3
ConvS 84.9 66.3 ± 7.5 24.1 88.2 74.5 ± 5.7 10.9

DeConvL 42.2 89.3 87.2 ± 2.6 45.0 63.6 89.6 86.9 ± 1.1 23.2
DeConvS ± 11.6 85.6 68.2 ± 7.1 26.0 ± 9.3 88.3 75.7 ± 4.6 12.1

UNetL 87.1 83.6 ± 1.3 41.4 88.0 82.4 ± 1.8 18.8
UNetS 85.5 72.7 ± 4.6 30.5 88.1 75.8 ± 4.3 12.2

VGG16

ConvL

90.3

90.1 86.0 ± 6.2 50.3 90.2 88.5 ± 0.9 21.9
ConvS 87.4 59.6 ± 12 23.9 89.9 77.8 ± 4.8 11.1

DeConvL 35.7 89.7 85.5 ± 6.8 49.8 66.6 89.7 88.2 ± 1.0 21.4
DeConvS ± 7.9 86.8 66.5 ± 11 30.8 ± 8.1 90.0 78.4 ± 4.7 11.8

UNetL 87.4 83.4 ± 4.4 47.7 89.0 86.2 ± 1.5 19.6
UNetS 87.4 71.2 ± 8.2 35.5 89.0 80.2 ± 3.5 13.7

VGG19

ConvL

90.5

89.8 77.7 ± 19 41.7 90.4 88.1 ± 1.8 23.9
ConvS 87.3 52.7 ± 17 16.7 89.6 74.5 ± 9.0 10.3

DeConvL 36.0 86.3 78.4 ± 18 42.4 64.2 90.4 88.5 ± 1.4 24.3
DeConvS ± 12.0 86.5 58.2 ± 18 22.2 ± 12.4 89.7 75.2 ± 8.6 11.0

UNetL 86.3 82.1 ± 4.8 46.0 89.1 85.0 ± 2.7 20.8
UNetS 86.3 66.4 ± 13 30.4 89.2 77.1 ± 7.3 12.9

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A. (NF) v.s.
P.A.
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(a) CIFAR-10, 1% Bit Error Rate
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Figure 8: Experimental results on CIFAR-10
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G.2 GTSRB

Table 12: Testing accuracy (%) under 1% and 0.5% of random bit error rate on GTSRB.

Base
Model NF C.A. 1% B.E.R. 0.5% B.E.R.

P.A. C.A. (NF) P.A. (NF) R.P. P.A. C.A. (NF) P.A. (NF) R.P.

ResNet18

ConvL

95.5

95.7 91.1 ± 4.7 54.2 93.4 89.5 ± 1.9 14.3
ConvS 94.4 68.6 ± 12 31.7 94.8 87.7 ± 4.2 12.4

DeConvL 36.9 95.6 91.3 ± 4.3 54.4 75.2 95.4 93.4 ± 1.1 18.1
DeConvS ± 16.0 95.7 78.1 ± 9.1 41.2 ± 12.7 95.8 90.1 ± 3.3 14.9

UNetL 96.2 93.8 ± 1.0 56.9 96.2 93.5 ± 1.6 18.3
UNetS 95.9 85.1 ± 6.9 48.2 95.5 91.4 ± 2.8 16.2

ResNet50

ConvL

95.0

95.6 71.6 ± 20 42.1 94.6 90.6 ± 3.7 16.6
ConvS 94.8 50.5 ± 22 21.0 95.4 84.5 ± 8.5 10.5

DeConvL 29.5 94.9 71.6 ± 21 42.0 74.0 94.7 91.6 ± 2.9 17.6
DeConvS ± 16.9 93.0 56.4 ± 17 26.9 ± 13.0 94.6 87.4 ± 5.9 13.5

UNetL 94.5 80.6 ± 15 51.1 96.5 93.7 ± 2.3 19.7
UNetS 94.7 64.7 ± 22 35.2 95.9 90.6 ± 4.8 16.7

VGG11

ConvL

91.9

94.8 85.7 ± 7.2 50.9 93.9 92.6 ± 0.7 27.7
ConvS 91.1 62.2 ± 11 27.3 90.9 80.5 ± 3.5 15.7

DeConvL 34.9 95.0 84.6 ± 7.6 49.7 64.9 93.6 91.9 ± 0.6 27.1
DeConvS ± 12.4 92.4 67.5 ± 11 32.6 ± 10.8 92.3 83.1 ± 3.7 18.2

UNetL 92.2 83.2 ± 6.0 48.3 94.8 90.6 ± 1.7 25.7
UNetS 94.7 73.4 ± 10 38.5 94.6 88.9 ± 2.2 24.1

VGG16

ConvL

95.2

96.3 72.4 ± 12 57.3 95.6 93.2 ± 1.8 34.4
ConvS 94.1 39.8 ± 13 24.6 94.3 82.2 ± 6.2 23.4

DeConvL 15.1 96.4 72.0 ± 12 56.9 58.8 95.6 93.1 ± 2.0 34.3
DeConvS ± 6.8 93.8 50.9 ± 13 35.8 ± 8.9 95.1 84.0 ± 5.3 25.2

UNetL 95.8 78.6 ± 11 63.5 96.0 92.8 ± 2.0 34.0
UNetS 94.3 63.3 ± 14 48.1 95.4 87.8 ± 3.6 29.0

VGG19

ConvL

95.5

96.0 88.3 ± 7.2 51.7 95.6 93.4 ± 2.1 24.2
ConvS 93.8 69.0 ± 14 32.4 94.9 87.0 ± 4.4 17.8

DeConvL 36.6 95.4 87.2 ± 7.5 50.6 69.1 95.5 92.4 ± 2.2 23.3
DeConvS ± 6.8 94.5 73.1 ± 12 36.5 ± 11.1 95.5 88.8 ± 3.7 19.7

UNetL 95.4 88.2 ± 6.7 51.7 94.9 91.7 ± 2.5 22.6
UNetS 94.6 80.6 ± 9.0 44.1 96.5 90.8 ± 3.4 21.6

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A. (NF) v.s.
P.A.
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Figure 9: Experimental results on GTSRB.
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G.3 IMAGENET-10

Table 13: Testing accuracy under 0.5% of random bit error rate on ImageNet-10.

Base
Model NF C.A. 0.5% B.E.R.

P.A. C.A. (NF) P.A. (NF) R.P.

