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Abstract

Learning binary classifiers from positive and unlabeled data (PUL) is vital in many1

real-world applications, especially when verifying negative examples is difficult.2

Despite the impressive empirical performance of recent PUL methods, challenges3

like accumulated errors and increased estimation bias persist due to the absence4

of negative labels. In this paper, we unveil an intriguing yet long-overlooked5

observation in PUL: resampling the positive data in each training iteration to6

ensure a balanced distribution between positive and unlabeled examples results in7

strong early-stage performance. Furthermore, predictive trends for positive and8

negative classes display distinctly different patterns. Specifically, the scores (output9

probability) of unlabeled negative examples consistently decrease, while those of10

unlabeled positive examples show largely chaotic trends. Instead of focusing11

on classification within individual time frames, we innovatively adopt a holistic12

approach, interpreting the scores of each example as a temporal point process (TPP).13

This reformulates the core problem of PUL as recognizing trends in these scores.14

We then propose a novel TPP-inspired measure for trend detection and prove its15

asymptotic unbiasedness in predicting changes. Notably, our method accomplishes16

PUL without requiring additional parameter tuning or prior assumptions, offering17

an alternative perspective for tackling this problem. Extensive experiments verify18

the superiority of our method, particularly in a highly imbalanced real-world setting,19

where it achieves improvements of up to 11.3% in key metrics.20

1 Introduction21

Positive and Unlabeled Learning (PUL) is a binary classification task that involves limited positive22

labeled data and a large amount of unlabeled data [36]. This learning scenario naturally arises in23

many real-world applications like matrix completion[25], deceptive reviews detection[45], fraud24

detection[35] and medical diagnosis[56]. It also serves as a key component of more complex machine25

learning problems, such as out-of-distribution detection[63] and adversarial training[18]. Two main26

categories of PUL methods are cost-sensitive methods and sample-selection methods. However, both27

approaches face their challenges. The cost-sensitive methods rely on the negativity assumption, which28

may introduce estimation bias due to the mislabeling of positive examples as negative[49]. This bias29

can be accumulated and even worsen during later training stages, making its elimination challenging.30

The sample-selection methods struggle with distinguishing reliable negative examples, particularly31

during the initial stage, which also results in error accumulation during the training process[23, 57].32

As a basic component for various PUL methods, resampling the positive labeled data shows its33

potential in alleviating the bias brought by negative assumption [49, 52, 30, 33, 61]. For example,34

[30] resamples positive examples according to the given class prior and assumed label mechanism35

to achieve decent performance. In this paper, we dive deeper into this class of strategies. Instead of36
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Figure 1: Averaged predicting scores (output probability) of positive (left) and negative (right)
examples in an unlabeled dataset during the first 15,360 iterations of training (30 epochs).

relying on one single-step prediction which is prone to model uncertainty, we take a holistic view37

and examine the predictive trend of unlabeled data during the training process. Specifically, we treat38

the unlabeled data as negative. In each training epoch, we resample over the labeled positive data to39

ensure a balanced class distribution. We evaluate the model’s performance on CIFAR10 and FMNIST40

datasets[32, 55] with 4 experimental settings. Our pilot experiments show that this resampling41

method achieves comparable or even state-of-the-art test performance at the outset, but underperforms42

soon after. Furthermore, the averaged predicting scores (output probability) of unlabeled negative43

examples exhibit a consistent decrease, whereas those of unlabeled positive examples display an44

initial increase before subsequent decreasing or oscillating. Conclusively, the averaged predictive45

trends for different classes exhibit significant differences, as depicted in Figure 1. One possible46

explanation for these observations is the model’s early focus on learning simpler patterns, which47

aligns with the early learning theory of noisy labels [37]. Although the resampling strategy enjoys48

these advantages, selecting an appropriate model can be more challenging than the classification task49

itself due to the lack of a precise validation set.50

To break the above limitation, we propose a novel approach that treats the predicting scores of51

each unlabeled training example as a temporal point process (TPP). It takes a holistic view and52

surpasses existing methods that focus on examining loss values or tuning confidence thresholds53

based on a limited history of predictions. By centering on the difference in trends of predicting54

scores, our approach provides a more comprehensive understanding of deep neural network training55

in PUL. To further investigate whether this difference in trends is prevalent in individual unlabeled56

examples, we apply the Mann-Kendall Test, a non-parametric statistical test used to detect trends in57

the temporal point process [20], to the continuously predicting scores of each example. These scores58

are classified into three types: Decreasing, Increasing, and No Trend. The statistical test reveals a59

clear distinction in the trends of predicted scores for each positive and negative example, supporting60

our observation. Our findings suggest that utilizing the model’s classification ability in the early61

stages may be sufficient for successfully classifying unlabeled examples. This discovery offers us a62

new perspective on reformulating the problem of distinguishing positive and negative examples in the63

unlabeled set as identification of their corresponding predictive trends.64

We then propose a novel TPP-inspired measure, called trend score to quantify the distinctions in65

predictive trends. It is obtained by applying a robust mean estimator [3] to the expected value of the66

ordered difference in a TPP (sequence of predicting scores for each example)[19]. Subsequently,67

we introduce a modified version of Fisher’s Natural Break to distinguish these predictive trends,68

identifying a natural break point in the distribution of trend score. This approach divides examples69

into two groups: the group with high trend score represents positive examples, while the group with70

low trend score corresponds to negative examples. Our approach simplifies the training process71

by circumventing threshold selection when assigning pseudo-labels. Once the unlabeled data is72

classified, the remaining problem becomes a binary supervised learning task, and issues such as73

estimating class priors can be easily addressed. In summary, our main contributions are:74

• We demonstrate the effectiveness of the proposed resampling strategy. It is also observed75

that predictive trends for each example can serve as an important metric for discriminating76

the categories of unlabeled data, providing a novel perspective for PUL.77
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• We propose a new measure, trend score, which is proved to be asymptotically unbiased in78

the change of predicting scores. We then introduce a modified version of Fisher’s Natural79

Break with lower time complexity to identify statistically significant partitions. This process80

does not require additional tuning efforts and prior assumptions.81

• We evaluate our proposed method with various state-of-the-art approaches to confirm its82

superiority. Our method also achieves a significant performance improvement in a highly83

imbalanced real-world setting.84

2 Our Intuition and Method85

2.1 Preliminary86

We first revisit some important notations in PUL. Formally, let x ∈ Rd be the input data with87

d dimensions and y ∈ {0, 1} be the corresponding label. Different from the traditional binary88

classification, PUL dataset is composed of a positive set P = {xi, yi = 0}np

i=1 and an unlabeled set89

U = {xi}nu
i=1, where the unlabeled set U contains both positive and negative data. Throughout the90

paper, we denote the positive class prior as π = P(y = 0).91

2.2 Resampling Strategies for Positive and Unlabeled Learning92
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Figure 2: The accuracy of our resampling method (first 30 epochs). The horizontal line represents
the accuracy of the state-of-the-art methods. Early stopping and Leave Zero Out represent different
model selection strategies.

