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Abstract

Large Language Model (LLM)-based agents are increasingly applied to tasks re-
quiring structured reasoning, tool use, and environmental adaptation, such as data
manipulation, multistep planning, and computer-use automation. However, despite
their versatility, current training paradigms for model weight optimization methods,
like PPO and GRPO, remain relatively impractical with their high computational
overhead for rollout convergence. In addition, the resulting agent policies are diffi-
cult to interpret, adapt, or incrementally improve. To address this, we investigate
creating and refining structured memory of experiential learning of an agent from
its environment as an alternative route to agent optimization. We introduce BREW
(Bootstrapping expeRientially-learned Environmental knoWledge), a framework
for agent optimization for downstream tasks via KB construction and refinement.
In our formulation, we introduce an effective method for partitioning agent memory
for more efficient retrieval and refinement. BREW uses task graders and behavior
rubrics to learn insights while leveraging state-space search for ensuring robustness
from the noise and non-specificity in natural language. Empirical results on real
world, domain-grounded benchmarks — OSWorld and 72Bench — show BREW
achieves 10 — 20% improvement in task precision, 10 — 15% reduction in API/-
tool calls leading to faster execution time, all while maintaining computational
efficiency on par with base models. Unlike prior work where memory is treated as
static context, we establish the KB as a modular and controllable substrate for agent
optimization — an explicit lever for shaping behavior in a transparent, interpretable,
and extensible manner.

1 Introduction

Large Language Model (LLM) based agents are rapidly being deployed for structured reasoning,
tool use, and autonomous interaction in real-world environments [[16]. From computer-use and
spreadsheet automation to software engineering pipelines, these agents drive tasks such as multi-step
planning, data manipulation, and adaptive workflows [21} [13} 132, [2,[19]]. For example, a language
agent might help automate a multi-step workflow like collecting data from different sources, cleaning
or validating it, and then uploading it onto a dedicated server, all while adjusting its plan if the
format or structure of the data changes unexpectedly [31} 350125 13]]. Yet, despite these successes, top-
performing agents generally score underwhelmingly on challenging real-world benchmarks—well
behind human experts, who routinely exceed 70% success rates [34} 4, |27, [18]]. As an example,
consider the following scenario:
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Figure 1: BREW architecture overview using examples from the OSWorld dataset. Step 1 indicates
the trajectory generation process with agent alignment to human-validated rubrics and correctness
using task-specific grader. Steps 2—4 indicate the Reflector Agent, which learns key concepts and
corresponding insights from trajectories. Step 5 indicates the Integrator Agent, which integrates
knowledge from the Reflector Agent to bootstrap the KB. We introduce Expand-and-Gather MCTS
to further find the best KB configuration as the KB is iteratively refined through reward-guided
optimization.

A computer-use agent in an Ubuntu environment tasked with automating software installa-
tion across multiple sessions. In its first encounter, it struggles through a 47-step process:
opening the wrong package manager, executing redundant dependency checks, and making
23 API calls to complete what could be a 6-step workflow. When presented with a similar
installation task in the next session, the agent repeats the same inefficient exploration — as
if encountering the problem for the first time. A human user, by contrast, would likely have
a recollection from internalized memory of the optimal sequence after the first attempt,
recognizing the environmental patterns and tool combinations that lead to success.

This scenario illustrates a fundamental limitation of current language agents: despite their impressive
capabilities in reasoning and tool use, they lack the ability to accumulate and apply experiential
knowledge across task sessions. Each interaction begins from a blank slate, forcing agents to
repeatedly explore the same action spaces and rediscover the same solutions [9]]. Real-world tasks
like long horizon multi-stage automation demand more than just “reactive” [33]] tool loops. They
require persistent & interpretable learnings from past experiences - what works, what fails and why.

To close this gap, recent work has explored learning agent behavior using model weight optimiza-
tion [24]], where agents are trained to maximize success across a wide variety of tool-use
episodes. However, while conceptually sound, this suffers from practical limitations. First, it requires
expansive exploration over large rollout spaces to converge, especially in domains where tasks are
diverse, goals are sparsely defined, and intermediate feedback is noisy or delayed. Second, the
resulting policies are often opaque—difficult to interpret, revise, or debug—Ilimiting their real-world
deployability. Finally, these policies are tightly coupled to the task distributions they were trained on,
making it difficult to adapt or incrementally improve them when downstream requirements shift.

In contrast, others have explored learning of knowledge onto a memory module that remains attached
to an agent. These existing memory-augmented agents can be broadly classified into either ones which
(i) store only transient trajectory contexts that vanish between episodes like MemO [7, 29]], or (ii)
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embed high-level notes directly in the prompt such as MetaReflection [10] and GEPA[1]]. While the
latter often do not retain actionable details for future simple tasks, neither of these approach supports
modular updates, fine-grained retrieval, or transparent inspection of what the agent “knows.” [28]].

Leveraging learnings from both camps, we introduce BREW (Bootstrapping experientially-learned
environmental knowledge), a framework that incrementally constructs and refines a knowledge base
(KB) a structured collection of concept-level documents in natural language, directly from an agent’s
past interactions. This KB then serves as a persistent memory for the agent to retrieve knowledge in
future executions to improve precision and efficiency outcomes. Our key contributions are—

* Novel experience-driven KB construction. We propose a technique for leveraging agent’s past
interaction trajectories to generate uniquely-partitioned concept-level KB documents. This process
is guided by rubrics and task-specific graders which ensures that memories are both semantically
aligned with task objectives and human-interpretable.

* State-space search for memory optimization. We formalize the selection and update of KB entries
as a state search problem and introduce an efficient reward-guided learning scheme, Expand-and-
Gather Monte Carlo Tree Search (EG-MCTS), that learns to prioritize the most impactful memories
for robust, multi-step reasoning.

* State-of-the-art results. On domain-grounded benchmarks including OSWorld and 72Bench,
BREW achieves significant gains of in the range of 10 — 20% towards task precision as well as
10 — 15% fewer steps leading to faster execution, while maintaining memory and compute costs
comparable to base LLMs.

2 Preliminary & Related Work

Agent Learning from Demonstrations Recent work has leveraged LLMs to isolate reusable
skills through interactive decomposition: one method distills sub-goals from expert trajectories into
hierarchical planning and execution policies [[11], and another synthesizes executable functional
abstractions for advanced mathematical reasoning via program induction [14]. These approaches
focus on structured skill extraction from LLM-guided interactions, yet remain reliant on static
decomposition or offline synthesis. In contrast, BREW dynamically constructs and refines an
experiential memory—Ilearning necessary semantic fragments via rollout-generated insights and
structured knowledge-base search (MCTS)—to support long-horizon, memory-augmented planning.

Agentic Memory The concept of providing agents with controllable memory has a rich history.
[L7]. Memory mechanisms are attracting more and more attention lately [20, 261 28| [7, 130} [12]. These
works focus towards storing relevant context in a structured format like graph or a tree so as to RAG
over it. Despite their effectiveness these methods perform well for most cases. However, when the
queries are ambiguous, requires multi-hop reasoning and long range comprehension these techniques
struggle to perform the tasks [[12]. In contrast to prior works BREW uses a state search to explore
possible memory states. This allows BREW to select the memory state where the reward during
exploration is highest making it more robust to ambiguous queries and long range comprehension.
We employ MCTS [8]] as a state search algorithm to explore the potential states of the memory by
expanding to new and potentially different states of memory based on same interactions. We discuss
the state search process more formally in Section

3 BREW: Architecture

This section describes our proposed Bootstrapping expeRientially-learned Environmental knoWledge
model, BREW, which constructs and iteratively refines a KB using trajectory insights guided
by human-validated general-purpose agent behavior metrics, task-specific evaluation, and latent
insight generation. We introduce a novel decomposition the problem of learning the optimal KB by
partitioning memory as local documents associated with semantic concepts, and formulate the KB
learning problem as a state space search by proposing Expand-and-Gather Monte Carlo Tree Search
(EG-MCTS). Figure [I] provides an architecture overview of BREW, and Algorithm [I] describes
pseudocode.
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3.1 Trajectory Generation

Given the training dataset, we generate full-length trajectories, hereby referred to as rollouts, for
each query using an LLM-powered agent conditioned on its associated KB. At initialization, the KB
is empty, and the LLM is used with a decoding temperature of O to ensure deterministic behavior.
Further details on training and test splits are in Experiments Section. Each rollout is evaluated using a
correctness grader, which assigns a binary label: success or failure and a qualitative rubric assessment
against a set of human-validated general-purpose agent behavior rubrics [6] (Step 1 in Figure IJ).