ResNet18

ConvL

92.2 72.3 ± 7.0

94.0 88.0 ± 2.0 15.7
ConvS 91.8 83.6 ± 4.1 11.3

DeConvL 94.0 89.2 ± 1.3 16.9
DeConvS 92.8 87.5 ± 2.3 15.2

UNetL 94.0 88.1 ± 1.4 15.8
UNetS 93.2 86.4 ± 2.2 14.1

ResNet50

ConvL

89.8 39.4 ± 11

92.2 80.0 ± 5.8 40.6
ConvS 91.8 65.0 ± 11 25.6

DeConvL 93.0 79.4 ± 5.9 40.0
DeConvS 93.2 70.9 ± 9.1 31.5

UNetL 92.2 80.5 ± 5.8 41.1
UNetS 92.4 73.6 ± 8.9 34.2

VGG11

ConvL

91.6 47.8 ± 13

92.0 86.1 ± 3.7 38.3
ConvS 89.4 66.4 ± 7.1 18.6

DeConvL 91.0 86.0 ± 3.0 38.2
DeConvS 89.0 72.5 ± 7.8 24.7

UNetL 92.4 83.0 ± 3.5 35.2
UNetS 86.2 73.5 ± 6.0 25.7

VGG16

ConvL

94.6 38.4 ± 17

90.8 77.1 ± 11 38.7
ConvS 90.2 60.2 ± 14 21.8

DeConvL 91.2 77.2 ± 11 38.8
DeConvS 90.0 62.3 ± 14 23.9

UNetL 90.6 81.1 ± 5.9 42.7
UNetS 86.4 72.3 ± 8.8 33.9

VGG19

ConvL

92.4 37.2 ± 11

91.4 75.5 ± 8.8 38.3
ConvS 88.8 56.5 ± 13 19.3

DeConvL 91.0 75.9 ± 8.9 38.7
DeConvS 88.8 64.0 ± 11 26.8

UNetL 89.4 77.9 ± 6.1 40.7
UNetS 87.6 65.9 ± 10 28.7

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and
R.P.: total recover percentage of P.A. (NF) v.s. P.A.
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Figure 10: Experimental results on ImageNet-10, 0.5% Bit Error Rate.
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G.4 CIFAR-100

As mentioned in the previous section, larger generators like ConvL, DeConvL, and UNetL have
better performance than small generators. For CIFAR-100, we find that the gains of utilizing Neu-
ralFuse are less compared to the other datasets. We believe this is because CIFAR-100 is a more
challenging dataset (more classes) for the generators to learn to protect the base models. Neverthe-
less, NeuralFuse can still function to restore some degraded accuracy; these results also demonstrate
that our NeuralFuse is applicable to different datasets. In addition, although the recover percentage
is less obvious on CIFAR-100 (the more difficult dataset), we can still conclude that our NeuralFuse
is applicable to different datasets.
Table 14: Testing accuracy (%) under 1%, 0.5% and 0.35% of random bit error rate on CIFAR-100.

Base
Model NF C.A. 1% B.E.R. 0.5% B.E.R. 0.35% B.E.R.

P.A. C.A. (NF) P.A. (NF) R.P. P.A. C.A. (NF) P.A. (NF) R.P. P.A. C.A. (NF) P.A. (NF) R.P.

ResNet18

ConvL

73.7

54.8 11.0 ± 7.7 6.4 65.2 39.0 ± 7.1 18.1 69.4 42.9 ± 6.2 11.4
ConvS 49.7 4.2 ± 2.2 -0.4 70.0 24.5 ± 7.6 3.6 72.1 35.1 ± 7.3 3.7

DeConvL 4.6 55.2 11.9 ± 8.2 7.3 20.9 66.3 38.2 ± 6.9 17.3 31.4 69.2 42.9 ± 5.5 11.4
DeConvS ± 2.9 32.7 4.0 ± 2.2 -0.6 ± 7.4 68.2 25.9 ± 6.8 5 ± 7.6 71.6 35.8 ± 5.5 4.4

UNetL 50.6 14.5 ± 8.9 10.0 66.2 40.1 ± 6.4 19.2 70.3 46.3 ± 5.5 14.9
UNetS 26.8 4.6 ± 2.5 -0.0 67.1 28.8 ± 6.8 7.9 70.9 38.3 ± 6.4 6.9

ResNet50

ConvL

73.5

63.5 3.2 ± 1.7 0.1 68.4 28.8 ± 6.7 7.6 72.0 40.8 ± 7.5 5.1
ConvS 65.5 3.2 ± 1.6 0.1 71.9 23.1 ± 6.9 1.9 73.0 37.4 ± 8.0 1.7

DeConvL 3.0 59.6 3.2 ± 1.7 0.2 21.3 68.1 28.6 ± 7.0 7.4 35.7 71.7 41.7 ± 7.7 6.1
DeConvS ± 1.8 61.1 3.2 ± 1.7 0.1 ± 7.0 70.3 25.0 ± 6.7 3.7 ± 8.6 72.8 38.9 ± 7.9 3.3

UNetL 39.0 5.0 ± 1.7 1.9 66.6 36.5 ± 6.2 15.3 70.8 45.3 ± 6.7 9.6
UNetS 47.7 3.4 ± 1.8 0.3 69.1 26.1 ± 6.6 4.8 72.6 39.6 ± 7.8 3.9

VGG11

ConvL

64.8

58.3 19.7 ± 11 11.5 63.1 38.8 ± 9.3 15.0 63.9 42.4 ± 9.0 11.1
ConvS 56.6 10.4 ± 7.4 2.2 62.7 27.9 ± 10 4.0 63.9 41.8 ± 8.3 10.5

DeConvL 8.2 60.3 21.2 ± 11 13.0 23.9 63.9 40.0 ± 9.0 16.2 31.3 64.0 42.8 ± 9.1 11.5
DeConvS ± 5.7 58.3 11.8 ± 7.9 3.5 ± 9.4 61.9 29.8 ± 9.9 5.9 ± 10 63.5 36.1 ± 10 4.8

UNetL 51.1 22.1 ± 8.2 13.9 61.8 37.8 ± 9.0 13.9 63.5 40.9 ± 9.3 9.6
UNetS 51.9 13.1 ± 7.9 4.9 61.7 29.8 ± 9.7 6.0 63.8 35.7 ± 9.9 4.5

VGG16

ConvL

67.8

51.4 19.2 ± 6.0 12.6 61.8 41.1 ± 5.6 18.7 64.9 44.9 ± 5.3 13.8
ConvS 44.3 6.7 ± 2.3 0.1 63.8 27.5 ± 6.8 5.1 66.0 36.3 ± 6.1 5.1

DeConvL 7.0 53.1 20.8 ± 6.2 14.2 22.4 62.8 42.1 ± 5.5 19.8 31.1 65.0 46.6 ± 5.2 15.5
DeConvS ± 3.5 23.5 4.8 ± 1.7 -1.8 ± 7.0 62.1 29.9 ± 6.7 7.5 ± 7.2 64.9 38.1 ± 6.3 7.0

UNetL 50.2 25.3 ± 1.7 18.7 61.7 41.3 ± 5.0 18.9 64.8 46.8 ± 4.6 15.7
UNetS 27.7 9.9 ± 2.1 3.3 61.6 31.3 ± 6.3 8.9 65.0 39.8 ± 5.9 8.7