Resampling strategies have long been a baseline for dealing with imbalanced data or limited labels,93

which naturally fits PUL since its key challenge lies in limited labels and potentially imbalanced94

data distribution[5]. Different from popular resampling strategies applied in PUL[30], we follow the95

training scheme as [47, 58] to independently sample positive and unlabeled data as different data96

batches and the loss function is defined accordingly.97

L =
1

|Bp|
∑

(xi,yi)∈Bp

ℓ(ŷi, yi) +
1

|Bu|
∑
xi∈Bu

ℓ(ŷi, 1), ŷi = f(xi). (1)

Here, we denote f ∈ F as a binary classifier, ℓ(·, ·) as the loss function, Bp and Bu as the positive98

and unlabeled training batches respectively. We ensure that |Bp| = |Bu| to achieve a balanced99

class prior during the training process. This approach emphasizes the labeled data and mitigates the100

imbalance of positive and pseudo-negative labels, which also provides a good theoretical explanation101

when dealing with high-dimensional data conforming to different Gaussian distributions. As shown102

in AppendixA.1, an optimal decision hyperplane can be attained when |P|/|U| equals 1. Figure2103

details the performance of our resampling baseline on two datasets under four different settings. It104

can be observed that the proposed method performs comparably or even better than state-of-the-art105

methods (P3MIX[33] and DistPU[61]) in the early stages of training, as demonstrated by its test106

performance at certain epochs. However, the method’s performance quickly degrades in all 4 settings107

as the estimation bias worsens during training due to the false negatives introduced by the negativity108

assumption. We also explore alternative model selection strategies, such as holding out a validation109

set from given labeled examples or using different versions of augmented data for model selection, as110

inspired by prior studies [34, 39]. In addition to the common practice of selecting the model from an111

additional positive validation set, we also implement LZO[34], which selects the model based on the112

mixup-induced validation set. As shown in Table1, the performance gap persists, especially when113

most of the unlabeled data belongs to the positive class.114
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Table 1: Classification accuracy (Recall rate is reported on Credit Card) on unlabeled training data.
Resampling-P represents the model selected on an extra positive validation set. Resampling-LZO
represents the model selected through LZO. Resampling* represents the best model selected on the
test set which is an ideal case.

Dataset F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2 Credit Card Alzheimer

Resampling-P 89.93 84.29 81.06 72.93 - - 60.75 70.09
Resampling-LZO 93.37 92.04 84.87 82.98 - - 67.24 74.11

Resampling* 94.92 94.57 89.56 85.46 - - 87.54 76.30
P3MIX-C 91.59 87.65 86.05 88.14 - - 76.21 68.01

To tackle the above issues, some denoising-based semi-supervised PUL methods, such as [8, 52, 49],115

have leveraged some threshold tuning or sample selection techniques to achieve acceptable empirical116

performance. These techniques have been criticized in [54] for relying solely on prediction scores or117

loss values, as they do not account for uncertainty in the selection process. This becomes even more118

problematic in PUL, where the noise ratio is typically higher when making a negativity assumption[2].119

To break the above limitations, we record the whole predicting process of each unlabeled training120

example to take a holistic view of the training. It is evident that averaged model-predicting scores121

for positive and negative data display two distinct trends when implementing the above resampling122

strategy in the early training stages. Meanwhile, the standard deviation of predictions for positive123

examples increases rapidly during training, making it increasingly difficult to select an appropriate124

threshold for distinguishing between positive and negative examples. The appropriate threshold125

interval for discriminating positive and negative examples quickly shrinks as training progresses,126

indicating that existing denoising techniques cannot fundamentally alleviate the issues of accumulated127

errors and increased estimation bias. Therefore, a more robust evaluation measure is necessary beyond128

relying on raw model-predicted scores or loss values. Implementation details in model selection and129

visualizations of threshold tuning are provided in AppendixA.130

2.3 Identifying Predictive Trends: A Key to Successful Classification131
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Figure 3: The Mann-Kendall Test is performed on 4 settings of CIFAR10 and FashionMnist datasets.
The figure reports the fractions of positive and negative examples in an unlabeled dataset exhibiting
different predictive trends during the early training stage (first 30 epochs).

While deep neural networks have strong learning capabilities, they are at risk of overfitting all132

provided labels, regardless of their correctness. This can result in all unlabeled examples being133

predicted as negative [1, 59]. We expect the predictive scores of negative examples in the unlabeled set134

to consistently decrease because all negative examples are given true negative labels by the negativity135

assumption. On the other hand, the predictive scores of positive examples in the unlabeled training136

set may not decrease initially because the resampled labeled examples are consistently emphasized137

from the start of training. To provide more evidence, we use the Mann-Kendall test to analyze the138

model-predicted scores of each example [20]. This test categorizes the prediction sequence into three139

situations: Decreasing, Increasing, and No Trend. The calculation process of the Mann-Kendall140

Test is detailed in AppendixB. Figure 3 shows a contrast between the trends of predicted scores141

for positive and negative examples. Even when certain positive and negative examples exhibit a142

similar trend of decreasing prediction scores during training, we observed significant differences in143

the significance index γ across different classes.144

Our next objective is to measure the differences between positive and negative examples. To145

accomplish this, we require an evaluation measure that captures the significance of the observed146

4



trends in model-predicted scores. Before developing our own measure, an important notation in the147

TPP is first introduced, E[∆p], which represents the expected value of the ordered difference in a148

series of predicting scores.149

E[∆p] = lim
t→∞

2

t(t− 1)

t∑
i<j

∆pij , ∆pij = pj − pi. (2)

where pi is the predicting score (output probability) at i-th epoch, t is the number of training epochs.150

S̃ =
2

t(t− 1)

t−1∑
i=1

t∑
j=i+1

∆pij , ∆pij = pj − pi. (3)

While S̃ is the empirical mean and unbiased estimation of E[∆p], it can be unreliable for non-151

Gaussian examples and may not handle outliers or heavy-tailed data distributions well as illustrated152

in[3]. To address these issues, we propose a robust mean estimator inspired by[54, 20], called the153

trend score S, which measures the difference between each ordered pair of prediction scores:154

Ŝ =
2

t(t− 1)

t−1∑
i=1

t∑
j=i+1

ψ(α∆pij), ∆pij = pj − pi. (4)

155

ψ(∆pij) = sign(∆pij) · log(1 + |∆pij |+∆p2ij/2). (5)

in which α > 0 is a scaling parameter, and sign() is the sign function that returns −1 if its argument156

is negative, 0 if its argument is zero, and 1 if its argument is positive. The function ψ() can result in a157

more robust estimation by flattening the values of ∆pij and reducing the influence of minority outlier158

points on the overall estimation. Besides, we also provide a simplified version as:159

Ṡ =
1

t− 1

t−1∑
i=1

ψ(α∆pij), ∆pij = pj − pi. (6)

Notably, S̃, Ŝ, Ṡ are all calculated on each example. Experiments show that both Ŝ, Ṡ exhibit better160

empirical results than S̃ in Section3. For choosing the stopping epoch t, we implement the LZO[34]161

algorithm as described in Section2.2. We also derive a concentration inequality between our trend162

score Ŝ and the expected value of the ordered difference E[∆p].163

Theorem 2.1. Let P = {pij |1 ≤ i ≤ t − 1, 2 ≤ j ≤ t, i < j} be an observation set of changes164

in predictions in which E[∆p] is the expected values of the ordered difference in a temporal point165

process and σ2 is the variance of P . By exploiting the non-decreasing influence function ψ(), for any166

ϵ > 0, we have the following bound with probability at least 1− 2ϵ:167

|Ŝ − αE[∆p]| <
2ασ

√
2log(ϵ−1)
t(t−1)

1−
√

2log(ϵ−1)
t(t−1)α2σ2

= O
((
log(ϵ−1)

) 1
2 t−1

)
. (7)

It illustrates that the measure we propose is an asymptotically unbiased estimation with a linear168

weighting of E[∆p]. The proof is provided in AppendixC. It is also proved in [3] that the deviations of169

this robust mean estimator can be of the same order as the deviations of the empirical mean computed170

from a Gaussian statistical sample, which further verifies the advantage of this estimator.171

2.4 Clustering Unlabeled Data by the Fisher Criterion172

The topic of accurately labeling unlabeled data is widely discussed in various fields, including173

PUL. In the existing literature, threshold-based criteria and small loss criteria are the two primary174

approaches used for selecting reliable or clean examples, as seen in studies such as [47, 58, 29, 49].175

However, previous works generally select examples based solely on current predictions, ignoring the176

inherent uncertainty in training examples, leading to longer training times and poor generalization177

ability[54, 41]. Besides, they often require extensive hyperparameter tuning efforts to choose178

appropriate thresholds or ratios for data selection. In this section, we introduce a new labeling179

approach based on our proposed trend score tackling the above issues.180
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Our proposed trend score is the naturally comparable one-dimensional data and allows the Fisher181

Criterion to be a viable choice. It identifies a natural break point in the trend score distribution, which182

could be used to divide the data into two groups: one with high trend scores and one with low trend183

scores representing positive and negative examples respectively. Specifically, the objective function184

of finding this Fisher’s natural break point can be formed as follows:185

min
C1,C2

∑
x∈C1

(Ŝx − µ1)
2

|C1|
+

∑
x∈C2

(Ŝx − µ2)
2

|C2|
s.t. C1 ∩ C2 = ∅, C1 ∪ C2 = x1, x2, . . . , xN .