3.2 Reflector and Integrator Agents

Reflector Agent: ReflAgent takes as input a rollout with its rubric and correctness labels, and
outputs sentence-level insights with mapped concepts:

{concepts, insights} = Ref1Agent({rollout, eval}). (D
Examples of concept—insight pairs appear in Step 2 of Figure|I]

Concept Deduplication: Concept—insight pairs are annotated independently per rollout, often
producing overlapping or paraphrased concepts. We address this via semantic clustering (Steps 3—4,
Figure [T} Algorithm[T] line 3): contextual embeddings for each concept are generated using an LLM,
clustered, and each insight is mapped to its cluster representative. Details appear in Algorithms [2)and

[]in Appendix [A]

Integrator Agent: IntegAgent incrementally builds and refines KB documents {d(s;)} € D(s;)
during environment interaction. Instead of a centralized memory, the KB is partitioned into local
documents, each tied to a meta concept. This design enables (1) efficient, context-specific retrieval;
(2) modular updates with minimal interference; and (3) natural alignment with task semantics, as
deduplicated meta concepts capture meaningful behavioral abstractions. Unlike prior work assuming
flat memory or dialogue histories, this structure is well-suited for long-horizon, procedural tasks
where behaviors cluster around discrete skills.

The KB is dynamically populated: concepts central to the dataset receive more updates, shaping
memory around frequent behaviors. At each state, for meta concept k, IntegAgent updates its
document d, via

di(siy1) < Integhgent(k, insights;, di(s;)). 2)
To reduce LLM variance and improve consistency, we use the Expand-and-Gather MCTS (EG-MCTS)
method (Figure [2)).

Formally, the KB at state s; is the union of all concept-localized documents:
D(si) = (J {de(s0)}, €)
kex

where K is the set of all meta concepts and dy(s;) is the document for concept k at state s;.

3.3 Expand-and-Gather MCTS for Optimal KB Search

We start by creating a set of meta-concepts after deduplicating concepts extracted by Ref1Agent
using the first set of trajectory rollouts. We freeze this meta-concept set K, and use it to initialize a
KB with an empty document per concept k& € .

We model the problem of finding the optimal KB D* as a search problem in the state space of all
possible KBs D. To simplify this state search, we model KB D as a collection of concept level
documents. This modeling allows us to break down the larger search space into a collection of
simpler document level search problems for each concept % to find the optimal document d};. We then
construct the optimal KB D* by combining all optimal documents dj, for each concept & as follows:

D" = J{di} “

Vk

Notably, even though we are modeling document level search as independent optimization problems,
each document in the KB is not independent of the others. For example, an agent can retrieve any
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Algorithm 1 BREW: Bootstrapping Experientially-learned Environmental Knowledge
Require: Training samples Qy,in, eval samples Qey,, rubrics, iterations M, candidates per expansion

Ensure: Optimized KB D*
Initialization
D() — g
B < GENERATEINSIGHTS ( Qyain, Do, rubrics)
K <~ DEDUPLICATECONCEPTS(B3) > Initial concept set
for each k € K do
d) + INTEGAGENT(k, I}, @)
Initialize treey, with root node dY)

end for
Deurrent — Urerc{dp} > Initial KB
EG-MCTS Optimization

9: fort =1to M do > Parallel expansion across concepts
10: for each k € K do
11: Sk < SELECTBESTNODE(treey,) > UCT selection
12: Drest + Uprexc {dis™ > Current best docs
13: EXPANDNODE(Sg, k, h, Deurrent> DPhests tree€)
14: end for > Update current best documents
15: for each k € K do
16: d* <— best document in treey,
17: end for
18: Deurrent < Uke]c{dzeﬁ}
19: end for
20: return Dyent

PR R

Time Complexity: O(|Qin| - Tiim + M - |K] - h - Thgent)

document in the KB during inference and this retrieval making it hard to assess the impact of changing
a document in isolation. To solve this we propose Expand-and-Gather MCTS (EG-MCTS), which
enables searching these disjoint state spaces concurrently using parallel MCTS explorations that are
synced after each iteration. To achieve this we perform node expansions in the respective search
spaces independently but condition reward calculation and insight generation on a running optimum
KB state. Each iteration of EG-MCTS can be broken down two phases:

Expand Phase: During this stage, for each search tree, we pick the best state s* and expand
it concurrently. To perform this expansion the KB D(s*) is constructed by including the current
document dj(s*) and the best (oracle) documents {d; };» for all other positions. Thus, the KB at
iteration ¢, 0 < ¢ < E'is defined as:

Dt - dt U d;kl#t (5)
We use this KB D(s;) to generate trajectory rollouts which are consumed by the Ref1Agent to
generate insights. We then use the IntegAgent to generate various updated variants of dj; e.g.,
di(8i), ..., dr(s;), where 0 < i < Fand 0 < j < E. We then estimate a reward R for each of these
newly generate states and update rewards of parent states using backpropagation.

Gather Phase: During this stage, the current best states from each document’s MCTS tree are
gathered together and distributed to every MCTS tree for reward calculation. This is important to
1. Estimate rewards for each expanded state, and 2. Generate new insights for further node expansion.

3.4 Reward-Guided Optimization

This section describes BREW’s joint reward and loss optimization for learning an optimal KB.

Reward Objective: Each document state is rewarded based on two complementary criteria: (i) how
well the current document contributes to accurate downstream reasoning, and (ii) how retrievable
it is in the context of a growing KB. Formally, the total reward at time step ¢ is defined as:

Rt = )\corr . Rgorr + /\rel . R;et (6)
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di(si)
## Search and Open Files

**When to use**: To find documents,

spreadsheets, images, or downloads for

editing, conversion, or attachment.

### How to Perform
- Open File Manager (Nautilus) via
launcher or dock

-Press " Ctrl+ F* or click the search
icon

- Enter part of the filename, full name,
oruse wildcards (" %pdf*, *report*")

Expand Phase di(s)

## Search and Open Files
**Purpose:** Locate and open files
(documents, images, downloads) for
further work.

**How-To:**
- Launch File Manager (Nautilus) via
launcher, dock, or *Super +E .

- Search: Press " Ctrl + F* or use the
searchicon.

- Enter part or all of the filename
(wildcards like * %pdf* work).

Iterations E

1 Reward Estimation:
RCOTT 4 Rt

Gather Phase

treey

E iterations of MCTS, suchthat 0 < i < E, 0 < j < E. State s; = child_of (s,) and
sj = child_of (s,) for meta-conceptk, 1 < k < K.
di(si) di(si+1)

## Search and Open Files

**When to use**: To find documents,
spreadsheets, images, or downloads for
editing, conversion, or attachment.

#4# Search and Open Files
P Current best nodes from each

MCTS tree are expanded by
each MCTS node

4

Expand Phase

(pumd

**Quick Reference Table:**

### How to Perform
- Open File Manager (Nautilus) via
tauncher or dock

-Press " Ctrl+ F* or click the search
icon

- Enter part of the filename, full name,
or use wildcards (" *pdf*, " report*")

Node expansion at state s; for meta-conceptk, 1 < k < K.

Figure 2: Illustration of BREW’s KB optimization process using Expand-and-Gather MCTS with
OSWorld examples. In the Expand Phase, for each document &, we sample the best node from
treer, using UCT and perfrom node expansion. Node rewards are estimated based on correctness
and retrievability. In the Gather Phase, the current best nodes from each tree are gathered per node,
and the objective function is optimized. The process is repeated during the next iteration of KB
refinement.

where R is the correctness reward, R is the retrieval reward, and Ao, At € [0, 1] are scalar
weights with Acorr + Aret = 1.

Correctness Reward: The correctness reward R;{°" evaluates the accuracy of the agent’s output
over a held-out query set @, when reasoning over the current KB D;. It is defined as:

1
al Z Evalyg (¢, agent & D) ™)
q€eQ

where Eval,q is a task-specific evaluation function (e.g., question-answering accuracy, entailment
correctness), and agent @ D, denotes the agent acting over the hybrid KB.

RCOI‘T(dt |Dt) —

Retrieval Reward: The retrieval reward R} measures how effectively the current document d,
can be retrieved from the current KB D;. For a held-out query set Q, it is computed using the mean
reciprocal rank (MRR):

1
Rret(dt|Dt) _

=15 Z MRR,(d;, D;) (8)

qeQ

This encourages documents that are not only helpful in reasoning but also easily retrievable via the
retrieval model over D;.

4 Experimental Setup

Datasets We evaluate BREW on three diverse benchmarks testing different aspects of interactive
agent capabilities: OSWORLD for computer-use automation [27], 72-Bench for tool use [5], and
SPREADSHEETBENCH for data manipulation [[18]].

1. OSWorld: This benchmark tests multimodal agents on real-world computer tasks across 10
applications. We use GTAI-7B, a state-of-the-art computer-use agents with BREW. Tasks are
evaluated using 134 custom scripts that verify final application states.

2. 72-Bench: This benchmark evaluates conversational agents on multi-turn tool-use scenarios across
Telecom, Retail, and Airline domains. We test o4-mini-based tool-calling agent, constructing
BREW KBs for every domain.
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3. SpreadsheetBench: This benchmark evaluates agents on real-world spreadsheet manipulation,
spanning both cell-level and sheet-level tasks. It contains 912 authentic user instructions paired
with 2,729 test cases (3 per instruction), sourced from Excel forums and blogs. Spreadsheets
include diverse formats with multi-table sheets (35.7%) and non-standard tables (42.7%). We test
o4-mini using a Python tool-calling agent, and enhance it with by adding an embedding based
Retrieval over the BREW KB generated over a small held-out train set of 30 samples.