VGG19

ConvL

67.8

59.4 29.2 ± 8.1 18.6 65.6 46.5 ± 6.8 12.5 66.9 49.2 ± 7.4 7.0
ConvS 63.7 14.4 ± 5.1 3.8 66.6 38.3 ± 6.8 4.2 67.7 45.3 ± 8.5 3.2

DeConvL 10.6 60.1 29.6 ± 8.5 19.0 34.0 65.7 46.9 ± 7.1 12.9 42.1 67.3 49.8 ± 7.6 7.6
DeConvS ± 4.3 60.9 16.1 ± 6.0 5.6 ± 9.6 66.5 39.0 ± 3.7 5.0 ± 9.4 67.7 45.7 ± 8.4 3.6

UNetL 58.7 30.2 ± 8.2 19.6 65.5 46.9 ± 6.5 12.9 67.4 50.0 ± 7.5 7.9
UNetS 59.1 18.0 ± 6.2 7.4 66.3 40.1 ± 8.0 6.1 67.5 46.6 ± 8.4 4.5

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover per-
centage of P.A. (NF) v.s. P.A.
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(a) CIFAR-100, 1% Bit Error Rate
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Figure 11: Experimental results on CIFAR-100.
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H ADDITIONAL EXPERIMENTAL RESULTS ON RESTRICTED ACCESS
SETTINGS (TRANSFERABILITY)

We conduct more experiments with Restricted Access settings to show that our NeuralFuse can be
transferred to protect various black-box models. The experimental results are shown in Sec. H.1
(CIFAR-10), Sec. H.2 (GTSRB), and Sec. H.3 (CIFAR-100).

We find that using VGG19 as a white-box surrogate model has better transferability than ResNet18
for all datasets. In addition, we can observe that some NeuralFuse generators have downward appli-
cability if base models have a similar architecture. In other words, if we try to transfer a generator
trained on a large B.E.R. (e.g., 1%) to a model with a small B.E.R. (e.g., 0.5%), the performance
will be better than that of a generator trained with the original B.E.R. (e.g., 0.5%). For example,
in Table 15, we could find that if we use VGG19 as a source model to train the generator ConvL
(1%), the generator could deliver better performance (in terms of P.A. (NF)) when applied to simi-
lar base models (e.g., VGG11, VGG16, or VGG19) under a 0.5% B.E.R., compared to using itself
as a source model (shown in Table 11). We conjecture that this is because the generators trained
on a larger B.E.R. can also cover the error patterns of a smaller B.E.R., and thus they have better
generalizability across smaller B.E.Rs.

To further improve the transferability to cross-architecture target models, we also conduct an exper-
iment in Sec. H.4 to show that using ensemble-based training can help the generator to achieve this
feature.

H.1 CIFAR-10

The results of CIFAR-10 in which NeuralFuse is trained at 1% B.E.R. are shown in Table 15.

Table 15: Transfer results on CIFAR-10: NeuralFuse trained on S.M. with 1% B.E.R.

S.M. T.M. B.E.R. C.A. P.A.
ConvL (1%) UNetL (1%)

C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18

ResNet18 0.5% 92.6 70.1 ± 11.6 89.8 89.5 ± 0.2 19.4 86.6 86.2 ± 0.3 16.1

ResNet50
1%

92.6
26.1 ± 9.4

89.5
36.0 ± 19 9.9

85.2
38.8 ± 19 12.7

0.5% 61.0 ± 10.3 75.1 ± 10 14.1 77.1 ± 5.0 16.1

VGG11
1%

88.4
42.2 ± 11.6

88.4
62.5 ± 8.4 20.3

76.8
61.1 ± 8.5 18.9

0.5% 63.6 ± 9.3 81.0 ± 4.6 17.4 73.7 ± 3.0 10.1

VGG16
1%

90.3
35.7 ± 7.9

89.6
63.3 ± 18 27.6

85.2
59.9 ± 16 24.2

0.5% 66.6 ± 8.1 85.0 ± 3.4 18.4 80.2 ± 4.5 13.6

VGG19
1%

90.5
36.0 ± 12.0

89.6
50.7 ± 22 14.7

85.3
51.1 ± 16 15.1

0.5% 64.2 ± 12.4 80.2 ± 8.7 16.0 76.5 ± 7.8 12.3

VGG19

ResNet18
1%

92.6
38.9 ± 12.4

89.8
61.0 ± 17 22.1

87.0
69.7 ± 11 30.8

0.5% 70.1 ± 11.6 86.1 ± 6.9 16.0 84.2 ± 3.0 14.1

ResNet50
1%

92.6
26.1 ± 9.4

89.9
34.0 ± 19 7.9

87.0
44.2 ± 17 18.1

0.5% 61.0 ± 10.3 76.5 ± 10 15.5 80.7 ± 4.2 19.7

VGG11
1%

88.4
42.2 ± 11.6

89.7
76.5 ± 7.0 34.3

87.1
79.9 ± 5.6 37.7

0.5% 63.6 ± 9.3 88.0 ± 2.1 24.4 85.4 ± 0.8 21.8

VGG16
1%

90.3
35.7 ± 7.9

89.6
75.5 ± 12 39.8

87.2
78.9 ± 7.8 43.2

0.5% 66.6 ± 8.1 88.9 ± 0.6 22.3 86.2 ± 0.3 19.6
VGG19 0.5% 90.5 64.2 ± 12.4 89.8 89.6 ± 8.7 25.4 87.4 86.8 ± 0.4 22.6

[Note] S.M.: source model, used for training generators, T.M.: target model, used for testing generators, B.E.R.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A. (NF) v.s.
P.A.
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H.2 GTSRB

In Tables 16 and 17, we show the results on GTSRB in which NeuralFuse is trained at 1.5% and 1%
B.E.R., respectively.

Table 16: Transfer results on GTSRB: NeuralFuse trained on S.M. with 1.5% B.E.R.