(8)

where Ŝx is our derived trend score for example x, C1 and C2 are the two clusters, µi is the mean186

of cluster Ci, and N is the total number of data points. We utilize the Fisher natural break point187

method to automatically determine a threshold value that divided the trend score distribution into188

two distinct groups. Our implementation introduces an improved algorithm, which reduces the time189

complexity from O
(
N2

)
to O

(
Nlog(N)

)
, as explained in AppendixD. This method eliminates the190

need for manual threshold selection or hyperparameter tuning, both of which can be time-consuming191

and error-prone. Furthermore, the data-driven approach we used optimizes the threshold value for the192

specific dataset under analysis, rather than relying on arbitrary or pre-defined values.193

Once the unlabeled data is classified, the remaining task becomes a straightforward supervised194

learning problem. We directly train by a cross-entropy loss on the estimated labels given by Eq.8195

on the backbone network given in Table4. Besides, issues such as estimating class priors can be196

addressed easily when unlabeled data are classified.197

3 Experiments198

3.1 Classification on Unlabeled Training Set199

In this subsection, we first evaluate the performance of our method on the unlabeled training set200

compared with some state-of-the-art methods. As shown in Table2, our method demonstrates excellent201

classification performance on the unlabeled training data (the true labels of unlabeled data are not202

available in STL10). Moreover, a comparison with state-of-the-art prior estimation methods in PUL is203

conducted to further verify the effectiveness of our approach, and the results are presented in Table3.204

Table 2: Classification accuracy (Recall rate is reported on Credit Card) on unlabeled training data.

Dataset F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2 Credit Card Alzheimer

nnPU 85.31 82.46 83.11 83.23 - - 62.53 64.01
PGPU 92.02 90.17 85.67 88.38 - - 42.12 75.09

Self-PU 94.04 91.59 84.06 83.77 - - 71.00 70.05
P3MIX-C 91.59 87.65 86.05 88.14 - - 76.21 68.01

Ours 95.41 96.00 91.42 91.17 - - 98.90 75.13

Table 3: Absolute estimation error with the true positive prior in the first row. We implement an
oracle early stopping for the extant methods as defined in [15]. Our method significantly reduces
estimation error when compared with existing methods.

Algorithm F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2 Credit Card Alzheimer

π 0.40 0.60 0.40 0.60 0.50 0.50 0.05 0.50
KM2 0.146 0.106 0.115 0.164 0.096 0.101 0.236 0.094
BBE* 0.082 0.073 0.034 0.059 0.046 0.064 0.112 0.026

(TED)n 0.026 0.020 0.042 0.044 0.024 0.021 0.018 0.014
Ours 0.014 0.021 0.016 0.031 0.018 0.009 0.004 0.011

3.2 Test Performance205

We use three synthetic prevalent benchmark datasets including FashionMnist (F-MNIST) [55],206

CIFAR10 [32] and STL10 [10] and two real-world datasets on fraud detection1 and Alzheimer207

diagnosis2 as our test set. We provide the dataset description and corresponding backbones in Table4,208

1https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
2https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
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Table 4: Dataset description and corresponding backbones.

Dataset #Trainset #Testset Input size Backbone

F-MNIST 60,000 10,000 28×28 LeNet-5
CIFAR-10 50,000 10,000 3×32×32 7-Layer CNN

STL-10 105,000 8,000 3×96×96 7-Layer CNN
Alzheimer 5,890 1,279 3×224×224 ResNet-50

Credit Fraud 8,392 2098 30 6-Layer MLP

and the positive priors of each setting are given in Table3. More detailed description of benchmark209

datasets, dataset split and implementation details are given in AppendixF. For each dataset, we run210

our method for 5 times with different random seeds and report the averaged classification accuracy.211

We follow the settings in [52, 61] when making the comparison: randomly select 769 positive212

examples in Alzheimer dataset, 100 positive examples in Credit Fraud dataset and 1000 positive213

examples in others as the labeled set in training. Classification accuracy on test sets is reported as the214

main criterion. For highly imbalanced distributed (Credit Fraud) and biasedly selected (Alzheimer)215

datasets, we provide additional metrics such as Recall, F1 score and AUC on test sets for a more216

comprehensive comparison.217

Table 5: Results of classification accuracy (%) on 3 generic datasets with 6 settings (mean±std).

Algorithm F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2

uPU 81.6±1.2 85.7±2.6 76.5±2.5 71.6±1.4 76.7±3.8 78.2±4.1
nnPU 91.4±0.6 90.2±0.7 84.7±2.4 83.7±0.6 77.1±4.5 80.4±2.7

Self-PU 90.8±0.4 89.1±0.7 85.1±0.8 83.9±2.6 78.5±1.1 80.8±2.1
PAN 87.7±2.4 89.9±3.2 87.0±0.3 82.8±1.0 77.7±2.5 79.8±1.4
vPU 92.6±1.2 90.5±0.8 86.8±1.2 82.5±1.1 78.4±1.1 82.9±0.7

MIXPUL 90.4±1.2 89.6±1.2 87.0±1.9 87.0±1.1 77.8±0.7 78.9±1.9
PULNS 91.0±0.5 89.1±0.8 87.2±0.6 83.7±2.9 80.2±0.8 83.6±0.7
Dist-PU 94.7±0.4 92.4±0.4 86.8±0.7 87.2±0.9 79.8±0.6 82.9±0.4

P3MIX-E 92.6±0.4 91.8±0.2 88.2±0.4 84.7±0.5 80.2±0.9 83.7±0.7
P3MIX-C 92.8±0.6 90.4±0.1 88.7±0.4 87.9±0.5 80.7±0.7 84.1±0.3

Ours 95.8±0.3 96.0±0.3 91.1±0.2 90.3±0.1 83.7±0.3 85.3±0.6

Sythetic datasets. Our proposed method consistently outperforms all PUL baselines by 1% to 4%218

on all generic benchmark datasets and settings, as shown in Table 5, demonstrating its superior219

performance. Furthermore, many existing PUL methods rely on a given positive prior or make220

various assumptions that are not available in real-world settings, whereas our method does not221

require any of them. To avoid inherent challenges such as accumulated errors and estimation bias,222

we transform the above challenges into a much simpler task of discerning the trend of the model-223

predicting scores. Considering we can achieve outstanding classification accuracy in unlabeled data,224

it is natural to expect our method to outperform existing PUL methods. While using some tricks for225

label noise learning like Co-teaching[22] and large loss criterion[28] could possibly further improve226

the performance of our method, we believe that in most scenarios, our method can effectively solve227

existing PUL problems with simplicity.228

Table 6: Comparative results(%) on Credit Card Fraud dataset (mean±std).

Algorithm F1 score Recall Accuracy Precision AUC

uPU 89.5±3.1 83.4±1.3 97.0±0.2 96.5±3.6 93.4±3.1
nnPU 89.9±1.0 83.4±1.3 98.4±0.1 97.4±1.1 94.2±0.9

nnPU+mixup 89.0±2.8 82.9±1.6 98.1±0.1 96.0±3.2 93.8±2.9
Self-PU 89.0±2.4 85.8±2.0 99.2±0.1 92.4±3.4 95.6±2.8

PAN 91.5±0.9 85.4±1.3 99.1±0.1 98.5±1.0 96.6±1.1
VPU 91.7±3.9 84.9±5.7 98.6±0.5 99.7±0.6 96.9±3.1

MIXPUL 82.9±2.8 86.6±1.3 98.4±0.3 79.2±3.5 91.3±0.7
PULNS 89.0±2.0 83.2±2.1 99.0±0.1 95.6±1.9 94.5±0.7
Dist-PU 87.9±3.4 80.2±4.1 98.8±0.4 97.2±1.6 96.5±2.7

P3MIX-E 91.9±2.1 87.7±2.0 99.0±0.1 96.5±1.8 97.5±0.9
P3MIX-C 90.2±1.4 86.5±1.8 98.8±0.1 94.1±1.2 97.3±1.2

Our Method 99.1±0.2 99.0±0.2 99.1±0.1 99.3±0.1 99.7±0.1
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Table 7: Comparative results(%) on Alzheimer dataset (mean±std).