Baselines We compare BREW against two widely used experiential memory approaches, Cogneeﬂ
and Agent-Mem [30]], both of which serve as established baselines for Al memory evaluation. Cognee
is an open-source Al memory engine that employs a graph-plus-vector memory architecture through
an Extract—Connect-Learn pipeline, enabling agents to construct cross-document and cross-context
connections entirely from previously available trajectories. In contrast, Agent-Mem provides a
scalable memory layer for dynamically extracting and retrieving information from conversational data,
with enhanced variants incorporating graph-based memory representations. While Cognee primarily
emphasizes cross-document relational reasoning, Agent-Mem focuses on scalable personalization for
conversational agents.

Other Experimental Configs: For all experiments, we use GPT-4.1-2025-04-14 as the base
LLM with expansion width e = 3, max depth k£ = 3, and balanced reward weights Acorr = Aret = 0.5.
During MCTS node selection, we use the UCT [[15]] for balancing exploration and exploitation Full
experimental details are provided in the Appendix.

5 Analysis & Discussion

In this section, we present findings from our evaluation of BREW. For more details on qualitative
insights and discussion you may refer to the supplementary material.

Variations with State Search Strategy BREW performs a search across possible KB states using
MCTS. We compare different state search strategies to determine the relative trade-offs:

1. Iterative Refinement: In this strategy we generate one version of each document to generate an
initial KB, followed by a round of evals. We then use the aggregator agent to refine the documents
over the newly learned insights. We repeat this step multiple times up to a maximum number of
refinements. Note that in contrast to MCTS, in this strategy we do not perform node expansions
and rather explore a path in the search tree.

2. Greedy Search: In this strategy we greedily pick the best state during each node expansion and
only explore the sub-tree within it. This is in contrast to MCTS where, we explore different states
using the UCT algorithm that balances exploration and exploitation.

Table [T] presents how MCTS achieves consistent performance gains across all benchmarks. These
represent 1-5% improvements over alternative search strategies across tasks. Iterative refinement’s
poor performance reveals core limitations in the integrator agent feedback incorporation- which can
be attributed to inherent stochasticity in LLMs. This makes state exploration especially important for
textual optimization tasks like ours. We present a detailed analysis on how varying MCTS parameters
result in different final states in appendix.

5.1 Trends across Sub-Tasks

BREW learns recipes from sub-trajectories in OSWorld. Figure 3| shows that BREW(BREW)
improves success rates in 5 out of 10 OSWorld categories, achieving absolute gains of 4-16%
while maintaining performance parity in the remaining categories (Chrome, Gimp, LibreOffice
Calc, LibreOffice Impress, OS). The largest improvements appear in text-processing applications
(LibreOffice Writer: 14% — 24%, Thunderbird: 38% — 54%) and multimedia tools (VLC:
20% — 27%), with moderate gains in multi-application and development environments. Even in
settings with limited improvements in task correctness, BREWconsistently reduces execution length
by 14-23 steps, highlighting more efficient planning.

!github.com/topoteretes/cognee
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Method OSWorld 72 Bench SpreadsheetBench

GTA1-7B 0o4-mini o4-mini
Baseline 44.20 56.63 44 .30
Cognee 46.70 57.71 42.10
Agent-Mem 43.83 52.69 42.00
BREW-Iterative 46.13 57.34 42.98
BREW-Greedy 45.55 59.14 45.94
BREW-MCTS 47.56 59.14 46.80

Table 1: Comparison of models under different evaluation setups, including Baseline model and
BREW augmented model. We report task success rate for OSWorld, ratio of independent tasks that
succeeded for 72 Bench, and the 1st test case pass rate for SpreadsheetBench.

OSWorld: Success Rate Comparison and Efficiency Gains
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Figure 3: The bar plot represents the category-wise success rate over various tasks in the OSWorld
dataset over the GTA1-agent, whereas the line plot demonstrates the reduction in the number of steps
for the successful cases. Note that even in scenarios where the KB doesn’t help increase the success
rate, it significantly reduces the number of steps needed to succeed.

This pattern suggests that BREW’s architectural enhancements are particularly effective for tasks
requiring complex sequential reasoning and inter-application coordination, while preserving baseline
robustness in domains constrained by intrinsic task complexity.

A qualitative analysis of the knowledge bases (KBs) constructed by BREWfurther supports this
finding. We observe that BREWcaptures and represents sub-trajectory characteristics in natural
language, including application shortcuts, standard operating procedures, and strategies for localizing
UI elements. Since many UI tasks share common sub-trajectories, this representation facilitates
knowledge transfer across tasks within the same application. Moreover, BREWsubstantially reduces
reliance on granular Ul interactions: while the baseline GTA1 model executes approximately 19,000
clicks and 17,821 keyboard actions, BREWsignificantly decreases this interaction complexity.

BREW learns aggressive resolution strategies for 72— Bench To evaluate robustness of BREW,
we analyzed the distribution of failure modes across the 72—retail dataset, focusing on four key error
categories: Wrong Argument, Wrong Info, Wrong Decision, and Partially Resolve. Figure[d] presents
a comparative chart for the baseline, BREW, Cognee and Agent-Mem(30]].
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Overall, BREW demonstrated consistent improvements across most error types compared to the
baseline and competing approaches. Specifically, BREW showed a notable reduction in “Wrong
Argument” and “Wrong Decision” errors, indicating that it was better at capturing logical depen-
dencies in retail dialogues and making accurate decisions.

Interestingly, Partially Resolve errors were slightly higher for BREW than for Cognee, likely because
BREW attempted more aggressive resolution strategies that occasionally failed to fully satisfy user
queries. Cognee appears to capture richer factual details given its relatively lower Wrong Info errors,
whereas Agent-Mem excels in tracking conversation state and decision accuracy, as reflected in its
reduced Wrong Decision failures.

Improvements in Task Efficiency We observe that overall, BREWenables agents to come to a
correct response quicker.

OSworld. Figure [3] demonstrates that BREW enables GTA1 to complete tasks more efficiently.
Compared to the baseline GTA1 model’s average of ~75 steps, the BREW-augmented model
completes tasks 14% faster with an average of ~64 steps. Analyzing performance by outcome reveals
that while step counts remain unchanged for failed cases, successful completions show a substantial
39% (rel.) reduction in execution steps, indicating improved planning efficiency for achievable tasks.
72Bench. Similarly, BREW reduces average

—e— Baseline Cognee

conversation turns from 29.47 to 28.43 (-3.5%), —— BREW AgentMem
while maintaining consistent step reductions
across categories. Step reductions average 1.7 Wrong info

steps for Retail and Telecom, but 3.1 steps for

Airline, indicating greater efficiency gains in

complex domains. Qualitative analysis sec-

onds these numbers showing how knowledge

base integration enables more direct task com-  y,ong aecision Wrong argument
pletion paths and improved planning quality,

though multi-turn interactions remain necessary

for complex sub-tasks.

SpreadsheetBench. While we observe a slight

increase in the number of turns across the entire Partially resolve

benchmark suite (4.5 — 5.4) in the case of the

baseline versus BREW, an interesting pattern

emerges in more than 82% of the cases the base- Figure 4: Distribution of errors in 72 Bench Retail
line and the BREW appended agent performs

similarly with similar turn consumption. BREW leads to an improvement in 12% of the cases where
the KB is able to address gaps in the baseline technique to enable the agent to go exploring further
leading to positive outcomes with an average of 1 step increase in the interactions.

6 Conclusions

In this work, we explored an alternative approach to agent optimization by focusing on experiential
knowledge retention rather than direct model fine-tuning. We introduced BREW, a framework that
aims to construct and refine a structured, interpretable knowledge base from past agent interactions.
By decomposing agent memory into concept-level documents and applying a state-search optimiza-
tion strategy, BREW provides a modular and transparent substrate for memory formation. Our
evaluations across OSWorld and 72Bench benchmarks suggest that such structured memory can
support measurable improvements in task success and efficiency, while maintaining manageable
computational costs. Although the observed gains are promising, we recognize that BREW’s effec-
tiveness is influenced by the quality and coverage of its training data. Future work could explore
more adaptive and domain-general memory refinement techniques, as well as tighter integrations with
ongoing agent planning. Ultimately, we hope this study encourages further investigation into more
interpretable, memory-driven approaches to language agent development—especially in real-world
environments where long-term consistency and adaptability are essential.



297

298

300
301
302

303
304
305

306
307
308
309

310
311
312

313
314
315

316
317
318
319
320

321
322
323

324

334

337
338
339

340
341

342
343
344
345

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Lakshya A. Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J. Ryan, Meng Jiang, Christopher Potts, Koushik
Sen, Alexandros G. Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, and Omar Khattab.
Gepa: Reflective prompt evolution can outperform reinforcement learning. arXiv preprint
arXiv:2507.19457, July 2025.

Anthropic. Introducing computer use, a new Claude 3.5 Sonnet, and Claude 3.5 Haiku, Octo-
ber 2024. URL https://www.anthropic.com/news/3-5-models-and-computer-use.
Accessed: 2025.