S.M. T.M. B.E.R. C.A. P.A.
ConvL (1.5%) UNetL (1.5%)

C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18

ResNet18
1%

95.5
36.9 ± 16.0

95.7
93.9 ± 1.9 57.0

94.9
94.4 ± 0.4 57.5

0.5% 75.2 ± 12.7 95.7 ± 0.2 20.5 94.8 ± 0.2 19.6

ResNet50
1%

95.0
29.5 ± 16.9

94.4
37.0 ± 22 7.5

94.4
47.1 ± 23 17.6

0.5% 74.0 ± 13.0 77.5 ± 13 3.5 84.8 ± 9.5 10.8

VGG11
1%

91.9
34.9 ± 12.4

92.8
45.2 ± 10 10.3

91.4
50.5 ± 13 15.6

0.5% 64.9 ± 10.8 79.4 ± 5.8 14.5 83.9 ± 4.2 19.0

VGG16
1%

95.2
15.1 ± 6.8

95.4
31.1 ± 13 15.9

94.6
36.8 ± 12 21.7

0.5% 58.8 ± 8.9 84.5 ± 8.3 25.8 86.0 ± 8.6 27.2

VGG19
1%

95.5
36.6 ± 6.8

95.0
56.4 ± 15 19.8

94.3
60.8 ± 15 24.2

0.5% 69.1 ± 11.1 86.9 ± 3.4 17.8 87.7 ± 3.8 18.6

VGG19

ResNet18
1%

95.5
36.9 ± 16.0

88.4
50.3 ± 12 13.4

92.8
63.7 ± 16 26.8

0.5% 75.2 ± 12.7 77.9 ± 7.4 2.7 87.5 ± 3.9 12.3

ResNet50
1%

95.0
29.5 ± 16.9

87.5
29.7 ± 17 0.2

92.5
40.4 ± 21 10.9

0.5% 74.0 ± 13.0 67.9 ± 17 -6.1 77.5 ± 15 3.5

VGG11
1%

91.9
34.9 ± 12.4

89.7
47.1 ± 11 12.2

93.5
60.0 ± 12 25.1

0.5% 64.9 ± 10.8 76.3 ± 5.1 11.4 86.0 ± 3.8 21.1

VGG16
1%

95.2
15.1 ± 6.8

93.0
29.2 ± 15 14.1

93.0
38.5 ± 16 23.4

0.5% 58.8 ± 8.9 75.7 ± 12 16.9 79.9 ± 8.3 21.1

VGG19
1%

95.5
36.6 ± 6.8

95.1
87.4 ± 6.0 50.8

94.6
88.7 ± 5.0 52.1

0.5% 69.1 ± 11.1 92.4 ± 2.4 23.3 92.4 ± 2.2 23.3
[Note] S.M.: source model, used for training generators, T.M.: target model, used for testing generators, B.E.R.: the bit error rate of the

target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A. (NF) v.s.
P.A.

Table 17: Transfer results on GTSRB: NeuralFuse trained on S.M. with 1% B.E.R.

S.M. T.M. B.E.R. C.A. P.A.
ConvL (1%) UNetL (1%)

C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18

ResNet18 0.5% 95.5 75.2 ± 12.7 95.7 95.3 ± 0.5 20.1 96.2 95.7 ± 0.3 20.5

ResNet50
1%

95.0
29.5 ± 16.9

94.5
35.6 ± 21 6.1

95.6
42.6 ± 23 13.1

0.5% 74.0 ± 13.0 78.8 ± 13 4.8 87.3 ± 9.0 13.3

VGG11
1%

91.9
34.9 ± 12.4

93.1
45.8 ± 11 10.9

94.0
47.1 ± 14 12.2

0.5% 64.9 ± 10.8 81.8 ± 5.0 16.9 84.2 ± 4.8 19.3

VGG16
1%

95.2
15.1 ± 6.8

95.5
26.5 ± 12 11.4

95.5
32.4 ± 11 17.3

0.5% 58.8 ± 8.9 82.2 ± 9.0 23.4 85.4 ± 6.7 26.6

VGG19
1%

95.5
36.6 ± 6.8

94.9
53.2 ± 14 16.6

95.6
60.9 ± 15 24.3

0.5% 69.1 ± 11.1 85.4 ± 4.5 16.3 87.5 ± 3.7 18.4

VGG19

ResNet18
1%

95.5
36.9 ± 16.0

93.7
53.1 ± 16 16.2

95.0
63.4 ± 18 26.5

0.5% 75.2 ± 12.7 83.9 ± 7.6 8.7 89.7 ± 4.8 14.5

ResNet50
1%

95.0
29.5 ± 16.9

92.8
30.6 ± 18 1.1

95.4
38.9 ± 22 9.4

0.5% 74.0 ± 13.0 74.7 ± 18 0.7 81.5 ± 16 7.5

VGG11
1%

91.9
34.9 ± 12.4

93.7
50.6 ± 11 15.7

95.1
58.9 ± 15 24.0

0.5% 64.9 ± 10.8 82.3 ± 5.1 17.4 87.5 ± 3.7 22.6

VGG16
1%

95.2
15.1 ± 6.8

95.2
27.8 ± 15 12.7

95.2
33.5 ± 14 18.4

0.5% 58.8 ± 8.9 79.0 ± 12 20.2 81.8 ± 7.8 23.0
VGG19 0.5% 95.5 69.1 ± 11.1 96.0 94.0 ± 2.2 24.9 95.4 93.9 ± 2.1 24.8

[Note] S.M.: source model, used for training generators, T.M.: target model, used for testing generators, B.E.R.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A. (NF) v.s.
P.A.
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H.3 CIFAR-100

In Tables 18 and 19, we show results on CIFAR-100 with NeuralFuse trained at 1% and 0.5% B.E.R.,
respectively.

Table 18: Transfer results on CIFAR-100: NeuralFuse trained on S.M. with 1% B.E.R.

S.M. T.M. B.E.R. C.A. P.A.
ConvL (1%) UNetL (1%)

C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18

ResNet18
0.5%

73.7
20.9 ± 7.4

54.8
35.8 ± 5.2 14.9

50.6
39.3 ± 2.8 18.4

0.35% 31.4 ± 7.6 41.7 ± 3.7 10.3 43.3 ± 1.4 11.9

ResNet50
1%

73.5
3.0 ± 1.8

44.9
2.2 ± 2.0 -0.8

41.5
2.4 ± 1.9 -0.6

0.5% 21.3 ± 7.0 15.9 ± 8.2 -5.4 17.1 ± 7.1 -4.2
0.35% 35.7 ± 8.6 23.7 ± 7.1 -12.0 26.2 ± 5.6 -9.5

VGG11
1%

64.8
8.2 ± 5.7

41.2
9.8 ± 5.6 1.6

37.5
10.2 ± 5.1 2.0

0.5% 23.9 ± 9.4 24.2 ± 5.9 0.3 24.5 ± 4.7 0.6
0.35% 31.3 ± 10.0 29.0 ± 5.4 -2.3 28.2 ± 4.5 -3.1

VGG16
1%

67.8
7.0 ± 3.5

44.0
7.9 ± 3.7 0.9

39.5
10.1 ± 4.5 3.1

0.5% 22.4 ± 7.0 22.4 ± 7.6 0.0 26.3 ± 5.3 3.9
0.35% 31.1 ± 7.2 28.1 ± 5.9 -3.0 30.6 ± 3.6 -0.5

VGG19
1%

67.8
10.6 ± 4.3

44.2
13.5 ± 6.1 2.9

40.7
15.6 ± 6.2 5.0

0.5% 34.0 ± 9.6 27.9 ± 4.8 -6.1 29.3 ± 4.6 -4.7
0.35% 42.1 ± 9.4 33.2 ± 48 -8.9 32.8 ± 3.9 -9.3