Algorithm F1 score Recall Accuracy Precision AUC

uPU 67.6±2.8 66.1±6.1 68.5±2.2 69.7±3.5 73.8±2.9
nnPU 68.6±3.2 69.5±7.2 68.3±2.1 68.0±2.3 72.9±2.8

RP 62.1±5.6 64.6±15.9 61.6±3.2 61.9±4.5 66.1±3.3
PUSB 69.2±2.4 69.3±2.4 69.2±2.4 69.2±2.4 74.4±2.4
PUbN 70.4±3.2 72.0±8.4 70.0±1.3 69.4±2.5 70.0±1.3

Self-PU 72.1±1.1 75.4±5.1 70.9±0.7 69.3±2.5 75.9±1.8
aPU 70.5±3.4 75.7±8.2 68.5±1.8 66.2±0.9 70.7±3.7
VPU 70.2±1.1 76.7±3.6 67.4±0.7 64.7±1.1 73.1±0.9

ImbPU 68.8±1.9 70.6±6.5 68.2±0.8 67.5±2.5 73.8±0.7
Dist-PU 73.7±1.6 80.1±5.1 71.6±0.6 68.5±1.2 77.1±0.7

Our Method 74.5±2.4 79.5±5.8 72.8±0.9 70.2±1.6 77.1±2.3

Table 8: Ablation results (%) on CIFAR-10 (acc), Credit Fraud (recall) and Alzheimer (f1 score).
"✓" indicates the enabling of the corresponding components.

Trend Measure Clustering Dataset
Resampling TS Simplified TS MK Natural break k-means CIFAR10-1 Credit Fraud Alzheimer

✓ ✓ 84.1 88.6 69.2
✓ ✓ ✓ 89.4 99.3 70.5
✓ ✓ ✓ 90.2 99.0 69.7
✓ ✓ ✓ 90.7 99.2 73.9
✓ ✓ ✓ 91.1 99.1 74.5

Real-world datasets. This subsection presents experimental results on two real-world datasets,229

including one highly imbalanced Credit Fraud dataset. In fraud detection, recall is typically more230

important than precision or accuracy, as the consequences of missing a fraudulent transaction can231

be much more severe than flagging a legitimate transaction as fraudulent. As shown in Table 6, our232

proposed method achieves significantly higher recall rates and F1 scores, as well as comparable233

accuracy and precision, indicating its ability to better handle highly imbalanced scenarios. Our234

approach offers a novel perspective compared to traditional prediction-based methods, as the model’s235

predictive trends are not affected by the positive prior, as long as the observation outlined in Section236

2.3 holds. Furthermore, our method also demonstrates comparable performance on the Alzheimer237

dataset to the state-of-the-art method DistPU, which employs various regularization techniques and238

data augmentation strategies. In both two real-world settings, our method achieves a balanced good239

performance on all evaluation metrics which further illustrates its effectiveness.
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Figure 4: Sensitivity analysis was performed on two parameters: α (left) and stopping iteration (right).
The stopping iteration of LZO (also the one we use) is denoted by ’∗’ on the right.

240
Ablation Study. To investigate the specific effects of different components (Resampling, trend score,241

and Fisher Natural Break Partition) in our method, we conducted a series of ablation studies and242

compared them with some popular alternatives. From Table 8, we can draw several observations:243

(1) The resampling strategy plays a crucial role in our method as it maximizes the discrepancy244

of the trends in different classes of examples, particularly in the Credit Fraud dataset. It serves245

as an important factor in amplifying the model’s early success, which is the foundation of our246

further approach towards achieving better performance. (2) Our proposed trend score provides a247
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better evaluation metric than the statistic S̃ used in the standardized Mann-Kendall test, and the248

simplified trend score also shows competitive performance. (3) Fisher Natural Break Partition249

derives deterministic optimal partitions with better statistical properties and empirical performance250

compared to heuristic k-means. Moreover, it is unrelated to initialization and less time-consuming251

than the original version, as detailed in AppendixD.252

Sensitivity Analysis. In this subsection, we investigate the impact of two hyperparameters, namely253

the scaling parameter α and the stopping iteration (we do not need to manually tune it), on the254

evaluation of predictive trends for each example. To facilitate comparisons, we set α to 2 and employ255

the LZO algorithm [34] discussed in Section 2.2 for selecting the stopping epoch in our experiments256

involving mixed labeled data. As depicted in Figure 4, our approach consistently delivers robust257

outcomes across diverse hyperparameter values. Moreover, the model tends to perform better when258

α > 1 and demonstrates basically consistent performance. Figure 4 confirms the effectiveness of the259

LZO strategy which is free of manual intervention in the stopping epoch.260

4 Related Works261

For a long time, learning with limited supervision has been a striking task in the machine learning262

community and PUL is an emerging paradigm of weakly supervised learning [64, 17]. Despite its263

close relations with some similar concepts, the term PUL is generally accepted from [36, 12, 14].264

Currently, the mainstream PUL methods cast this problem as a cost-sensitive classification task265

through importance reweighting, among which uPU [13] is the widely known one. Later, the authors266

of nnPU [31] suggest that uPU gets overfitting when using flexible and complex models such as Deep267

Neural Networks and thus propose a non-negative risk estimator. Some recent studies attempt to268

combine the cost-sensitive method with model’s capability to calibrate and distill the labeled set with269

various techniques like denoise [49], self-paced curriculum [8] and heuristic mix up [33, 52].270

Parallel with the cost-sensitive methods, another branch of PUL methods adopts a heuristic two-step271

method. The early trials of two-step methods mainly focus on the sample-selection task to form a272

reliable negative set and further yield the semi-supervised learning framework [57, 35, 23, 6, 27].273

Other two-step methods are mainly derived from the large margin principle to correct the bias caused274

by unreliable negative data such as Loss Decomposition [46], Large margin based calibration and275

label disambiguation [16, 60]. Plus, different techniques have been employed to assign labels for276

unlabeled data in PUL like Graph-based models [4, 62], GAN [24, 27] and Reinforcement learning277

[38] in recent years. Plus, decision tree based PU methods are also investigated in [53].278

Most PUL methods are oriented from a SCAR (selected completely at random) assumption or279

established on a given class prior. In this respect, there emerges some class prior estimation algorithms280

specially designed for PUL. PE attempts to minimize the Pearson divergence between the labeled and281

unlabeled distribution, PEN-L1 [9] and MPE [15] are then proposed to modify PE by using a simple282

Best Bin Estimation (BBE) technique. Unfortunately, most class prior estimation algorithms still rely283

on specific assumptions and the estimates will be unreliable otherwise[40]. Regarding the possibility284

of selection bias in the labeling process, the SCAR assumption is relaxed in [30]. VAE-PU is the285

first generative PUL model without a supposed labeling mechanism like SCAR assumption [42] and286

further investigated in [51]. For more details about PUL, readers are referred to a recent survey for a287

comprehensive understanding of this subject [2].288

5 Conclusion289

This study introduces a novel method for Positive-Unlabeled Learning (PUL) that takes a fresh290

perspective by identifying the unique characteristics of each example’s predictive trend. Our approach291

is based on two key observations: Firstly, resampling positive examples to create a balanced training292

distribution can achieve comparable or even superior performance to existing state-of-the-art methods293

in the early stages of training. Secondly, the predicting scores of negative examples tend to exhibit294

a consistent decrease, while those of positive examples may initially increase before ultimately295

decreasing or oscillating. These insights lead us to reframe the central challenge of PUL as a task296

of discerning the trend of the model predicting scores. We also propose a novel labeling approach297

that uses statistical methods to identify significant partitions, circumventing the need for manual298

intervention in determining confidence thresholds or selecting ratios. Extensive empirical studies299

demonstrate the effectiveness of our method and its potential to contribute to related fields, such as300

learning from noisy labels and semi-supervised learning.301
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A Analysis for Resampling Method457
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Figure 5: The accuracy of our resampling method on various settings across all 3 generic datasets.
The horizontal line represents the accuracy of the state-of-the-art methods.