Yasharth Bajpai, Bhavya Chopra, Param Biyani, Cagri Aslan, Dustin Coleman, Sumit Gulwani,
Chris Parnin, Arjun Radhakrishna, and Gustavo Soares. Let’s fix this together: Conversational
debugging with github copilot. In 2024 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1-12, 2024. doi: 10.1109/VL/HCC60511.2024.00011.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. 72-bench:
Evaluating conversational agents in a dual-control environment, 2025. URL https://arxiv,
org/abs/2506.07982,

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. 72-bench:
Evaluating conversational agents in a dual-control environment, 2025. URL https://arxiv|
org/abs/2506.07982.

Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani.
Rubicon: Rubric-based evaluation of domain-specific human ai conversations. In Proceedings
of the 1st ACM International Conference on Al-Powered Software, Alware 2024, page 161-169,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706851. doi:
10.1145/3664646.3664778. URL https://doi.org/10.1145/3664646.3664778!

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. MemO:
Building production-ready ai agents with scalable long-term memory. arXiv preprint
arXiv:2504.19413, 2025.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
Proceedings of the 5th International Conference on Computers and Games (CG 2006), pages
72-83. Springer, 2006. doi: 10.1007/978-3-540-75538-8_7.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for
long-horizon tasks. The Forty-Second International Conference on Machine Learning, 2025.

Priyanshu Gupta, Shashank Kirtania, Ananya Singha, Sumit Gulwani, Arjun Radhakrishna,
Gustavo Soares, and Sherry Shi. MetaReflection: Learning instructions for language agents
using past reflections. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors,
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pages 8369-8385, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-main.477. URL https://aclanthology.org/
2024 .emnlp-main.477/.

Maryam Hashemzadeh, Elias Stengel-Eskin, Sarath Chandar, and Marc-Alexandre Cote. Sub-
goal distillation: A method to improve small language agents, 2024. URL https://arxiv!
org/abs/2405.02749,

Yuanzhe Hu, Yu Wang, and Julian McAuley. Evaluating memory in llm agents via incremental
multi-turn interactions, 2025. URL https://arxiv.org/abs/2507.05257,

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=VTF8yNQM66,

10


https://www.anthropic.com/news/3-5-models-and-computer-use
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://doi.org/10.1145/3664646.3664778
https://aclanthology.org/2024.emnlp-main.477/
https://aclanthology.org/2024.emnlp-main.477/
https://aclanthology.org/2024.emnlp-main.477/
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2507.05257
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

346
347

348
349
350

352
353
354
355

356

358
359
360

361
362

363
364
365

366
367
368

369
370
371

372
373
374

375
376
377
378

379
380
381
382
383

384
385
386

387
388
389
390
391
392
393
394
395

[14] Zaid Khan, Elias Stengel-Eskin, Archiki Prasad, Jaemin Cho, and Mohit Bansal. Executable
functional abstractions: Inferring generative programs for advanced math problems. 2025.

[15] Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Johannes
Fiirnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006,
pages 282-293, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-46056-
5.

[16] Xinzhe Li. A review of prominent paradigms for llm-based agents: Tool use, planning (including
rag), and feedback learning. In Proceedings of the 31st International Conference on Compu-
tational Linguistics (COLING), pages 9760-9779, Abu Dhabi, UAE, 2025. Association for
Computational Linguistics. URL https://aclanthology.org/2025.coling-main.652.

[17] Michael L. Littman. An optimization-based categorization of reinforcement learning environ-
ments. 1993. URL https://api.semanticscholar.org/CorpusID:17988064.

[18] Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang, Sijia Luo,
Xi Wang, and Jie Tang. Spreadsheetbench: Towards challenging real world spreadsheet
manipulation. Advances in Neural Information Processing Systems, 37:94871-94908, 2024.

[19] OpenAl. Introducing Operator, January 2025. URL https://openai.com/index/
introducing-operator/. Accessed: 2025.

[20] Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL https:
//arxiv.org/abs/2310.08560,

[21] Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with
native agents. arXiv preprint arXiv:2501.12326, 2025.

[22] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. In Proceedings of the 34th International Conference on Machine
Learning (ICML 2017),2017. URL https://arxiv.org/abs/1707.06347,

[24] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

[25] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. In Proceedings of the
37th Conference on Neural Information Processing Systems (NeurlPS 2023), New Orleans,
LA, USA, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

[26] Yu Wang, Chi Han, Tongtong Wu, Xiaoxin He, Wangchunshu Zhou, Nafis Sadeq, Xiusi Chen,
Zexue He, Wei Wang, Gholamreza Haffari, Heng Ji, and Julian McAuley. Towards lifespan
cognitive systems, 2025. URL https://arxiv.org/abs/2409.13265.

[27] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking
multimodal agents for open-ended tasks in real computer environments. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems, volume 37, pages 52040-52094. Curran Associates,
Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
5d413e48£84dc61244b6beb50f1cd8f5-Paper-Datasets_and_Benchmarks_Track.
pdf.

11


https://aclanthology.org/2025.coling-main.652
https://api.semanticscholar.org/CorpusID:17988064
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://arxiv.org/abs/2409.13265
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf

396
397
398

399
400

401
402

403
404
405

406
407
408

409
410
411
412

413
414
415

416
417
418
419
420

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ran Xu, Yuchen Zhuang, Yue Yu, Haoyu Wang, Wengqi Shi, and Carl Yang. Rag in the wild: On
the (in)effectiveness of llms with mixture-of-knowledge retrieval augmentation. arXiv preprint
arXiv:2507.20059, 2025.

Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem:

Agentic memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem:

Agentic memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023. doi: 10.48550/arXiv.2306.02224.
URL https://doi.org/10.48550/arXiv.2306.02224.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In Proceedings of the
1 1th International Conference on Learning Representations (ICLR 2023),2023. URL https:
//openreview.net/forum?id=WE_v1luYUL-X.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A bench-
mark for tool-agent-user interaction in real-world domains. In NeurIPS (Workshops), 2024.
State-of-the-art agents (e.g. GPT-40) succeed on <50

Yuyan Zhou, Liang Song, Bingning Wang, and Weipeng Chen. Metagpt: Merging large
language models using model exclusive task arithmetic. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 1711-1724, Miami,
Florida, USA, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.102.

12


https://arxiv.org/abs/2502.12110
https://doi.org/10.48550/arXiv.2306.02224
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

421

422

423
424
425
426
427
428
429
430

431

432
433
434
435
436
437

439
440
441
442
443
444
445
446
447
448
449

451
452
453
454
455

457
458
459
460
461
462
463
464
465
466
467

469
470
471
472
473
474
475
476
477
478
479

A Appendix

A.1 Details of the BREWAIlgorithm

We provide pseudocode for the core components of BREW, aligning with the stages introduced in
Section 3| Each algorithm plays a distinct role in constructing, organizing, or refining the knowledge
base over iterative interactions. GENERATEINSIGHTS (Alg. [2) produces concept-aligned insights
from annotated rollouts using Ref1Agent. DEDUPLICATECONCEPTS (Alg. [3) clusters semantically
overlapping concepts into a compact meta-concept set. INTEGAGENT incrementally builds and
updates per-concept documents using newly generated insights. Finally, EXPANDNODE (Alg. f)
performs MCTS-guided expansions to explore improved document variants, while EVALUATE (Alg. |5))
scores candidate KB states using correctness and retrieval-based rewards.

We specify the IntegAgent prompt below:
BREW Integrator Prompt

# Enhanced Documentation Editor Prompt

You are a meticulous documentation-level editor specializing in comprehensive
technical reference materials. You will be given a list of topic nodes,
each containing structured information that must be preserved and enhanced
with maximum detail retention.

## Input Structure Analysis

Each node contains:

- *xTitle**: The primary topic identifier

- *xContext**: Background information and conceptual foundation

- *xkHow to Use**: Step-by-step instructions, commands, flags, parameters, and
implementation details

- **When to Use**: Specific scenarios, conditions, and decision criteria

- xxBest Practices**: Expert recommendations, optimization techniques, and
common pitfalls to avoid

## Detailed Processing Requirements

### 1. Information Preservation (Zero Loss Policy)

- **Preserve every technical detail**: All command-line flags, parameter values,
configuration options, file paths, URLs, version numbers, and exact syntax

- **Maintain all examples**: Keep every code snippet, sample input/output, file
names, directory structures, and command sequences exactly as provided

- **xRetain contextual nuances**: Preserve qualifying language like "typically,"
"usually," "in most cases," "when available," and conditional statements

- **Keep quantitative data**: Preserve all numbers, measurements, timeframes,
limits, thresholds, and statistical information

- **Maintain cross-references**: Keep all mentions of related tools,
dependencies, prerequisites, and interconnected concepts

### 2. Enhanced Detail Extraction

- *kExpand abbreviations**: When encountering shortened forms, expand them
naturally while preserving the original

- *xSurface implicit knowledge**: Make obvious assumptions explicit (e.g., "this
requires root permissions," "assumes default configuration")

- *xClarify relationships**: Explicitly describe how different components,
options, or steps relate to each other

- *xHighlight edge cases**: Emphasize special conditions, exceptions, or unusual

scenarios mentioned in the source

- xkElaborate on consequences**: When the source mentions outcomes, expand on

both success and failure scenarios

### 3. Prose Transformation Guidelines
- **Bullet integration**: Transform each bullet point into 1-3 complete
sentences that naturally flow together
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- *xTechnical precision**: Use precise technical vocabulary while maintaining
readability