VGG19

ResNet18
1%

73.7
4.6 ± 2.9

55.5
5.8 ± 3.7 1.2

57.3
6.8 ± 4.4 2.2

0.5% 20.9 ± 7.4 24.6 ± 6.3 3.7 28.1 ± 5.9 7.2
0.35% 31.4 ± 7.6 31.1 ± 5.0 -0.3 36.4 ± 4.5 5.0

ResNet50
1%

73.5
3.0 ± 1.8

56.1
2.8 ± 2.1 -0.2

56.1
3.7 ± 2.4 0.7

0.5% 21.3 ± 7.0 18.9 ± 8.6 -2.4 22.8 ± 8.5 1.5
0.35% 35.7 ± 8.6 28.7 ± 8.2 -7.0 33.7 ± 7.0 -2.0

VGG11
1%

64.8
8.2 ± 5.7

52.8
12.3 ± 8.4 4.1

53.9
15.4 ± 9.4 7.2

0.5% 23.9 ± 9.4 30.0 ± 9.3 6.1 33.3 ± 7.2 9.4
0.35% 31.3 ± 10.0 36.5 ± 7.7 5.2 38.8 ± 6.5 7.5

VGG16
1%

67.8
7.0 ± 3.5

53.6
11.2 ± 4.4 4.2

55.2
13.6 ± 5.2 6.6

0.5% 22.4 ± 7.0 32.4 ± 7.3 10.0 35.9 ± 6.2 13.5
0.35% 31.1 ± 7.2 39.4 ± 6.3 8.3 42.4 ± 4.9 11.3

VGG19
0.5%

67.8
34.0 ± 9.6

59.4
50.2 ± 3.1 16.2

58.7
49.1 ± 3.5 15.1

0.35% 42.1 ± 9.4 53.1 ± 2.3 11.0 52.0 ± 3.1 9.9
[Note] S.M.: source model, used for training generators, T.M.: target model, used for testing generators, B.E.R.: the bit error rate of the

target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A. (NF) v.s.
P.A.

Table 19: Transfer results on CIFAR-100: NeuralFuse trained on S.M. with 0.5% B.E.R.

S.M. T.M. B.E.R. C.A. P.A.
ConvL (0.5%) UNetL (0.5%)

C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18

ResNet18 0.35% 73.7 31.4 ± 7.6 65.2 47.7 ± 4.9 16.3 66.2 49.2 ± 4.1 17.8

ResNet50
0.5%

73.5
21.3 ± 7.0

62.5
24.0 ± 9.9 2.8

63.5
26.4 ± 9.1 5.1

0.35% 35.7 ± 8.6 36.3 ± 8.9 0.6 39.4 ± 8.1 3.7

VGG11
0.5%

64.8
23.9 ± 9.4

59.2
33.0 ± 9.8 9.2

61.1
34.2 ± 9.8 10.3

0.35% 31.3 ± 10.0 40.4 ± 8.7 9.1 41.4 ± 9.0 10.1

VGG16
0.5%

67.8
22.4 ± 7.0

59.5
34.7 ± 8.0 12.3

61.4
37.5 ± 6.8 15.2

0.35% 31.1 ± 7.2 42.9 ± 6.0 11.8 45.3 ± 4.9 14.2

VGG19
0.5%

67.8
34.0 ± 9.6

61.6
43.7 ± 6.2 9.6

62.0
45.0 ± 6.3 11.0

0.35% 42.1 ± 9.4 49.0 ± 5.5 6.8 50.5 ± 5.3 8.3

VGG19

ResNet18
0.5%

73.7
20.9 ± 7.4

66.1
24.9 ± 6.7 4.0

67.8
27.7 ± 6.8 6.8

0.35% 31.4 ± 7.6 34.4 ± 5.4 3.0 38.1 ± 5.6 6.7

ResNet50
0.5%

73.5
21.3 ± 7.0

66.2
22.7 ± 7.8 1.4

66.7
25.4 ± 8.0 4.2

0.35% 35.7 ± 8.6 35.5 ± 7.7 -0.2 38.8 ± 7.5 3.2

VGG11
0.5%

64.8
23.9 ± 9.4

59.9
29.3 ± 10 5.4

61.0
31.2 ± 9.8 7.4

0.35% 31.3 ± 10.0 36.6 ± 9.5 5.3 38.1 ± 9.0 6.8

VGG16
0.5%

67.8
22.4 ± 7.0

62.5
30.8 ± 7.3 8.4

62.6
33.0 ± 7.3 10.7

0.35% 31.1 ± 7.2 40.0 ± 6.5 8.9 42.5 ± 5.9 11.3
VGG19 0.35% 67.8 42.1 ± 9.4 65.6 52.0 ± 6.2 9.8 65.5 52.6 ± 6.1 10.4

[Note] S.M.: source model, used for training generators, T.M.: target model, used for testing generators, B.E.R.: the bit error rate of the
target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A. (NF) v.s.
P.A.
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H.4 GENERATOR ENSEMBLING

To improve the transferability performance on cross-architecture cases (e.g., using ResNet-based
models as surrogate models to train NeuralFuse and then transfer NeuralFuse to VGG-based target
models), we try to adopt ensemble surrogate models to train our NeuralFuse. The experimental
results are shown in Table 20. We use the same experimental settings mentioned in Table 1 but
change one source model (e.g., ResNet18 or VGG19) into two (ResNet18 with VGG19) for training.
The results show that the overall performance is better than the results shown in Table 1, which
means ensemble-based training can easily solve the performance degradation on cross-architecture
target models.

Table 20: Transfer results on CIFAR-10: NeuralFuse trained on two S.M. with 1.5% B.E.R.

S.M. T.M. B.E.R. C.A. P.A.
ConvL (1.5%) UNetL (1.5%)

C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18
+

VGG19

ResNet18
1%

92.6
38.9 ± 12.4

89.4
88.1 ± 1.0 49.2

86.3
85.4 ± 0.5 46.5

0.5% 70.1 ± 11.6 89.2 ± 0.2 19.1 86.1 ± 0.2 16.0

ResNet50
1%

92.6
26.1 ± 9.4

89.3
44.0 ± 22 17.9

86.1
50.9 ± 20 24.8

0.5% 61.0 ± 10.3 80.3 ± 6.7 19.3 78.6 ± 3.9 17.6

VGG11
1%

88.4
42.2 ± 11.6

89.1
77.0 ± 5.6 34.8

85.9
82.3 ± 4.1 40.1

0.5% 63.6 ± 9.3 87.5 ± 1.6 23.9 85.0 ± 0.6 21.4

VGG16
1%

90.3
35.7 ± 7.9

89.1
80.5 ± 8.6 44.8

85.7
81.4 ± 5.5 45.7

0.5% 66.6 ± 8.1 88.2 ± 0.7 21.6 85.0 ± 0.7 18.4

VGG19
1%

90.5
36.0 ± 12.0

89.2
75.1 ± 17 39.1

86.1
83.0 ± 3.4 47.0

0.5% 64.2 ± 12.4 89.0 ± 0.2 24.8 85.9 ± 0.4 21.7
[Note] S.M.: source model, used for training generators, T.M.: target model, used for testing generators, B.E.R.: the bit error rate of the

target model, C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A. (NF) v.s.
P.A.