Empirical Results. Specifically, we employ the negativity assumption and resample positive data458

to achieve a balanced training distribution. Despite its simplicity, such a resampling approach459

achieves great empirical success as shown in Figure5, as it highlights the value of precious labels460

and mitigates the negative impact brought by false negatives and imbalanced label distribution. The461

outcomes suggest that the early predictive ability of the model could potentially facilitate our efforts462

in classification tasks. However, determining the optimal epoch to stop training and select the best463

model still remains a challenging task in PUL due to the absence of a precise validation set. For early464

stopping, we follow the settings in [52] and hold out 500 positive examples as a validation set. For465

LZO, we use an augmented validation set based on mix-up techniques following[34].466

Assumption A.1. We consider a naive situation where positive and negative data are drawn from467

a mixture of two Gaussians in Rp respectively and the dataset consists of n i.i.d. samples from the468

following distributions:469

P(x|y = 0) ∼ N (+v, σ2Ip×p),

P(x|y = 1) ∼ N (−v, σ2Ip×p).
(9)

where v is an arbitrary unit vector in Rp and σ2 is a small constant. Please keep in mind that the470

clusters are two spheres with radii σ
√
p >> 2 when n, p → ∞ which makes this classification471

nontrivial. This binary classifier is trained by simply discriminating between positive and unlabeled472

data (i.i.d. sampled from the true distribution).473

P(xu) ∼ πP(x|y = 0) + (1− π)P(x|y = 1). (10)

A.1 Bayesian Decision Hyperplane474

Proposition A.1. Under Assumption A.1, the Bayesian optimal decision hyperplane hpu derived475

from the model using resampling strategy under a PU setting is equivalent to the Bayesian optimal476

decision hyperplane h∗pn under a balanced PN binary classification setting.477

hpu = h∗pn. (11)

Proof. We first discuss the decision hyperplane when both positive and negative data are available.478

By the virtue of Bayes’ theorem, the score function gpn and decision hyperplane hpn separating each479
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category at the same probability should be formulated as:480

gpn(x) = gp(x)− gn(x)
= ln[P(xp)P(y = 0)]− ln[P(xn)P(y = 1)]

= ln
P(x|y = 0)

P(x|y = 1)
+ ln

π

1− π

= ln
N(+v, σ2Ip×p)

N(−v, σ2Ip×p)
+ ln

π

1− π

=
2vtx

σ2
+ ln

π

1− π
.

(12)

481

gpn(x) = 0⇒ hpn : 2vtx+ σ2ln
π

1− π
= 0. (13)

There exists an ideal decision hyperplane h∗pn when the positive and negative data is balanced482

distributed ( π = 1− π = 0.5).483

h∗pn(x) : 2v
tx = 0. (14)

When the distribution of negative data is unknown to us, we simply take the negativity assumption to484

make the classification by differentiating unlabeled data and positive data. Thus, the score function485

gpu and decision hyperplane hpu can be formulated as:486

gpu(x) = gp(x)− gu(x)
= ln[P(xp)P(l)]− ln[P(xu)P(u)]

= ln
P(x|y = 0)

πP(x|y = 0) + (1− π)P(x|y = 1)
+ ln

P(l)
P(u)

= ln N(+v, σ2Ip×p) + ln
|P|
|U|
− ln[πN(+v, σ2Ip×p) + (1− π)N(−v, σ2Ip×p)

= −ln[(1− π)exp(−2v
tx

σ2
) + π] + ln

|P|
|U|

.

(15)

487

gpu(x) = 0⇒ hpu : 2vtx+ σ2(ln(
|P|
|U|
− π)− ln(1− π)) = 0. (16)

When adopting a resampling strategy, the |P|/|U| is set to 1, hpu = h∗pn.488

We can also observe that when π = 0, Eq.16 degrades to Eq.13, which corresponds to the special489

case where the unlabeled set consists only of negative examples. However, it should be noted that in490

most cases, |P|/|U| is less than π, making the decision hyperplane unlearnable. This underscores491

that label noise and data imbalance, introduced by the negativity assumption, are two key reasons for492

model degradation during the latter training phase. Therefore, we can consider |P|/|U| as a flexible493

coefficient that controls the relative importance of data belonging to different classes. When we adopt494

a resampling strategy like our baseline, we aim to set this coefficient to 1, enabling us to derive an495

optimal decision hyperplane as shown in Eq.14.496

A.2 Early Learning Phenomenon in PU Setting497

To better illustrate model’s early success when adoping the resampling strategy, we reformalize498

the theorem of Early Learning phenomenon given by [37] in a linear model and verify that this499

phenomenon also exists in PUL when taking cross entropy(CE) loss as the loss function. We first500

show that, for the first T iterations, the negative gradient has a constant correlation with v. (Note that,501

by contrast, a random vector in Rp typically has a negligible correlation with v.) Afterward, the false502

pseudo labels given by negativity assumption are memorized asymptotically.503

Lemma A.1. Under Assumption A.1, denote by {St} the iterates of gradient descent with step size η.504

For any c ∈ (0, 1), there exists a constant σc such that, if σ ≤ σc and p/n ∈ (1− c/2, 1), then with505

probability 1− o(1) as n, p→∞ there exists a T = Ω(1/η) such that:506
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• Early learning succeeds: For t < T , −∇LCE(St) is well correlated with the correct507

separator v, and at t = T the classifier has higher accuracy on the wrongly labeled508

examples than at initialization.509

• Memorization occurs: As t→∞, the classifier St memorizes all noisy labels.510

The only specialness of PUL setting is that the ratio of noise is given by negativity assumption511

controlled by the positive prior π. However, this only affects the constant c and corresponding σc.512

Readers are referred to [37] for detailed proof.513

Combining the above empirical results and theoretical explanation, we better understand the capacity514

of resampling methods in the early stage of training.515

A.3 Threshold Selection516
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Figure 6: Averaged prediction confidence with a standard deviation of positive and negative examples
on FMNIST1 (upper left), FMNIST2 (upper right), CIFAR10-1 (lower left) and CIFAR10-2 (lower
right).

In this section, we present additional predictions and standard deviations obtained from four different517

settings utilizing CIFAR10 and FMNIST datasets. Notably, as illustrated in Figure 6, mislabeling518

errors of positive examples in the unlabeled set as negatives tend to increase with continued training519

when the threshold is set at 0.5. These results underscore the importance and challenge of accurately520

distinguishing between positive and negative examples in PUL tasks. Moreover, our findings indicate521

that differences between positive and negative examples are reflected in both the predictive trends522

and magnitudes of model-predicted scores. It also can be seen that, as the training progresses, the523

interval for an appropriate threshold shrinks.524

B Mann-Kendall Test525

The Mann-Kendall test is a non-parametric test used to determine if a time series has a trend over time.526

The test calculates the Mann-Kendall statistic S and the variance V ar(S). The test is performed by527

calculating:528
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S =

n−1∑
i=1

n∑
j=i+1

sign(xj − xi). (17)

where x is the time series data, n is the number of observations, and sign() is the sign function that529

returns −1 if its argument is negative, 0 if its argument is zero, and 1 if its argument is positive. The530

variance of S is calculated as:531

V ar(S) =
n(n− 1)(2n+ 5)−

∑g
p=1 tp(tp − 1)(2tp + 5)

18
. (18)

where g is the number of tied groups, tp is the number of tied values in the pth group. If the absolute532

value of S is greater than the critical value (α/2) times the standard error of SE(S), where α is533

the significance level, then the null hypothesis of no trend is rejected. The standard error of S is534

calculated as:535

ZMK =


S−1√
V AR(S)

, S > 0

S√
V AR(S)