- *kLogical flow**: Organize information within each section to follow a logical

sequence (setup —execution —verification)

- **Contextual embedding+**: Weave code snippets and technical terms seamlessly
into narrative sentences

- **Comprehensive coverage**: Ensure every sub-bullet, nested item, and
parenthetical note becomes part of the prose

### 4. Structural Requirements

- x*Heading hierarchy**: Use ‘# Title‘ for each node’s main heading

- **Section order**: Maintain Context —How to Use —When to Use —Best
Practices sequence

- **Paragraph organization**: Create substantial paragraphs (3-6 sentences)
rather than brief statements

- *xTransition quality**: Craft smooth bridges between sections and between
different nodes

- **Code formatting**: Preserve all inline code with backticks and maintain
proper formatting for code blocks

### 5. Quality Assurance Checklist

Before finalizing, verify:

- [ ] Every piece of source information appears in the output

A1l technical specifications, parameters, and examples are intact
Code snippets maintain their exact syntax and formatting

Prose flows naturally without choppy or fragmented sentences
Each section provides comprehensive coverage of its topic area
Cross-references and dependencies are clearly explained

No section labels or formatting artifacts remain in the prose

L W B e B e W e W |
e e e e

## Output Specifications
Generate a single, cohesive markdown document that reads as authoritative
technical documentation. The result should be comprehensive enough that a
reader could successfully implement the described tools or techniques using
only the information provided, without referring back to the original
nodes.

*xInput Nodes:**
<NODES>
{node_list}
</NODES>

Now, produce the aggregated markdown reference sheet with maximum detail
preservation and enhanced clarity.

Algorithm 2 Generatelnsights: Extract behavioral insights from trajectories

Require: Queries Q, KB D, rubrics
Ensure: Concept-insight pairs B

A U i

B+ o
for each query ¢ € Q do
T <~ LLM(q, D) > Generate trajectory
label <~ GRADE(T) > Success/failure
(¢, 1) + REFLAGENT(T, rubrics, label)
B+ BU{(c,i,q)} > Store with source query
end for
return 53
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Algorithm 3 DeduplicateConcepts: Cluster similar concepts and map queries
Require: Concept-insight-query triples B
Ensure: Meta-concepts KC with mapped queries and insights
. Extract all concepts from B
Embed and cluster concepts by similarity
IC < cluster representatives
for each k£ € K do
Qirain « {training queries that contributed insights to &}
Q‘;'Cval < {held-out queries relevant to k}
Ty < {all insights mapped to concept k}
end for
return K with associated queries and insights

VRN RN

Algorithm 4 ExpandNode: Generate and evaluate new document variants

Require: Node s, concept k, candidates h, current KB Dyrent, best docs Dy, tree
Ensure: Updated tree with new evaluated nodes
1: > Generate new insights from concept-relevant queries
2: Bhew < & ‘
3: for query ¢ € QF*" do
4 7 < LLM(q, Deurrent)
5: (¢, 1) + ANNOTATE(T, rubrics, -)
6 if ¢ maps to k then
7: Bhew  Brew U {i}
8: end if

9: end for
10: > Generate and evaluate candidate documents

11: for j = 1to hdo
12: dy,; < INTEGAGENT(k, Zj, U Bpew, d})

13: > Evaluate using hybrid KB with best docs from other concepts
14: Dhybrid — {dk,j} @] {dk/ € Drest : k' #* ]43}

15: Rk’j — EVALUATE(dk,j7 Dhybrida inal)

16: > Add to tree and backpropagate
17: Add (dg,;, Ry, ;) as child of s in tree

18: Backpropagate I?;, ; from new node to root

19: end for

Algorithm 5 Evaluate: Score document using held-out queries

Require: Document dy, hybrid KB Dyyurig, €val queries ina'
Ensure: Reward score R
1: R"«+ 0
2: R« 0
3: for each ¢ € Q9" do
4: R < R4 EVAL(q, agent ® Dhybria)
5: R™ < R*4 MRR(dg, q, Dhybria)
6: end for
7
8
9

. Reorr R:‘:
2]
LR R
ESl

:return Agopy - RO 4 Aper - R

529 A.2 BREW Configurations

s30 Base LLM Configuration For all BREWalgorithm steps, we use the OpenAl GPT-4.1-2025-04-14
531 model as the underlying language model. To balance exploration and stability, we set the temperature
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to 0.7 for the IntegAgent component to encourage diversity in sampled completions, while all other
calls use a temperature of 0.1 for deterministic behavior. The search process employs an expansion
width of e = 3, a maximum search depth of k¥ = 3, and a maximum of n = 10 iterations. Reward
signals are weighted equally across correctness and retrieval relevance, with Azppr = Aper = 0.5.

A.3 Baseline Methods

We compare BREWagainst two common reasoning baselines. Step-Back Prompting encourages
backward reasoning by guiding the model to work from the final task objective back to the initial
actions. In-Context Learning augments the input prompt with successful trajectories from related
tasks, enabling the model to benefit from relevant prior examples without additional fine-tuning.

A.4 Benchmark Specifications
A4.1 OSWorld: Computer-Use Automation

Dataset Overview OSWorld [27] comprises 369 real-world computer-use tasks spanning 10 distinct
applications. The benchmark is divided into train and test sets, with the distribution of tasks across
domains shown in Table 2]

Agent Specifications The UI-Tars-7B variant is a 7B-parameter multimodal transformer fine-tuned
for graphical user interface understanding. It operates over an action space of PyAutoGUI commands
(e.g., click, type, and key presses). The agent integrates a retrieval module that queries a task-relevant
knowledge base using the user-provided description, with the top three retrieved items added to the
system prompt. Inputs to the model consist of a screenshot of the active UI paired with the natural
language task description.

The GTA1-7B configuration adopts a two-agent architecture, consisting of a planner and a grounding
module. The planner (GTA-1-7B) generates the high-level action sequence, while the grounding
module (OpenAl O3) verifies and refines each action before execution. Knowledge retrieval is
incorporated differently for each component: the planner performs a single retrieval at the start
of execution, which is persisted in its prompt, whereas the grounding module performs dynamic
retrievals at each verification step.

Evaluation Protocol Evaluation uses 134 task-specific scripts designed for automated verification.
Success criteria include file state checks (e.g., validating .x1sx or .docx outputs), Ul element
validation to confirm correct interaction, and process completion checks to ensure that the intended
automation sequence was executed successfully.

A.4.2 72-Bench: Interactive Tool Usage

Dataset Overview 72-Bench [5] extends 7-Bench by introducing bidirectional tool-calling capa-
bilities. The dataset covers multiple service-oriented domains, with domain-level task distributions
summarized in Table 3]

Domain Characteristics The benchmark spans several domains with distinct task characteristics.
The Telecom domain focuses on connectivity troubleshooting, plan modifications, and service
activation workflows. The Retail domain includes order processing, return handling, and inventory
queries. The Airline domain emphasizes booking modifications and policy-compliant rescheduling
scenarios.

Interaction Settings Two interaction modes are defined. In Easy mode, a human proxy (imple-
mented via GPT-4.1) provides detailed guidance to the agent. The knowledge base is built exclusively
from Easy mode trajectories, ensuring high-quality demonstrations for learning. In Hard mode,
human intervention is minimized. The knowledge base combines both Easy and Hard trajectories,
testing the agent’s robustness to underspecified or noisy instructions.

Evaluation Criteria Task success is measured using domain-specific verification procedures. These
include database state checks to validate final outcomes, status checks for confirming service or
connection state, natural language verification to ensure correct confirmation statements appear in
dialogue, and action matching to confirm that all required steps are completed. Each domain uses a
tailored subset of these checks (e.g., Telecom relies primarily on status checks).
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Domain Test Train

Calc 45 2
Chrome 44 2
Writer 21 2
Gimp 24 2
Impress 45 2
Os 22 2
Thunderbird 13 2
Multi-apps 99 2
VLC 15 2
VSCode 21 2
Total 349 20

Table 2: Test and Train samples across different domains in OSWorld.

Domain Test Train

Telecom 105 7
Retail 105 7
Airline 44 6

Total 254 20

Table 3: Task-wise breakdown for 72-Bench with assumed 2-shot training samples per domain.

Domain Characteristics

* Telecom: Connectivity issues, plan management, service activation
* Retail: Order processing, returns, inventory queries

* Airline: Booking modifications, policy-compliant rescheduling
Evaluation Criteria Task success determined by:

* Database Checks: Final state verification

¢ Status Checks: Service/connection state validation

* NL Checks: Confirmation statements in dialogue

* Action Matching: Required action sequence completion

Note: Each domain uses specific check combinations (e.g., Telecom uses only status checks).

A.4.3 SpreadsheetBench: Real-World Spreadsheet Manipulation

Dataset Overview SpreadsheetBench [[18] consists of 912 instructions collected from four major
Excel forums and blogs. Each instruction is paired with spreadsheets reflecting authentic, complex
user scenarios, often containing multiple tables and non-standard relational structures. The dataset
totals 2,729 test cases, averaging three per instruction. A breakdown of cell-level and sheet-level
manipulations is shown in Table 4]

Task Settings The benchmark defines two dimensions of evaluation:

* Granularity: Instructions involve either cell-level manipulations (specific ranges such as
D2:D6) or sheet-level manipulations (entire tables or multi-sheet updates).