I NEURALFUSE ON REDUCED-PRECISION QUANTIZATION AND RANDOM
BIT ERRORS

As mentioned in Sec. 4.6, we explore the robustness of NeuralFuse to low-precision quantization
of model weights and consider the case of random bit errors. Here, we demonstrate that Neural-
Fuse can recover not only the accuracy drop due to reduced precision, but also the drop caused
by low-voltage-induced bit errors (0.5% B.E.R.) under low precision. We selected two NeuralFuse
generators (ConvL and UNetL) for our experiments, and these generators were trained with the
corresponding base models (ResNet18 and VGG19) at 1% B.E.R. (CIFAR-10, GTSRB) and 0.5%
B.E.R. (ImageNet-10). The experimental results are shown as follows: CIFAR-10 (Sec. I.1), GT-
SRB (Sec. I.2), and ImageNet-10 (Sec. I.3). Similarly, for ease of comparison, we visualize the
experimental results in the figures below each table. Our results show that NeuralFuse can consis-
tently perform well in low-precision regimes as well as recover the low-voltage-induced accuracy
drop.

I.1 CIFAR-10

Table 21: Reduced-precision Quantization and with 0.5% B.E.R. on CIFAR-10 pre-trained models.

Base #Bits C.A. P.A. ConvL (1%) UNetL (1%)
Model C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18

8 92.6 70.1 ± 11.6 89.8 89.5 ± 0.2 19.4 86.6 86.2 ± 0.3 16.1
7 92.5 68.8 ± 10.4 89.8 89.5 ± 1.7 20.7 86.5 86.0 ± 0.5 17.2
6 92.6 68.4 ± 11.2 89.7 89.5 ± 0.2 21.1 86.6 85.9 ± 0.3 17.5
5 92.4 52.7 ± 14.1 89.7 90.0 ± 0.7 37.3 86.5 85.5 ± 0.8 32.8
4 91.8 26.3 ± 12.7 89.8 58.7 ± 24.5 32.4 86.6 64.9 ± 22.5 38.6
3 84.8 11.3 ± 1.8 89.8 12.8 ± 5.8 1.5 86.0 14.8 ± 10.0 3.5
2 10.0 10.0 ± 0.0 10.0 10.0 ± 0.0 0.0 10.0 10.0 ± 0.0 0.0

VGG19

8 90.5 64.2 ± 12.4 89.8 89.6 ± 8.7 25.4 87.4 86.8 ± 0.4 22.6
7 90.3 66.5 ± 8.5 89.8 89.6 ± 0.2 23.1 87.4 86.7 ± 0.3 20.2
6 90.1 59.8 ± 13.2 89.9 89.4 ± 3.8 29.6 87.4 86.4 ± 0.7 26.6
5 90.2 37.7 ± 14.1 89.8 78.0 ± 15.8 40.3 87.2 79.8 ± 0.8 42.1
4 87.5 14.7 ± 6.0 89.8 27.8 ± 18.9 13.1 87.2 34.4 ± 20.5 19.7
3 78.3 10.5 ± 1.5 89.7 10.9 ± 2.6 0.4 86.8 11.0 ± 2.9 0.5
2 10.0 10.0 ± 0.0 10.0 10.0 ± 0.0 0.0 10.0 10.0 ± 0.0 0.0

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A.
(NF) v.s. P.A.
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(a) Base Model: ResNet18, no bit error.
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CIFAR-10 pre-trained ResNet18 (Low voltage, 0.5% B.E.R.)

(b) Base Model: ResNet18, 0.5% B.E.R.
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(c) Base Model: VGG19, no bit error.
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(d) Base Model: VGG19, 0.5% B.E.R.

Figure 12: Results of Reduced-precision and bit errors (0.5%) on CIFAR-10 pre-trained base mod-
els.

I.2 GTSRB

Table 22: Reduced-precision Quantization and with 0.5% B.E.R. on GTSRB pre-trained models.

Base #Bits C.A. P.A. ConvL (1%) UNetL (1%)
Model C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18

8 95.5 75.2 ± 12.7 95.7 95.3 ± 0.5 20.1 96.2 95.7 ± 0.3 20.5
7 95.5 69.5 ± 10.6 95.7 95.3 ± 0.3 25.8 96.2 95.9 ± 0.3 26.4
6 95.4 67.2 ± 14.4 95.7 95.2 ± 0.5 28.0 96.2 95.7 ± 0.5 28.5
5 95.4 48.6 ± 18.2 95.8 92.6 ± 5.1 44.0 96.2 94.8 ± 2.5 46.2
4 92.6 24.6 ± 9.8 95.9 75.6 ± 16.2 51.0 96.2 86.6 ± 9.5 62.0
3 67.7 5.3 ± 3.5 95.4 18.4 ± 15.3 13.1 96.2 25.3 ± 22.5 20.0
2 3.8 3.8 ± 0.0 4.1 3.8 ± 0.0 0.0 3.8 3.8 ± 0.0 0.0

VGG19

8 95.5 69.1 ± 11.1 96.0 94.0 ± 2.2 24.9 95.4 93.9 ± 2.1 24.8
7 95.6 66.1 ± 14.8 96.0 92.2 ± 5.7 26.1 95.4 92.6 ± 3.7 26.5
6 95.3 64.2 ± 8.4 96.0 92.2 ± 5.7 28.0 95.4 92.3 ± 2.3 28.1
5 95.2 48.2 ± 14.0 96.0 92.2 ± 5.7 44.0 95.4 86.2 ± 8.4 38.0
4 92.0 18.2 ± 14.3 93.0 92.2 ± 5.7 74.0 95.0 49.6 ± 22.8 31.4
3 60.0 2.0 ± 0.9 87.3 92.2 ± 5.7 90.2 87.2 1.7 ± 0.9 -0.3
2 5.9 3.8 ± 0.0 5.9 3.8 ± 0.0 0.0 5.9 3.8 ± 0.0 0.0

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A.
(NF) v.s. P.A.

Original Accuracy w/o NeuralFuse NeuralFuse (ConvL) NeuralFuse (UNetL)
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(b) Base Model: ResNet18, 0.5% B.E.R.
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(c) Base Model: VGG19, no bit error.
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(d) Base Model: VGG19, 0.5% B.E.R.

