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Abstract

Structure-based drug design (SBDD) aims to discover drug candidates by finding
molecules (ligands) that bind tightly to a disease-related protein (targets), which is
the primary approach to computer-aided drug discovery. Recently, applying deep
generative models for three-dimensional (3D) molecular design conditioned on
protein pockets to solve SBDD has attracted much attention, but their formulation
as probabilistic modeling often leads to unsatisfactory optimization performance.
On the other hand, traditional combinatorial optimization methods such as genetic
algorithms (GA) have demonstrated state-of-the-art performance in various molec-
ular optimization tasks. However, they do not utilize protein target structure to
inform design steps but rely on a random-walk-like exploration, which leads to
unstable performance and no knowledge transfer between different tasks despite
the similar binding physics. To achieve a more stable and efficient SBDD, we
propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize
the profitable design steps and suppress random-walk behavior. The neural mod-
els take the 3D structure of the targets and ligands as inputs and are pre-trained
using native complex structures to utilize the knowledge of the shared binding
physics from different targets and then fine-tuned during optimization. We con-
duct thorough empirical studies on optimizing binding affinity to various disease
targets and show that RGA outperforms the baselines in terms of docking scores
and is more robust to random initializations. The ablation study also indicates
that the training on different targets helps improve the performance by leveraging
the shared underlying physics of the binding processes. The code is available at
https://github.com/futianfan/reinforced-genetic-algorithm.

1 Introduction

Rapid drug discovery that requires less time and cost is of significant interest in pharmaceutical
science. Structure-based drug design (SBDD) [1] that leverages the three-dimensional (3D) structures
of the disease-related proteins to design drug candidates is one primary approach to accelerate the
drug discovery processes with physical simulation and data-driven modeling. According to the lock
and key model [2], the molecules that bind tighter to a disease target are more likely to expose
bioactivity against the disease, which has been verified experimentally [3]. As AlphaFold2 has
provided accurate predictions to most human proteins [4, 5], SBDD has a tremendous opportunity to
discover new drugs for new targets that we cannot model before [6].
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SBDD could be formulated as an optimization problem where the objective function is the binding
affinity estimated by simulations such as docking [2]. The most widely used design method is virtual
screening, which exhaustively investigates every molecule in a library and ranks them. Lyu et al.
successfully discovered new chemotypes for AmpC β-lactamase and the D4 dopamine receptor by
studying hundreds of millions of molecules with docking simulation [7]. However, the number of
the drug-like molecules is large as estimated to be 1060 [1], and it is computationally prohibitive to
screen all of the possible molecules. Though machine learning approaches have been developed to
accelerate screening [8, 9], it is still challenging to screen large enough chemical space within the
foreseeable future.

Instead of naively screening a library, designing drug candidates with generative models has been
highlighted as a promising strategy, exemplified by [10, 11]. This class of methods models the
problem as the generation of ligands conditioned on the protein pockets. However, as generative
models are trained to learn the distribution of known active compounds, they tend to produce
molecules similar to training data [12], which discourages finding novel molecules and leads to
unsatisfactory optimization performance.

A more straightforward solution is a combinatorial optimization algorithm that searches the implicitly
defined discrete chemical space. As shown in multiple standard molecule optimization bench-
marks [13, 14, 15], combinatorial optimization methods, especially genetic algorithms (GA) [16, 17],
often perform better than deep generative models. The key to superior performance is GA’s action
definition. Specifically, in each generation (iteration), GA maintains a population of possible candi-
dates (a.k.a. parents) and conducts the crossover between two candidates and mutation from a single
candidate to generate new offspring. These two types of actions, crossover and mutation, enable
global and local traversal over the chemical space, allowing a thorough exploration and superior
optimization performance.

However, most GAs select mutation and crossover operations randomly [16], leading to significant
variance between independent runs. Especially in SBDD, when the oracle functions are expensive
molecular simulations, it is resource-consuming to ensure stability by running multiple times. Further,
most current combinatorial methods are designed for general-purpose molecular optimization and
simply use a docking simulation as an oracle. It is challenging to leverage the structure of proteins in
these methods, and we need to start from scratch whenever we change a protein target, even though
the physics of ligand-protein interaction is shared. Ignoring the shared information across tasks
leads to unnecessary exploration steps and, thus, demands for many more oracle calls, which require
expensive and unnecessary simulations [18].