, S = 0

S+1√
V AR(S)

, S < 0

(19)

To compute the significance of the Mann-Kendall test, we compare the absolute value of the Mann-536

Kendall statistic (ZMK) to the critical value (Z1−α/2). The critical value depends on the level of537

significance (α) chosen and can be obtained from statistical tables or calculated using the software. If538

|ZMK | > Z1−α/2, then the null hypothesis of no trend is rejected and we conclude that there is a539

significant trend present in the data.540

The γ-value can also be calculated to determine the level of significance of the test. The γ-value is541

the probability of observing a Mann-Kendall statistic as extreme or more extreme than the observed542

value under the null hypothesis of no trend. If the γ-value is less than the chosen level of significance543

(α), then we reject the null hypothesis and conclude that there is a significant trend (either increasing544

or decreasing) in the data. If γ is bigger than α, we conclude there is no trend in this time series data.545

To compute the γ-value, we first calculate the standardized test statistic (Z). Then, we calculate546

the probability of observing a Z value as extreme or more extreme than the observed value using a547

normal distribution table or software. The γ-value can be obtained by using the z-table.548

C Proof of Theorem549

Lemma C.1. Cr-inequlity: For any a, b ∈ R and p > 0, we have:550

|a+ b|p ≤ max{2p−1, 1}(|a|p + |b|p), (20)

and if p > 1, it is easy to verify:551

|a+ b|p ≤ 2p−1(|a|p + |b|p). (21)

Before giving detailed proof, we first rewrite it as a reminder:552

Theorem C.1. Let P = {pij |1 ≤ i ≤ t− 1, 2 ≤ j ≤ t, i < j} be an observation set of changes in553

predictions in which S̃ is the statistic in the standardized Mann-Kendall test and σ2 is the variance of554

P . By exploiting the non-decreasing influence function ψ(x), for any ϵ > 0, we have the following555

bound with probability at least 1− 2ϵ:556

|αS̃ − Ŝ| <
2ασ

√
2log(ϵ−1)
t(t−1)

1−
√

2log(ϵ−1)
t(t−1)α2σ2

= O
(
(log(ϵ−1))

1
2 t−1

)
. (22)
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Proof. We first specify some notions here for simplicity :557

αS̃ =
1

t(t− 1)

t−1∑
i=1

t∑
j=i+1

α∆pij , ∆pij = pj − pi, α > 0. (23)

558

S =
2

t(t− 1)

t−1∑
i=1

t∑
j=i+1

ψ(α∆pij), ∆pij = pj − pi, α > 0. (24)

559

ψ(x) = sign(x) · log(1 + |x|+ x2/2). (25)

As suggested in [3], we can assume the upper and lower bounds of the proposed trend score S as560

S− and S+:561

S− ≤ S ≤ S+. (26)

Besides, although ψ is not derivative of some explicit error function, we will use it in the same562

way and consider it as an influence function. For some positive real parameter β, we will build our563

estimator Ŝβ as the solution of the following equation:564

t−1∑
i=1

t∑
j=i+1

ψ[β(α∆pij − Ŝβ)] = 0. (27)

In fact, we choose the widest possible choice of the M estimator to derive a relatively stabilized565

empirical mean by making the smallest possible change that is closest to the empirical mean. Then566

we introduce the quantity and the exponential moment inequalities, from which deviation bounds567

will follow:568

r(S) =
2

βt(t− 1)

t−1∑
i=1

t∑
j=i+1

ψ[β(α∆pij − S)], S ∈ R. (28)

Simply following the assumptions and Proposition 2.1 in [3], we can derive the following exponential569

moment inequalities through LemmaC:570

E
[
e

βt(t−1)r(S)
2

]
= E[e

∑t−1
i=1

∑t
j=i+1 ψ

(
β(α∆pij−S)

)
]

=
(
E
[
eψ

(
β(α∆pij−S)

)]) t(t−1)
2

≤
(
E
[
1 + β(α∆pij − S) +

β2

2
(α∆pij − S)2

]) t(t−1)
2

≤
(
1 + β(αS̃ − S) + β2

2
E
[
(α∆pij − S)2

]) t(t−1)
2

≤
(
1 + β(αS̃ − S) + β2

(
α2σ2 + (αS̃ − S)2

)) t(t−1)
2

≤ e
t(t−1)

2 β(αS̃−S)+ t(t−1)
2 β2

(
α2σ2+(αS̃−S)2

)

(29)

Similarly, we have:571

E
[
e−

βt(t−1)r(S)
2

]
≤ e−

t(t−1)
2 β(αS̃−S)+ t(t−1)

2 β2
(
α2σ2+(αS̃−S)2

)
. (30)

According to Eq.29 and Eq.30, we have that for any ϵ ∈ (0, 1/2), there exists:572

B+(S) = αS̃ − S + β
(
α2σ2 + (αS̃ − S)2

)
+

2log(ϵ−1)

t(t− 1)β
. (31)

573

B−(S) = αS̃ − S − β
(
α2σ2 + (αS̃ − S)2

)
+

2log(ϵ−1)

t(t− 1)β
. (32)
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By Markov inequality and Eq.31 and Eq.32, we have:574

P
(
r(S) ≥ B+(S)

)
= P

(
e

βt(t−1)r(S)
2 ≥ e

βt(t−1)B+(S)

2

)
≤

E
[
e

βt(t−1)r(S)
2

]
e

t(t−1)
2 β(αS̃−S)+ t(t−1)

2 β2
(
α2σ2+(αS̃−S)2

)
+log(ϵ−1)

≤ e
t(t−1)

2 β(αS̃−S)+ t(t−1)
2 β2

(
α2σ2+(αS̃−S)2

)
e

t(t−1)
2 β(αS̃−S)+ t(t−1)

2 β2
(
α2σ2+(αS̃−S)2

)
+log(ϵ−1)

= ϵ.

(33)

Thus, we have:575

P
(
r(S) ≤ B+(S)

)
≥ 1− ϵ. (34)

Similarly,576

P
(
r(S) ≥ B−(S)

)
≥ 1− ϵ. (35)

Thus, we can claim:577

P
(
B−(S) ≤ r(S) ≤ B+(S)

)
≥ 1− 2ϵ. (36)

According to Lemma 2.3 in [7], we know that for positive real parameter β satisfying:578

0 < β ≤

√
1
4 −

2log(ϵ−1)
t(t−1)

ασ
. (37)

there exists S− and S+ that B+(S+) = 0 and B−(S+) = 0, meanwhile, S+ is the smallest solution579

and S− is the largest solution. Then, it’s easy to derive:580

P
(
S− ≤ Ŝ ≤ S+

)
≥ 1− 2ϵ. (38)

since our chosen ψ(x) is a continuous function on x which also means that r(S) is a continuous581

function on S. And we know from Eq.36 when r(Ŝ) = 0 the following event holds with a probability582

of at least 1− 2ϵ:583

S− ≤ Ŝ ≤ S+. (39)

Following the Theorem2.6 in [7], we denote β =

√
2log(ϵ−1)

t(t−1)

ασ , n ≥ (2α2σ2 + 1)2log(ϵ−1)/α2σ2.584

When the difference between S− and S+ is small we can derive the estimator can be localized in a585

small interval, which implies:586

|αS̃ − Ŝ| <
2ασ

√
2log(ϵ−1)
t(t−1)

1−
√

2log(ϵ−1)
t(t−1)α2σ2

= O
(
(log(ϵ−1))

1
2 t−1

)
. (40)

holds with a probability of at least 1− 2ϵ.587

After the theoretical analysis, we present a graph of our robust mean estimator, which sheds light on588

its underlying mechanism. As illustrated in Figure7, the estimator is less sensitive to outliers and589

deviations from normality when the input value x is too large or too small, as indicated by the flatter590

curve of f(x) in its head and tail. Furthermore, the scaling parameter α enhances the flexibility of591

the estimator in handling extreme scenarios.592

D Fisher-Jenks Natural Break Classification593

In this section, we provide a specific training procedure for finding the Fisher Jenks Natural Break594

point in a binary scenario. As outlined in Algorithm1, the sorting process is simple and can be595

implemented using any sorting algorithm with a worst-case time complexity of O
(
Nlog(N)

)
. Then,596

we use a recursive approach to compute the mean and variance of the sequence in both ascending and597

descending orders. This enables us to obtain a chart for the sum of variances for every possible split,598

with a time complexity of O
(
N
)
. Therefore, the overall time complexity remains O

(
Nlog(N)

)
.599

Compared with the original algorithm of finding the Fisher Natural Break Point that asks for a time600
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Figure 7: The illustration of our proposed robust mean estimator to assess the model’s predictive
trend.