Figure 13: Results of Reduced-precision and bit errors (0.5%) on GTSRB pre-trained base models.

27



I.3 IMAGENET-10

Table 23: Reduced-precision Quantization and with 0.5% B.E.R. on ImageNet-10 pre-trained mod-
els.

Base #Bits C.A. P.A. ConvL (0.5%) UNetL (0.5%)
Model C.A. (NF) P.A. (NF) R.P. C.A. (NF) P.A. (NF) R.P.

ResNet18

8 92.2 72.3 ± 7.0 94.0 88.0 ± 2.0 15.7 94.0 88.1 ± 1.4 15.8
7 92.4 70.6 ± 13.0 94.2 86.7 ± 4.1 16.1 93.6 87.8 ± 3.5 17.2
6 92.4 68.9 ± 9.9 94.2 85.1 ± 4.8 16.2 93.6 86.4 ± 3.7 17.5
5 91.0 60.9 ± 13.0 94.2 82.5 ± 6.8 21.6 94.0 83.2 ± 5.9 22.3
4 91.4 47.4 ± 9.8 93.8 68.6 ± 9.8 21.2 92.6 68.7 ± 9.2 21.3
3 85.2 28.8 ± 11.8 89.2 44.1 ± 14.0 15.3 89.4 42.7 ± 14.2 13.9
2 10.0 10.0 ± 0.0 10.0 10.0 ± 0.0 0.0 10.0 10.0 ± 0.0 0.0

VGG19

8 92.4 37.2 ± 11.0 91.4 75.5 ± 8.8 38.3 89.4 77.9 ± 6.1 40.7
7 92.0 27.3 ± 6.6 91.2 59.3 ± 13.0 32.0 89.4 65.4 ± 10.0 38.1
6 92.4 27.9 ± 6.4 91.0 59.7 ± 11.8 31.8 89.4 64.9 ± 9.9 37.0
5 92.0 15.1 ± 4.4 91.6 23.1 ± 0.7 8.0 89.0 27.9 ± 8.8 12.8
4 89.4 12.2 ± 2.7 90.8 14.0 ± 4.3 1.8 89.6 14.6 ± 4.9 2.4
3 46.8 9.9 ± 0.5 83.2 10.4 ± 0.6 0.5 84.2 9.9 ± 0.7 0.0
2 10.0 10.0 ± 0.0 10.0 10.0 ± 0.0 0.0 10.0 10.0 ± 0.0 0.0

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: NeuralFuse, and R.P.: total recover percentage of P.A.
(NF) v.s. P.A.
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(a) Base Model: ResNet18, no bit error.
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(b) Base Model: ResNet18, 0.5% B.E.R.
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(c) Base Model: VGG19, no bit error.
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(d) Base Model: VGG19, 0.5% B.E.R.

Figure 14: Results of Reduced-precision and bit errors (0.5%) on ImageNet-10 pre-trained base
models.
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J DATA EMBEDDINGS VISUALIZATION

To further understand how our proposed NeuralFuse works, we visualize the output distribution
from the final linear layer of the base models and project the results onto the 2D space using t-SNE
(van der Maaten & Hinton, 2008). Figure 15 shows the output distribution from ResNet18 (trained
on CIFAR-10) under a 1% bit error rate. We chose two generators that have similar architecture:
ConvL and ConvS, for this experiment. We can observe that: (a) The output distribution of the
clean model without NeuralFuse can be grouped into 10 classes denoted by different colors. (b) The
output distribution of the perturbed model under a 1% bit error rate without NeuralFuse shows mixed
representations and therefore degraded accuracy. (c) The output distribution of the clean model with
ConvL shows that applying NeuralFuse will not hurt the prediction of the clean model too much (i.e.,
it retains high accuracy in the regular voltage setting). (d) The output distribution of the perturbed
model with ConvL shows high separability (and therefore high perturbed accuracy) as opposed to
(b). (e)/(f) shows the output distribution of the clean/perturbed model with ConvS. For both (e)
and (f), we can see nosier clustering when compared to (c) and (d), which means the degraded
performance of ConvS compared to ConvL. The visualization validates that NeuralFuse can help
retain good data representations under random bit errors and that larger generators in NeuralFuse
have better performance than smaller ones.

(a) (b) (c)

(d) (e) (f)

Figure 15: t-SNE results for ResNet18 trained by CIFAR-10 under 1% of bit error rate. (a) Clean
model. (b) Perturbed model. (c) Clean model with ConvL. (d) Perturbed model with ConvL. (e)
Clean model with ConvS. (f) Perturbed model with ConvS.

K QUALITATIVE ANALYSIS OF TRANSFORMED INPUTS

In this section, we conduct a qualitative study to visualize the images which are transformed by
NeuralFuse, and then present some properties of these images. We adopt six different architectures
of NeuralFuse generators trained with ResNet18 under a 1% bit error rate. In Figure 16(a), we
show several images from the truck class in CIFAR-10. We observe that different images in the
same class transformed by the same NeuralFuse will exhibit a similar pattern. For example, the
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patterns contain several circles, which may symbolize the wheels of the trucks. In Figure 16(b),
we show several images of a traffic sign category (No Overtaking) in GTSRB. We also oversee that
the transformed images contain similar patterns. In particular, in GTSRB, NeuralFuse will generate
patterns that highlight the shape of the sign with a green background, even if the original images are
of a dark background and under different lighting conditions.

In Figure 17, we show the images from ten different classes in CIFAR-10 and GTSRB separately.
The transformed images have distinct patterns for each class. Therefore, we speculate that Neural-
Fuse effectively transforms images to some class-specific patterns such that the associated features
are robust to random bit errors and can be easily recognizable by the base model in low-voltage
settings.

Clean

ConvL

ConvS

DeConvL

DeConvS

UNetL

UNetS
(a) (b)

Figure 16: Visualization results of the transformed images from six different NeuralFuse generators
trained with ResNet18 under 1% bit error rate. (a) Truck class in CIFAR-10. (b) No Overtaking
(general) sign in GTSRB.

Clean

ConvL

ConvS

DeConvL

DeConvS

UNetL

UNetS
(a) (b)

Figure 17: Visualization results of the transformed images from six different NeuralFuse generators
trained by ResNet18 with 1% bit error rate. (a) Ten different classes sampled from CIFAR-10. (b)
Ten different traffic signs sampled from GTSRB.

In Figure 18, we show several images from the apple class in CIFAR-100. We observe that the
different images transformed by the same NeuralFuse will provide the similar patterns. This obser-
vation is similar to CIFAR-10 and GTSRB mentioned above. In Figure 19, we show more different
classes and their corresponding transformed results.
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Clean

ConvL

ConvS

DeConvL

DeConvS

UNetL

UNetS

Figure 18: Visualization results of the transformed images on CIFAR-100 from six different Neu-
ralFuse generators trained with ResNet18 under 1% of bit error rate.