To overcome these issues in the GA method, we propose Reinforced Genetic Algorithm (RGA),
which attempts to reformulate an evolutionary process as a Markov decision process and uses neural
networks to make informed decisions and suppress the random-walk behavior. Specifically, we
utilize an E(3)-equivariant neural network [19] to choose parents and mutation types based on the
3D structure of the ligands and proteins. The networks are pre-trained with various native complex
structures to utilize the knowledge of the shared binding physics between different targets and then
fine-tuned with a reinforcement learning algorithm during optimizations. We test RGA’s performance
with various disease-related targets, including the main protease of SARS-CoV-2.

The main contributions of this paper can be summarized as follows:

• We propose an evolutionary Markov decision process (EMDP) that reformulates an evolutionary
process as a Markov decision process, where the state is a population of molecules instead of a
single molecule (Section 3.2).

• We show the first successful attempt to use a neural model to guide the crossover and mutation
operations in a genetic algorithm to suppress random-walk behavior and explore the chemical
space intelligently (Section 3.3).

• We present a structure-based de novo drug design algorithm that outperforms baseline methods
consistently through thorough empirical studies on optimizing binding affinity by leveraging the
underlying binding physics (Section 4).
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2 Related Works

We will discuss the related works on methods of drug design and discuss the advantage of the
proposed method over the existing works.

General Molecular Design. Molecular generation methods offer a promising direction for the
automated design of molecules with desired pharmaceutical properties such as synthesis accessibility
and drug-likeliness. Based on how to generate or search molecules, these approaches can be
categorized into two types, (1) deep generative models (DGMs) imitate the molecular data distribution,
including variational autoencoder (VAE) [20, 21], generative adversarial network (GAN) [22, 23],
normalizing flow model [24, 25], energy based model [26]; and (2) combinatorial optimization
methods directly search over the discrete chemical space, including genetic algorithm (GA) [16, 27,
28], reinforcement learning approaches (RL) [29, 30, 31, 32, 33], Bayesian optimization (BO) [34],
Markov chain Monte Carlo (MCMC) [35, 36, 37] and gradient ascent [38, 39].

General molecular design algorithms often use general black-box oracle functions, and some are
only tested with trivial or self-designed oracles. For example, using penalized octanol-water partition
coefficient (LogP) as the oracle function, it grows monotonically with the number of carbons, and
thus there exists a trivial policy to optimize LogP. These oracles do not reflect the challenges of real
drug discovery, and those algorithms have limited value for pharmaceutical discovery. Recent works
are optimizing docking scores to simulate a more realistic discovery scenario [40, 41, 18, 42], same
as our work. However, they are still ignoring the information in the given protein structures that
could potentially accelerate the design process. However, the extension to leveraging the structural
knowledge is nontrivial.

Structure-based Drug Design. Structure-based drug design (SBDD) could utilize the structural
information to guide the design of molecules, which are potentially more efficient in drug discovery
tasks but poses additional challenges of how to leverage the structures. Since early 1990s, various
SBDD algorithms have been proposed, mostly based on combinatorial optimization algorithms such
as tree search [43, 44, 45] and evolutionary algorithms [46, 47]. Those methods typically optimize
the ligands in the pockets according to a physical model characterizing the binding affinity. For
example, RASSE [43] used a force-field-like scoring function [48] to evaluate the partial solutions
within a tree search. However, obtaining a fast and accurate model to quantify binding free energy
itself is still an unsolved challenge.

Recently, generative modeling of 3D molecules conditioned on protein targets is attracting more
attention [10, 11]. Similar to DGMs in general molecular design, those methods learn the atom’s
compositional and spatial distribution of native structure of protein-ligand complexes with neural
models and design new ligands by complete the complex structure given targets. Deep generative
models are end-to-end and data-driven thus surpass the necessity of understanding the physics of
interaction. However, as the training objective is to learn the distribution of known active compounds,
the models tend to produce molecules close to the training set [12], which is undesired in terms of
patentability and leads to unsatisfactory optimization performance.