» Evaluation: Performance is measured using an Online Judge (OJ)-style protocol. The soft
setting (IOI-style) awards partial credit when only some test cases are solved, while the hard
setting (ICPC-style) requires solutions to succeed on all test cases.

Agent Configuration We evaluate
texttto4-mini using a function-calling agent connected to a single Python execution tool. The
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agent translates natural language instructions into Python code for spreadsheet manipulation (e.g.,
modifying cells, applying formulas, restructuring tables). After each tool call, all formulas in the
spreadsheet are recalculated to ensure consistency before proceeding to the next step. This setup
provides a controlled environment to assess reasoning, code generation, and execution robustness
across diverse spreadsheet tasks.

Granularity Instructions Test Cases

Cell-Level 329 986
Sheet-Level 583 1,743
Total 912 2,729

Table 4: Cell-level vs. sheet-level distribution in SpreadsheetBench.

A.5 KB Construction and Retrieval Details
Training Data Collection

* OSWorld: 20 successful trajectories (2 per application domain) and 10 for evals.
+ 72.Bench: 20 trajectories balanced across domains and difficulty settings and 10 for evals.

» SpreadsheetBench: Uniformly sample 30 trajectories for training and 10 for evaluation.

All numbers are reported on the remaining train set.

Retrieval Strategy
* Query Formation: For each task we take in the seed Natural Language query as the retrieval
query.
* Retrieval Count: We take top-3 documents for all the retrieval steps

¢ Integration Point: For SPREADSHEET ENCH and OSWorld we insert retrievals in the
system prompt augmentation. For 72-bench we add perfrom retrieval after each user
interaction.

B Qualitative Analysis

Exploration on MCTS parameters WE evaluate OSworld on two different MCTS parameters.

* Increased Depth: To increase the depth we keep maximum width of the tree as 3 and depth as
10 with max number of iterations as 25. We observe that the Knowledge base over optimizes
on the train set leading to a poorer performance on test set.

* Increased Width: For increased width we reverse the parameters where depth is 3 and
maximum width is 10 with max iterations 25. We observe many different styles of KBs are
generated storing very similar information, these different styles lead to a varied performance
on both eval and test set notifying the importance of state search.

We report the numbers on table ??

Baseline max_width=3, max_depth=3 max_width=3, max_depth=10 max_width=10, max_depth=3
OSworld 44.20 47.56 43.83 49.32

Table 5: OSworld difference in MCTS parameters
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C Exemplar Knowledge Bases

C.1 Knowledge base learned for OSWorld

We showcase a small part of knowledge base learned thought BREW . This demonstrate 3 major
parts on which each document is aggregated. These parts discuss when to use a piece of information,
why to use the information, how to use the information/tool.

## Search and Open Files

**When to usex*: Locating documents, spreadsheets, images, or downloads for
editing, conversion, or attachment.

### How to Perform

- Open **File Manager (Nautilus)** from launcher or system dock

- Press ‘Ctrl + F¢ or click the search icon

- Enter part of filename, full name, or wildcard (‘*.pdf‘, ‘report*‘)

- Use right-click —**0Open With** to choose the desired application

- Use the sidebar to navigate to **Downloads**, **Documents**, or custom folders

### Additional Actiomns

- Right-click —**Properties** to check modification date or file type
- Sort results by Date, Type, or Name from the top-right dropdown

- Use ‘F2¢ to rename files inline

### Example

- Task: "Edit the file titled ‘sales_report_march.ods‘"
- Search for ‘sales‘ in File Manager
- Confirm ¢.ods type and open with LibreOffice Calc

## Insert Images

**When to use**: Adding visual elements to documents, presentations, emails, or
templates.

### How to Perform

- Navigate to **Insert —Image —From Filex* (in Writer, Impress, Thunderbird)

- Select an image file (‘.png‘, ‘.jpg‘, ¢.svg‘) from the file dialog

- Use drag handles to resize; right-click —*xWrap** or **xAlignment** for layout

### Additional Actions

- In GIMP: **File —0Open as Layers** to insert image as a new layer

- Use drag-and-drop from file manager into open document windows

- Use *xFormat —Image** to apply borders, shadows, or color corrections (in
Writer/Impress)

### Example
- Task: "Insert the logo.png image into the title slide"
- Open ‘.odp‘ file in Impress —Go to Slide 1 —Insert —Image —Select ‘logo.

png’

## Export as PDF
**When to usex*: Required submission format

### How to Perform

- Go to *xFile —Export As PDF*x

- Choose output folder (usually **Documents** or **Downloads**)
- Click **xSave**, then confirm the exported file opens correctly
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695 ### Additional Actions

696 - In GIMP or Impress: choose **File —Export As**, then select ‘.pdf‘ from
697 format list

698 - Use *xSave As** to preserve both editable and exported versions separately
699

700 ### Example

701 - Task: "Export the flyer.xcf as a PDF"

763 - Open in GIMP —File —Export As —Rename to ‘flyer.pdf¢ —Click Export

704 C.2 BREW Knowledge Base for 72-Bench

705 BREW enable use to learn relevant information for tau bench for across the domains in a single
706 knowledge base. This knowledge base is helpful to use relevant actions from the action pool.

707

708

709 ### Additional Actions

710

711 * Inform the user:

712 - Refunds via gift card = immediate.

713 - Refunds via other methods = -57 business days.

714

715 ### Example

716

77 * Task: "Cancel a T-shirt order placed yesterday"

718 * Validate: Status is ‘pending‘

719 * Reason: "no longer needed"

720 * Confirm

721 * Execute tool call

722

723

724 # Exchange Delivered Order

725

726 **When to usexx*:

727 User wants to swap delivered items for a different variant (e.g., size or color)
728

729

730 *xWhy to use it*x*:

731 To fix sizing or option errors without needing a new purchase.
732

733 ### How to Perform

734 - Authenticate user

735 - Confirm order status is ‘delivered?

736 - Get full list of exchange items

737 > "Please ensure all items for exchange are listed. This step ’cant be repeated.
738 "

739 - Ask for refund/payment method

740 - Confirm:

741 > "?’Youre exchanging item X for same product, different option. Proceed?"
742 - On confirmation:

743 ¢ ¢‘python

744 request_exchange (order_id="45678", item_exchanges=[...], payment_method="
745 paypal")

746 (3

747

748 ### Additional Actions

749

750 * Mention: An email will be sent with return instructions
751 * Validate that the new variant is from the same product
752

753 ### Example

754

755 * Task: "Exchange red shirt for blue in Order #45678"

756 * Confirm all exchange items

757 * Confirm payment method for difference
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* Execute tool call
### Example

* Task: "Show me my last 2 orders"
* Authenticate
* Retrieve and present info

# Deny Unsupported Request

**xWhen to usexx*:
User asks for an unsupported action (e.g., cancel processed order, exchange to
different product type, help another user).

**Why to use itx*x*:
To stay compliant with platform policy.

### How to Perform
- Politely reject:
> "’Im sorry, but I ’cant process that request. ’Its outside the allowed scope.

### Example

* Task: "Cancel a processed order"
* Respond with denial message
# Transfer to Human Agent

**When to usex*x*:
User needs help outside the ’assistants permitted capabilities.

*xWhy to use it**:
To ensure user gets the right help from trained staff.

### How to Perform
- Make tool call:
¢ ¢ ‘python
transfer_to_human_agents()
€c¢
- Then inform user:
> "YOU ARE BEING TRANSFERRED TO A HUMAN AGENT. PLEASE HOLD ON."

### Example
* Task: "Delete a task"

* Deny deletion
* Transfer to human

BREW Knowledge Base for SpreadsheetBench

Header Extraction

1. Detecting Header Rows

Overview:

To accurately identify header rows, scan the initial region of your dataset.
This process is crucial for mapping column information for further
processing.

Approaches:

- Heuristic Checks:

- Look for rows where all cells are strings (e.g., "Name", "Date", "Region", "
Amount") .

- Identify rows with distinctive formatting such as bold text or background
color.

- Example:
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Name | Date | Region | Amount | |-------|-----ccomoo]ommmmmm | cmmm (|
John | 2024-01-01| North | 100 |

Pattern Recognition:

Use regex to match typical header patterms, such as column names starting with
uppercase letters.

Score candidate rows based on the likelihood of being headers.

Multi-Table Sheets:

Detect gaps, empty rows, or separators indicating a new table.

Assign a Table ID to each detected table for later reference.

Edge Cases:

2.

Merge multi-row headers (e.g., "Sales" over "2024", "2025" becomes "Sales 2024
", "Sales 2025").
Fill in missing headers by inferring from context.

Assigning and Validating Headers

Overview:
Once headers are detected, assign them programmatically and ensure they match

expected schema and data types.

Implementation:

3.

Column Naming:

Set names in code, e.g., df.columns = ["Name", "Date", "Region", "Amount"].
Schema Mapping:

Map headers to a standardized schema, using external files or user prompts.
Example:

Raw header: "Amt"; Mapped header: "Amount"

Quality Checks:

Detect duplicate or empty headers ("Date", "Date" becomes "Date_1", "Date_2").
Validate each column’s expected data type.