Algorithm 1 Fisher (Jenks) Natural Break by Dynamic Programing
Input: Sequence of trend score values xi for i ∈ 1, ..., N
Output: Class-break index b

sort X = {xi, 1 ≤ i ≤ N} to a strictly increasing sequence.
σ2+
1 ← 0; X̄+

1 ← x1; σ2−
N − ← 0; X̄−

1 ← xn; b← 0; s←∞
for n = 2 to N do
X̄+
n = 1

nxn + n−1
n X̄+

n−1

σ2+
n = n−2

n−1σ
2+
n−1 +

1
n (X̄

+
n − X̄+

n−1)
2

end for
for n = N − 1 to 1 do
X̄−
n = 1

nxn + n−1
n X̄−

n−1

σ2−
n = n−2

n−1σ
2−
n−1 +

1
n (X̄

−
n − X̄−

n−1)
2

end for
for n = 1 to N − 1 do

if σ2−
n+1 + σ2+

n < s then
s = σ2−

n+1 + σ2+
n ; b = n

end if
end for
return b;

complexity of O
(
N2

)
. Afterward, we provide a detailed derivation of our recursive method for601

computing the mean and variance. We take the variance σ2+
n in ascending order as an example:602

X̄n =
1

n
xn +

n− 1

n
X̄n−1 (41)

603

σ2
n =

1

n− 1

n∑
i=1

(xi − X̄n)
2 =

1

n− 1

n∑
i=1

[
(xi − X̄n−1) + (X̄n−1 − X̄n)

]2
. (42)
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where X̄n is the averaged value of the first n values in the sequence. Then, we can have:604

(n− 1)σ2
n =

n∑
i=1

[
(xi − X̄n−1)

2 + (X̄n−1 − X̄n)
2 + 2(xi − X̄n−1)(X̄n−1 − X̄n)

]
=

n∑
i=1

(xi − X̄n−1)
2 +

n∑
i=1

(X̄n−1 − X̄n)
2 + 2

n∑
i=1

(xi − X̄n−1)(X̄n−1 − X̄n)

=

n−1∑
i=1

(xi − X̄n−1)
2 + (xn − X̄n−1)

2 + n(X̄n−1 − X̄n)
2+

2(X̄n−1 − X̄n)

n∑
i=1

(xi − X̄n−1)

= (n− 2)σ2
n−1 + (xn − X̄n−1)

2 + n(X̄n−1 − X̄n)
2+

2(X̄n−1 − X̄n)
[ n−1∑
i=1

(xi − X̄n−1) + (xn − X̄n−1)
]

= (n− 2)σ2
n−1 + (xn − X̄n−1)

2 + n(X̄n−1 − X̄n)
2+

2(X̄n−1 − X̄n)(xn − X̄n−1)

= (n− 2)σ2
n−1 + (xn − X̄n−1)

2 + n(X̄n−1 − X̄n)
2 − 2n(X̄n−1 − X̄n)

2

= (n− 2)σ2
n−1 + (n2 − n)(X̄n−1 − X̄n)

2

= (n− 2)σ2
n−1 +

n− 1

n
(xn − X̄n−1)

2.

(43)

Similarly, the variance σ2−
n in descending order can be calculated in a similar way. Then, it’s natural605

for us to have a chart for the sum of variances for every possible split from which the Fisher Natural606

break point is available.607

E Additional Experiments608

Here we discuss additional results in other practical settings and further demonstrate the robustness609

of our method. As mentioned in Section2.2, the model witnesses a dramatic performance degradation610

when positive data occupies a majority of the unlabeled set or the SCAR (selected completely at611

random) assumption is violated but such data scenarios are widespread in real-world applications.612

Moreover, we also make some brief comparisons with other methods under more complex backbones613

with a varying number of positive labels.614

Table 9: Results of classification accuracy (%) on CIFAR10-1 wiht varying number of postive labels
under different backbones (ResNet18 and CNN7 as the backbone model).

Backbone Algorithm np = 0.5k np = 1k np = 3k np = 10k

CNN7

Resampling 86.29 90.02 92.64 93.41
uPU 82.49 76.52 87.34 93.02

nnPU 85.11 84.77 89.42 94.45
vPU 83.05 86.74 90.54 95.99

Dist-PU 85.15 87.25 91.76 95.07
Ours 87.21 90.58 91.80 95.94

ResNet18

Resampling 84.27 88.32 90.21 93.88
uPU 84.78 86.94 89.72 92.75

nnPU 86.05 89.43 90.01 91.84
vPU 71.40 86.85 88.54 89.89

Dist-PU 92.15 92.94 93.47 96.77
Ours 93.21 94.58 95.77 96.44

Based on Table9, the Trend-based PU framework performs better in scenarios where the number of615

positive labels is limited. This could be attributed to the fact that when there are 10,000 positive labels616
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Algorithm 2 Training procedure of the proposed method
Input: positive set P , unlabeled set U
Parameter: scaling parameter α, evaluation step q
Output: model parameters Θ

1: Initialize Θ, t = 0 and translate the unlabeled set U into negative set by negativity assumption;
2: while t ≤MaxEpoch do
3: Shuffle P ∪ U into I mini-batches and denote the i-th mini-batch as (Bip,Biu);
4: for i = 1 to q do
5: Compute the loss via Eq.1
6: update model parameters Θ with Adam;
7: end for
8: Record the model’s predictions on the unlabeled set Dt = {p1, p2, . . . , p|U|}
9: end while

10: for i = 1 to |U| do
11: calculate the trend score si on D through Eq.4 or Eq.6.
12: end for
13: Split the the unlabeled set U by Algorithm1 to get reformalized positive set P and negative set
N

14: Reinitialize Θ and train a binary model on the new positive set P and negative set N
15: return model parameters Θ

available, the estimation bias and prediction errors caused by the negative assumption are reduced617

due to the ample availability of supervised information. For imbalanced data, we give different618

imbalanced divisions compared with ImbalancedPU [48] by following the practice of long-tailed619

recognition. 10 different categories of CIFAR-10 are distributed under an exponential function with620

imbalance ratios γ in {10, 100, 1000} (the ratio of most populated class to least populated) and we621

follow the division above in AppendixF to form the positive and negative set respectively. Thus, the622

positive prior π also gets fixed when the head class is determined as positive or negative. Compared623

with the division in ImbalancedPU that only choose one category as a positive class, our proposed624

one is more practical and challenging since it is common practice for a positive class to have different625

classes with an imbalanced number of data. Besides, in this case, the labeled data and positive data in626

the unlabeled set share different distributions which do not align with the common SCAR assumption.627

While our method also gets challenged when negative examples is rare, it still presents much better628

performance. Actually, when we look into this problem that the majority of unlabeled data is positive629

or negative. It even makes PUL two completely different questions,630

Table 10: Results of classification accuracy(ACC), AUC and F1 score (%) on test set with same
number of labels (1000) but varying positive prior.