Clean

ConvL

ConvS

DeConvL

DeConvS

UNetL

UNetS

Figure 19: Visualization results of twenty different classes of the transformed images from CIFAR-
100 made by six different NeuralFuse generators, which are trained with ResNet18 under 1% of bit
error rate.
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L ADDITIONAL EXPERIMENTS ON ADVERSARIAL TRAINING

Adversarial training is a common strategy to derive a robust neural network against certain pertur-
bations. By training the generator using adversarial training proposed in Stutz et al. (2021), we
report its performance against low voltage-induced bit errors. We use ConvL as the generator and
ResNet18 as the base model, trained on CIFAR-10. Furthermore, we explore different K flip bits as
the perturbation on weights of the base model during adversarial training, and then for evaluation,
the trained-generator will be applied against 1% of bit errors rate on the base model. The results
are shown in Table 24. After careful tuning of hyperparameters, we find that we are not able to ob-
tain satisfactory recovery when adopting adversarial training. Empirically, we argue that adversarial
training may not be suitable for training generator-based methods.

Table 24: Performance of the generator trained by adversarial training under K flip bits on ResNet18
with CIFAR-10. The results show that the generator trained by adversarial training cannot achieve
high accuracy against bit errors under 1% bit error rate.

K-bits C.A. P.A. C.A. (NF) P.A. (NF) R.P.

100

92.6 38.9 ± 12.4

92.4 38.3 ± 12.1 -0.6
500 92.1 38.7 ± 12.5 -0.2

5,000 92.6 38.9 ± 12.5 0
20,000 60.1 23.0 ± 8.1 -16

100,000 71.1 23.6 ± 6.6 -16

[Note] C.A. (%): clean accuracy, P.A. (%): perturbed accuracy, NF: Neu-
ralFuse, and R.P.: total recover percentage of P.A. (NF) v.s. P.A.

M ADDITIONAL EXPERIMENTS ON ROBUST MODEL TRAINED WITH
ADVERSARIAL WEIGHT PERTURBATION WITH NEURALFUSE

Previously, Wu et al. proposed that one could obtain a more robust model via adversarial weight
perturbation (Wu et al., 2020). To seek whether such models could also be robust to random bit
errors, we conducted an experiment on CIFAR-10 with the proposed adversarially trained PreAct
ResNet18. The experimental results are shown in Table 25. We find that the average perturbed ac-
curacy is 23% and 63.2% for PreAct ResNet18 under 1% and 0.5% B.E.R., respectively. This result
is lower than 38.9% and 70.1% from ResNet18 in Table 11, indicating their poor generalization
ability against random bit errors. Nevertheless, when equipped NeuralFuse on the perturbed model,
we could still witness a significant recover percentage under both 1% and 0.5% B.E.R. This result
further demonstrates that NeuralFuse could be adapted to various models (i.e., trained in different
learning algorithms).

Table 25: Performance of NeuralFuse trained with rubust CIFAR-10 pre-trained PreAct
ResNet18. The results show that NeuralFuse can be used together with a robust model and
further improve perturbed accuracy under both 1% and 0.5% B.E.R.

Base Model B.E.R. NF C.A. P.A. C.A. (NF) P.A. (NF) R.P.

PreAct
ResNet18

1%

ConvL

89.7 23.0 ± 9.3

87.6 53.7 ± 26 30.7
ConvS 83.1 34.6 ± 15 11.6

DeConvL 87.7 55.4 ± 27 32.4
DeConvS 82.9 32.4 ± 14 9.4

UNetL 86.1 60.4 ± 28 37.4
UNetS 80.4 51.9 ± 24 28.9

0.5%

ConvL

89.7 63.2 ± 8.7

89.2 87.8 ± 1.1 24.6
ConvS 89.2 74.0 ± 6.5 10.8

DeConvL 89.0 87.4 ± 1.1 24.2
DeConvS 89.9 74.4 ± 7.0 11.2

UNetL 87.5 85.9 ± 0.8 22.7
UNetS 88.2 80.4 ± 3.9 17.2

[Note] B.E.R.: the bit error rate of the base model, NF: NeuralFuse, C.A. (%): clean accuracy, P.A.
(%): perturbed accuracy, and R.P.: total recover percentage of P.A. (NF) v.s. P.A.
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N INFERENCE LATENCY OF NEURALFUSE

In Table 26, we report the latency (batch size=1, CIFAR-10/ImageNet-10 testing dataset) of utilizing
the different NeuralFuse generators with two different base models, ResNet18 and VGG19. We can
see that although NeuralFuse indeed brings a certain degree of extra latency, we argue that this is an
unavoidable factor; however, since the latency is measured on a general-purpose GPU (i.e. V100),
when the base model and NeuralFuse are deployed on a custom accelerator, we believe this delay
will be further reduced.

Table 26: The Inference Latency of base model and base model with NeuralFuse.

ResNet18 (CIFAR-10) VGG19 (CIFAR-10) ResNet18 (ImageNet-10) VGG19 (ImageNet-10)

Base Model 5.84 ms 5.32 ms 6.21 ms 14.34 ms

+ ConvL 9.37 ms (+3.53) 8.96 ms (+3.64) 10.51 ms (+4.3) 17.66 ms (+3.32)
+ ConvS 7.86 ms (+2.02) 7.40 ms (+2.08) 8.28 ms (+2.07) 16.72 ms (+2.38)

+ DeConvL 9.18 ms (+3.34) 8.59 ms (+3.27) 10.07 ms (+3.86) 17.24 ms (+2.90)
+ DeConvS 7.49 ms (+1.65) 7.04 ms (+1.72) 7.79 ms (+1.58) 15.67 ms (+1.33)

+ UNetL 10.69 ms (+4.85) 10.06 ms (+4.74) 11.14 ms (+4.93) 18.54 ms (+4.20)
+ UNetS 10.63 ms (+4.79) 10.13 ms (+4.81) 11.36 ms (+5.15) 18.60 ms (+4.26)

O DISCUSSION FOR REAL-WORLD APPLICATION OR POTENTIAL USE CASES

In this section, we provide some possible real-world applications for using NeuralFuse under low-
voltage regimes. Previous works have pointed out some possible scenarios that suffer from energy
concerns and hence need some strategies to reduce energy consumption. For example, in Yang et al.
(2017; 2019a), the authors mention that due to the high computation cost of CNN processing and
some DNN-based vision algorithms, they will incur high energy consumption. This will signifi-
cantly reduce the battery life of battery-powered devices, indirectly impacting the user experience
of the devices. Therefore, to avoid the aforementioned issues, we can mitigate the device’s energy
consumption by lowering the operating voltage and then incorporating NeuralFuse to recover model
performance, reducing the side effects caused by low voltage.
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