Automation and Usability Enhancements

Overview:
Enhance usability and automation to streamline header extraction and user

Fe

Bl
1.

interaction.

atures:

Freeze Panes:

Automatically freeze header rows in Excel for easier navigation.
Highlighting:

Use colored formatting to visually distinguish headers.

Example:

Yellow fill for header row.

Documentation:

Log extraction logic and confidence scores for each detected header.
Integration:

Build header extraction into ETL pipelines and record process metadata.

ock Detection
Identifying Block Boundaries

Overview:

Bl
Me

ock detection segments data into logical units or tables.

thods:
Boundary Detection:
Find empty rows, repeated labels, or formatting changes.

Example:
Name | Amount | |------ |- - | | John | 100 | | | | <-- Empty row indicates
new block | Name | Amount | | Alicel| 200 |

Machine Learning:
Train classifiers to detect block boundaries based on cell patterns.

Advanced:

Detect nested blocks or hierarchies using indentation or merged cells.
Identify summary blocks with keywords like "Total" or "Summary".
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2. Processing and Tracking Blocks
Overview:
Once blocks are detected, assign IDs and enable block-level analysis.

Actions:

- Block ID:

- Assign unique IDs (e.g., Block_001, Block_002).

- Analysis:

- Perform group-by or aggregation within each block.
- Example:

- Sum "Amount" for Block_001: 100 + 150 = 250

3. Additional Block Actions
Overview:
Enable modular analysis and reporting at the block level.

Features:

- Summary Rows:

- Add computed totals/averages for each block.
- Export/Save:

- Save blocks as separate files or sheets.

- Example:

- Export Block_001 to "blockl.csv"

Search for Values or Patterns

1. Search Execution Methods

Overview:

Efficiently locate specific values or patterns in your data.

Techniques:

- Manual Tools:

- Use Ctrl + F in Excel for quick lookups.

- Programmatic Search:

- Scan all cells using loops or vectorized code.

- Example:

- Find all instances of "North" in the "Region" column.

- Pattern Matching:

- Support exact, wildcard (xTotal*), and regex (\d{4}-\d{2}-\d{2} for dates).

2. Recording and Highlighting Results
Overview:
Log and visualize search matches for user review.

Actions:

- Logging:

- Record coordinates (e.g., Sheetl, Row 3, Col "Region").
Highlighting:

- Apply conditional formatting to search hits.

3. Advanced Search Scenarios
Overview:
Handle complex or large-scale search requirements.

Scenarios:

- Merged Cells:

- Search within merged cells or across multiple sheets.

- Export:

- Export found results for further analysis.

- Example:

- Export all rows containing "John" to "john_results.csv"

Writeback Results

1. Output Placement
Overview:
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952 Choose where and how to insert results.

953

954 Options:

955 - Target Columns:

956 - Select existing or blank columns for output.
957 - Appending:

958 - Add new columns for flags, counts, or statuses.
959 - Example:

960 - Add "Approved_Flag" column next to "Status".
961

962 2. Writing and Styling Results

963 Overview:

964 Automate and style the output for visibility.
965

966 Methods:

967 - Formulas/Code:

968 - Use code (e.g., ws.cell(row, col).value = result) to insert results.
969 - Styling:

970 - Bold, borders, or colors for output cells.
971 - Example:

972 - Green fill for "Success", red for "Error".
973

974 3. Audit and Protection

975 Overview:

976 Maintain the integrity and traceability of results.
977

978 Measures:

979 - Lock Columns:

980 - Prevent edits to output columns.

981 - Timestamps/User Info:

982 - Add audit trail for writebacks.

983 - Example:

984 - "2024-06-01, User: admin"

985

986 Difference in State

987 1. Sheet Comparison

988 Overview:

989 Identify changes between input and output sheets.
990

991 Process:

992 - Load Sheets:

993 - Read both sheets into memory.

994 - Compare Cells:

995 - Detect differences by position and value.
996

997 2. Recording and Reporting Differences

998 Overview:

999 Log and report all detected changes.

1000

1001 Actions:

1002 - Log Mismatches:

1003 - Record cell coordinates and values.

1004 - Example:

1005 - Cell B3: "North" —"South"

1006 - Export Diff Report:

1007 - List all detected differences for review.
1008

1009 3. Visualization and Automation

1010 Overview:

1011 Make changes visible and automate validation.
1012

1013 Features:

1014 - Highlight Changes:

1015 - Color code changed cells.

1016 - Automate Checks:
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1017 - Integrate diff comparisons into test scripts.
1018

1019 Column Selection

1020 1. Selection Criteria

1021 Overview:

1022 Choose relevant columns for analysis.
1023

1024 Methods:

1025 - Labels/Indices:

1026 - Select by name or position.

1027 - Dynamic Rules:

1028 - E.g., all numeric columns.

1029 - Assign Roles:

1030 - Example: "ID", "Date", "Metric"

1031

1032 2. Preparation and Validation

1033 Overview:

1034 Prepare columns for consistent use.
1035

1036 Actions:

1037 - Rename/Relabel:

1038 - Standardize column names.

1039 - Validate Types:

1040 - Ensure columns are of expected type.
1041 - Example:

1042 - "Date" column as datetime.

1043

1044 3. Reusability

1045 Overview:

1046 Save and reuse column selections.

1047

1048 Features:

1049 - Presets:

1050 - Save selection profiles.

1051 - Downstream Use:

1052 - Use validated columns in subsequent processes.
1053

1054 Filter Rows

1055 1. Filtering Methods

1056 Overview:

1057 Refine your dataset with filters.

1058

1059 Techniques:

1060 - Spreadsheet Tools:

1061 - Use built-in filters.

1062 - Code Logic:

1063 - Filter with code (e.g., df[df[’Status’] == ’Approved’]).
1064 - Multiple Criteria:

1065 - Combine conditions (AND/OR).

1066 - Example:

1067 - Status = "Approved" AND Amount > 100
1068

1069 2. Helper Columns and Complex Filters
1070 Overview:

1071 Simplify filtering using helper columns.
1072

1073 Actions:

1074 - Helper Columns:

1075 - Compute intermediate flags.

1076 - Document Logic:

1077 - Record filtering rules for audit.
1078

1079 3. Post-Filter Actions

1080 Overview:

1081 Visualize and export filtered data.
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Features:

- Highlighting:

- Grey-out filtered-out rows.
- Export:

- Save the filtered dataset.

Merge Tables

1. Key-Based Merging

Overview:

Combine tables using shared keys.

Techniques:

- Join Operations:

- Use VLOOKUP, JOIN, or code merges.

- Example:

- Merge "Customer_ID" from two tables.
- Align Data:

- Match on columns like "ID", "Name".

2. Stack-Based Merging
Overview:
Append tables when keys ’arent needed.

Methods:

- Vertical Append:

- Combine rows from similar tables.
- Deduplicate:

- Remove duplicate records.

3. Tracking and Audit
Overview:
Track source and unmatched records.

Actions:

- Source Column:

- Add "Source" to indicate origin.
- Highlight Unmatched:

- Mark or export mismatched rows.

Pivot or Unpivot

1. Pivoting Data

Overview:

Summarize data using pivots.

Methods:

- PivotTables:

- Group by row/column dimensions.
- Example:

- Sum "Amount" by "Region".

- Aggregation:

- Choose SUM, AVG, COUNT, etc.

2. Unpivoting (Melting) Data
Overview:
Reshape data from wide to long format.

Techniques:
- Melt Operations:

- Convert columns into rows.
- Example:

Year | Sales_Year | Value |
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- Flexible Restructuring:
- Selectively unpivot non-ID columns.

3. Post-Pivot Actions
Overview:
Prepare pivoted data for export.

Features:

- Flatten Pivot Table:

- Convert back to flat for further analysis.
- Reorder/Rename:

- Clarify pivoted fields.

Map with Lookup Tables

1. Mapping Techniques

Overview:

Standardize data using lookups.

Methods:

- Functions:

- Use VLOOKUP, merge with dictionaries.
- Code-to-Label:

- Example:

- Code "N" —Label "North"

2. Application and Fallbacks
Overview:
Apply lookups and handle missing values.

Actiomns:

- Apply Mappings:

- Across selected columns.

- Handle Missings:

- Use defaults for missing codes.

3. Audit and Display
Overview:
Ensure mapping transparency.

Features:

- Cache Mappings:

- Store for repeated use.
- Display Codes/Labels:

- Show both for clarity.

Fill Missing Data

1. Choosing Fill Methods

Overview:

Impute missing data appropriately.

Techniques:

- Forward/Backward Fill:

Fill gaps with prior/mext value.

Default Values:

- Use fixed placeholder (e.g., 0, "Unknown").
Contextual Example:

Dates: Fill missing month with last known month.

2. Application and Auditing
Overview:
Apply fills and flag for review.

Actions:

- Targeted Filling:
- Apply to specific columns/rows.
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1212 - Flag Filled Cells:

1213 - Highlight for later review.

1214

1215 3. Documentation

1216 Overview:

1217 Keep fill logic transparent.

1218

1219 Features:

1220 - Record Logic:

1221 - Document assumptions and methods.
1222 - Audit Trail:

1223 - Track all changes.