Method π = 0.124, γ = 1000 π = 0.712, γ = 10 π = 0.888, γ = 100 π = 0.960, γ = 1000

ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1

Resampling 92.05 96.41 91.45 74.13 82.32 42.10 70.40 79.45 35.31 67.24 71.90 14.11
ImbPU 92.61 97.12 92.51 83.22 93.15 86.11 74.12 84.58 77.25 71.27 80.31 65.47

Ours 92.52 96.60 92.80 83.57 90.84 86.85 80.01 90.02 84.68 75.35 88.51 80.72

We compare our method with the resampling baseline and ImbalancedPU specially designed for631

imbalanced distributions based on popular nnPU and uPU. The results of accuracy, AUC and F1632

score on the test set are given in Table 10. We denote the π as the positive prior of the whole dataset633

including the labeled data. It has illustrated that traditional cost-sensitive based methods can make634

competitive performance when the data distribution is balanced or positive class is rare. However, it635

witnesses a significant descent on all three metrics when the majority of unlabeled data belongs to the636

positive class and we argue that such a situation is quite common especially in the case when positive637

data is easy to obtain.638
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F Implementation details639

The detailed description of these benchmark datasets is given in Table 4 and we denote the category640

labels with integers ranging from 0 to 9 following the default settings in torchvision. For each641

dataset, we split the dataset into two disjoint sets as positive and negative following the protocol of642

[6]. Specifically, the labels are defined as follows: F-MNIST-1: “0,2,4,7” vs “1,5,6,8,9”, F-MNIST-643

2: “1,5,6,8,9” vs “0,2,4,7”; CIFAR-10-1: “0,1,8,9” vs “2,3,4,5,6,7”, CIFAR-10-2: “2,3,4,5,6,7”644

vs“0,1,8,9”; STL-10-1: “0,2,3,8,9” vs “1,4,5,6,7”, STL-10-2: “1,4,5,6,7” vs “0,2,3,8,9”; Credit Fraud:645

"Fraud" vs "Non-Fraud; Alzheimer: "Demented" vs "Non-Demented".646

For a fair comparison, we generally follow the experimental settings as [52, 61]. Specifically, we use647

the same data split as [52] in CIFAR-10-1, CIFAR-10-2, STL-10-1, STL-10-1 and Credit Card. For648

Alzheimer, F-MNIST-1 and F-MNIST-2, we follow the settings of [61]. To verify the effectiveness of649

our proposed method, We compare our method with several competitive PUL algorithms including650

uPU[13], nnPU[31], RP[43] nnPU with the mixup regularization term, Self-PU[8], PUSB[30],651

PUbN[26], aPU[21], vPU[6], MIXPUL[52], PAN[27], PULNS [38], Dist-PU[61] and P3MIX [33].652

For the methods requiring the positive prior, we provide them with an accurate prior except for STL653

since the true positive prior for STL is actually unknown considering it contains "real" unlabeled654

data. To this end, we estimate the positive prior of STL by KM2 method[44] before evaluating655

these methods. We report the results of these datasets under the backbones detailed in Table4 which656

is identical with [52]. It is worth mentioning that the true labels of unlabeled data in STL10 are657

not available and that’s the reason why we do not report any evaluation of the classification on the658

unlabeled training data in STL10. We run our method five times, following the procedure of [52],659

and report the average metrics and their standard deviations.660

Furthermore, for the results presented in Table 2, we evaluate the key metrics of existing PUL661

methods based on their predictions on the unlabeled set, which can be considered as a transductive662

experimental setting. Specifically, we report the recall rate for the Credit Card dataset and the663

accuracy for the remaining datasets. For Table 3, we compare the estimated priors of our method664

with those of other state-of-the-art prior estimation methods. Although our method is not designed665

for prior estimation, the positive prior is naturally available when the classification of unlabeled data666

is performed.667

In most cases, we perceive accuracy as the most important evaluation metric except for Credit Fraud668

dataset. In fraud detection, recall is often more important than precision or accuracy because the669

consequences of missing a fraudulent transaction can be much more severe than flagging a legitimate670

transaction as fraudulent. False negatives, which are fraudulent transactions that go undetected, can671

result in significant financial losses for both the individual and the company. On the other hand, false672

positives, which are legitimate transactions flagged as fraudulent, may cause temporary inconvenience673

but can usually be resolved through additional verification steps. Therefore, we emphasize more on674

recall rate and F1 score on the Credit Fraud dataset.675

While existing Positive and Unlabeled Learning (PUL) methods mainly adopt an inductive learning676

paradigm, we have observed that some literature fails to report the hyperparameter tuning and model677

selection process. In traditional machine learning, researchers typically perform these tasks on an678

independent validation set, but this strategy may not be feasible in PUL due to the lack of negative679

data. While we can still use an extra positive set as a validation set, in real-world scenarios, the680

number of labeled data may be limited, especially for PUL paradigms. Furthermore, estimates made681

under such settings may be conservatively biased due to the limited number of data, particularly for682

small-scale validation sets. Instead of holding out data, we propose to perform model selection on an683

augmented validation set using mix-up techniques. Our approach yields comparable results to using684

an auxiliary positive validation set, as demonstrated in Table 2 and Table 1. In our comparison, we685

follow the settings in [52] and hold out 500 positive examples as a validation set. However, we use an686

augmented validation set based on mix-up techniques and the original labeled training set available687

to choose the stopping iteration to form our trend score.688

For detailed experimental settings, we set the batch size to 64 and the evaluation step to 512 for all689

datasets and settings. The learning rate is set to 0.0015 for CIFAR10-1, CIFAR10-2, and STL10-690

1, 0.001 for STL10-2, and 0.002 for Credit Card and Alzheimer datasets. All experiments are691

implemented on RTX2080ti and RTX3080ti.692
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G Future Works693

G.1 Risk Bound for PUL under SAR Assumption694

In this subsection, we first review the upper and lower risk bound for PUL under the more general SAR695

assumption derived from [11]. Compared with the SCAR assumption that assumes the probability for696

a positive instance to be labeled is constant and thus independent from the covariates, a more general697

case is to assume the existence of a propensity function e(x):698

e(x) = P(S = 1|Y = 1, X = x). (44)

where S = 1 represents the labeled positive data. Besides, they also assume that the difficulty of the699

binary classification can be reflected by the Massart margin h derived from the regression function700

η(x) = P(Y = 1|X = x):701

∃h > 0,∀x ∈ Rd, |2η(x)− 1| ≥ h. (45)
Lemma G.1. Let ĝ be a minimizer of the unbiased empirical risk for PUL under the SAR702

assumption:ĝ ∈ Argming∈GR̂
SAR
n (g). Suppose that the separability and Massart margin hold, the703

propensity e(.) is greater than em > 0. Then, we have the following upper bound on the excess risk:704

E[ℓ(ĝ, g∗)] ≤ k1
[
min

( V

nemh

(
1 + log(max(1,

nh2

V
)
)
,

√
V

nem

)]
. (46)

where k1 > 0 is an absolute constant and V is the Vapnik-Chervonenkis dimension of G[50].705

Lemma G.2. Suppose that V ≤ 2 and nem ≥ V . Let h′ =
√

V
nem

. Keep the assumptions hold in706

LemmaG.1, ∀x ∈ Rd, there exists an absolute constant k2 > 0 such that:707

if h ≥ h′:708

709

R(G, h) ≥ k2
V − 1

hnem
. (47)

if h ≤ h′:710

711

R(G, h) ≥ k2
√
V − 1

nem
. (48)

G.2 Limitation712

It can be seen from LemmaG.1 and LemmaG.2 that both bounds depend on V , n, h and em. h713

evaluates the difficulty of the classification task and em represents the minimum of the propensity714

e(.). When we recall the classification results in Table10 that evaluate the model’s performance715

under various positive class priors. Both our method and the state-of-art PUL method special for716

imbalanced data witness a significant descent in all three metrics when the majority of unlabeled data717

belongs to the positive class. It may be explained by both the upper bounds and the lower bounds718

mentioned above. Specifically, when the majority of unlabeled data belongs to the positive class, em719

gets lower and both the upper and lower bounds in LemmaG.1 and LemmaG.2 get higher, making the720

classification more difficult. It asks for a more powerful model for PUL or a new perspective to tackle721

PUL. As argued in Section3, the predictive trends derived from the proposed resampling method can722

be a viable choice for such imbalanced scenarios. However, compared to the existing reweighting723

methods, the approach based on trend prediction still requires theoretical analysis. In addition, there724

are more possible methods worth exploring for additional resampling techniques, trend detection,725

and subsequent classification.726
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