1224

1225 Flag Rows or Cells

1226 1. Defining Flag Rules

1227 Overview:

1228 Establish criteria for flagging.
1229

1230 Examples:

1231 - Simple Rule:

1232 - Flag where Amount < 0O

1233 - Complex Rule:

1234 - Flag where Status = "Pending" and Amount > 1000
1235

1236 2. Applying Flags

1237 Overview:

1238 Insert flags and summarize.

1239

1240 Actions:

1241 - Flag Column:

1242 - Add "Flag" column with "Yes"/"No".
1243 - Export Flagged Rows:

1244 - Save for further inspection.

1245

1246 3. Advanced Flagging

1247 Overview:

1248 Use multiple criteria and document.
1249

1250 Features:

1251 - Multi-Criteria:

1252 - Combine several rules for granular checks.
1253 - Notes:

1254 - Document flagging rationale.

1255

1256 Sort Data

1257 1. Setting Sort Criteria

1258 Overview:

1259 Organize data for analysis.

1260

1261 Options:

1262 - Sort Columns:

1263 - By value, ascending/descending.
1264 - Multi-Level:

1265 - E.g., sort by "Region", then by "Amount".
1266

1267 2. Applying Sorts

1268 Overview:

1269 Implement sorting programmatically or manually.
1270

1271 Methods:

1272 - Spreadsheet Tools:

1273 - Built-in sort features.

1274 - Code:

1275 - E.g., df.sort_values([’Region’, ’Amount’])
1276
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3. Post-Sort Actions
Overview:
Finalize sorted data.

Actions:

- Renumber Rows:

- Update indices.

- Highlight Extremes:

- Mark top/bottom values.

Validate Data

1. Validation Checks

Overview:

Ensure data meets required standards.

Checks:

- Type:

- Ensure numeric columns contain numbers.
- Range:

- E.g., "Amount" > O.

- Pattern:

- Date columns match YYYY-MM-DD.

- Business Rule Example:

- "Start Date" < "End Date"

2. Marking and Reporting
Overview:
Visualize and report errors.

Actions:

- Highlight Invalids:

- Color-code errors.

- Export Summary:

- Table of error counts and locatioms.

3. Integration in Workflow
Overview:
Make validation a routine part of processing.

Features:

- Pre-Processing Step:

- Validate before analysis.

- Automation:

- Integrate into data pipelines.

Split Sheets or Data

1. Defining Split Rules

Overview:

Segment data for modular analysis.

Methods:

- By Category:

- E.g., split by "Region".
- By Date Range:

- E.g., split by year.

2. Exporting Segments
Overview:
Save segments for separate use.

Actions:

- Export Files:

- "North_Region.csv", "South_Region.csv"
- Consistent Formatting:

- Ensure identical columns and styling.
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3. Automation and Documentation
Overview:
Automate splitting and track provenance.

Features:

- Automation:

- Use scripts/macros for repeated splits.
- Documentation:

- Record rules and export logs.

D Qualitative Analysis of BREW-Generated Knowledge Bases

This section presents a comprehensive qualitative analysis of knowledge bases generated through
the BREW technique applied to two distinct agent training environments: OSWorld and 72Bench
described in the section before. The analysis examines knowledge representation patterns, procedural
sophistication, and domain-specific learning characteristics extracted from CUA agent behaviors,
providing insights into the effectiveness and scope of knowledge distillation techniques across diverse
task environments.

D.1 Cross-Domain Knowledge Base Analysis
D.1.1 Base Structure & Organization

Schema Consistency and Evolution: Both knowledge bases demonstrate consistent structural
schemas, though adapted to their respective domains. The OSWorld KB employs a four-part
schema (contextual triggers, procedural steps, extended capabilities, concrete instantiation), while the
72Bench KB extends this to a five-part structure, adding explicit purpose rationale (“Why to use it”).
This evolution suggests that BREW adapts its extraction patterns to domain-specific requirements—
conversational commerce demands explicit justification for actions due to customer interaction
contexts.

Taxonomic Organization Principles: The OSWorld KB reveals a capability-based taxonomy
organized around computational tasks: file operations, document processing, inter-application work-
flows, and data visualization. Each category represents a distinct computational domain with specific
tool requirements and interaction patterns. In contrast, the 72Bench KB employs a lifecycle-based
taxonomy structured around transactional states: order creation, modification, fulfillment, and
post-delivery operations. This organizational difference reflects fundamental domain characteristics—
desktop automation focuses on tool orchestration, while conversational commerce centers on process
management.

Hierarchical Task Decomposition: Both KBs demonstrate sophisticated hierarchical reasoning, but
through different decomposition strategies. OSWorld exhibits technical decomposition, breaking
complex operations like “Create Charts from Data” into constituent technical steps (data selection,
chart insertion, customization, formatting). 72Bench shows process decomposition, structuring
operations like order modification into authentication, validation, confirmation, and execution phases.
This suggests BREW successfully identifies domain-appropriate decomposition strategies rather than
applying uniform patterns.

Knowledge Boundary Definition: Both KBs explicitly encode operational boundaries, but through
contrasting mechanisms. OSWorld boundaries are capability-constrained—determined by available
applications and system resources. 72Bench boundaries are policy-constrained—explicitly defined
through “Deny Unsupported Request” patterns and escalation protocols. This difference highlights
how knowledge extraction adapts to domain-specific constraint types.

D.1.2 Procedural Knowledge Grounding

Context-Dependent Action Selection: Both domains demonstrate sophisticated context awareness,
but grounded in different environmental factors. OSWorld exhibits application-context sensitivity,
where identical operations (e.g., image insertion) require different procedures across LibreOffice
Writer, Impress, GIMP, and Thunderbird. The agent learned application-specific affordances and
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interaction patterns rather than generic command sequences. 72Bench demonstrates state-context
sensitivity, where available actions depend on order status (pending vs. delivered), payment methods,
and authentication levels. This reveals learned understanding of business process constraints and
temporal operation windows.

Error Prevention and Validation Workflows: Both KBs incorporate sophisticated error prevention
mechanisms, but grounded in domain-specific failure modes. OSWorld emphasizes technical valida-
tion: file integrity checks (“confirm the exported file opens correctly”), application state verification,
and multi-step confirmation for irreversible operations. 72Bench emphasizes transactional valida-
tion: authentication cascades, confirmation dialogues with standardized templates, and explicit user
consent protocols. The emergence of defensive programming practices across both domains suggests
these represent fundamental principles of reliable agent behavior.

State-Dependent Decision Logic: The procedural knowledge in both domains demonstrates sophisti-
cated state machine reasoning. OSWorld exhibits application state awareness—understanding when
applications are ready for input, when files are loaded, and when operations can be safely executed.
Window management and application switching reveal learned understanding of desktop metaphors
and resource constraints. 72Bench demonstrates business process state awareness—finite state
machine reasoning where order lifecycle states determine available operations. The agent learned
that pending orders enable modification while delivered orders unlock return workflows, indicating
internalized understanding of business logic constraints.

Security and Authentication Grounding: While OSWorld operates in a trusted desktop environment
with minimal explicit security concerns, 72Bench reveals pervasive authentication-first paradigms.
Nearly every transactional operation begins with identity verification through email, name, and zip
code combinations. The KB demonstrates graduated security reasoning: information retrieval
requires basic authentication while financial transactions trigger rigorous verification protocols. This
contrast highlights how procedural knowledge adapts to domain-specific security requirements.

Cross-Application vs. Cross-Process Orchestration: OSWorld demonstrates technical orches-
tration—coordinating multiple applications (Chrome, LibreOffice suite, File Manager, GIMP) to
accomplish complex workflows. The “Navigate Between Applications” section reveals learned be-
haviors for window management, application switching, and resource coordination. 72Bench exhibits
process orchestration—coordinating authentication, validation, confirmation, and execution phases
across different operational contexts. Both forms of orchestration require sophisticated temporal
reasoning and constraint management, but applied to different environmental complexity types.

Failure Mode Internalization: Both KBs reveal learned understanding of domain-specific failure
modes. OSWorld incorporates file validation, application crash recovery suggestions, and verification
steps for critical operations. 72Bench includes explicit escalation protocols (“Transfer to Human
Agent”), policy compliance mechanisms, and irreversibility warnings for financial operations. The
consistent emergence of failure-aware procedures suggests that agents successfully internalize risk
assessment and mitigation strategies during training.

Domain-Specific Communication Patterns: The procedural knowledge reveals distinct communica-
tion paradigms appropriate to each domain. OSWorld procedures are task-oriented with minimal
user interaction—focusing on efficient command execution and verification. 72Bench procedures are
dialogue-oriented with standardized customer interaction templates, confirmation protocols, and
expectation management communications. This adaptation demonstrates that BREW extracts not just
procedural logic but domain-appropriate interaction modalities.

The cross-domain analysis reveals that BREW successfully extracts procedural knowledge that is both
structurally consistent (following learnable organizational patterns) and contextually grounded
(adapted to domain-specific constraints, failure modes, and interaction requirements). This dual capa-
bility suggests significant potential for knowledge transfer across related domains while maintaining
appropriate domain-specific adaptations.
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