3 Method

In this paper, we focus on structure-based drug design. The goal is to design drug molecules
(a.k.a. ligands) that could bind tightly with the disease-related proteins (a.k.a. targets). Given
the 3D structures of the target proteins, including binding site information, docking is a popular
computational method for assessing the binding affinity, which can be roughly retrieved as the free
energy changes during the binding processes. We present a variant of genetic algorithm that is guided
by reinforcement learning and a docking oracle. Next, we will first describe the general evolutionary
process used in genetic algorithms (Section 3.1); Then we will present how to model this evolutionary
process as a Markov decision process (MDP) where RL framework can be constructed (Section 3.2);
After that, we describe the detailed implementation of this MDP framework using multiple policy
networks (Section 3.3).
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3.1 Evolutionary Process

In this section, we introduce the primary setting of the evolutionary processes. With both optimization
performance and synthetic accessibility taken into account [49, 14], we follow the action settings in
Autogrow 4.0 [17]. It demonstrated superior performance over other GA variants in the empirical
validation of structure-based drug design [17], and its mutation actions originated from chemical
reactions so that the designed molecules are more likely to be synthesizable. Specifically, an
evolutionary processes starts by randomly sampling a population of drug candidates from a library.
In each generation (iteration), it carries out (i) crossover between parents selected from the last
generation, and (ii) mutation on a single child to obtain the offspring pool. An illustration of both
crossover and mutation operations is available in Appendix. Note that we only adopted the action
settings from Autogrow 4.0, without using other tricks such as elitism.

Crossover, also called recombination, combines the structure of two parents to generate new children.
Following Autogrow 4.0 [17], we select two parents from the last generation and search for the largest
common substructure shared between them. Then we generate two children by randomly switching
their decorating moieties, i.e., the side chains attached to the common substructure.

Mutation operates on a single parent molecule and modifies its structure slightly. Following Autogrow
4.0 [17], we adopt transformations based on chemical reactions. Unlike naively defined atom-editing
actions, mutation steps based on chemical reactions could ensure all modification is reasonable in
reality, leading to a larger probability of designing synthesizable molecules. We included two types
of chemical reactions: uni-molecular reactions, which only require one reactant, and bi-molecular
reactions, which require two reactants. While uni-molecular reactions could be directly applied to the
parent, we sample a purchasable compound to react with the parent when conducting a bi-molecular
reaction. In both cases, the parent serves as one reactant, and we use the main product as the child
molecule. We use the chemical reactions from [17], which was originally from [47, 50].

Evolution. At the t-th generation (iteration), given a population of molecules denoted as S(t), we
generate an offspring pool denoted as Q(t) by applying crossover and mutation operations. Then
we filter out the ones with undesirable physical and chemical properties (e.g., poor solubility, high
toxicity) in the offspring pool and select the most promising K to form the next generation pool
(S(t+1)).

3.2 Evolutionary Markov Decision Process

Next we propose the evolutionary Markov decision process (EMDP) that formulates an evolutionary
process of genetic algorithm as a Markov decision process (MDP). The primary purpose is to utilize
reinforcement learning algorithms to train networks to inform the decision steps to replace random
selections. Taking a generation as a state, Markov property that requires P (S(t+1)|S(1), · · · ,S(t)) =
P (S(t+1)|S(t)) is naturally satisfied by the evolutionary process described above, where S(t) denotes
the state at the t-th generation, which is the population of ligands. We use X to denote a ligand. We
elaborate essential components for Markov decision process as follows, and the EMDP pipeline is
illustrated in Figure 1.

State Space. We define the population at the t-step generation, S(t), in the evolutionary process as
the state at the t-step in an EMDP. A state includes population of candidate molecules (i.e., ligand,
denoted X) and their 3D poses docked to the target, fully observable to the RL agent. At the beginning
of the EMDP, we randomly select a population of candidate molecules and use docking simulation to
yield their 3D poses as the initial state.

Action Space. The actions in an EMDP are to conduct the two evolutionary steps: crossover and
mutation, in a population. For each evolutionary step, we need two actions to conduct it. Concretely,
crossover (Xparent 1

crossover, X
parent 2
crossover

crossover−−−−−→ Xchild 1
crossover, X

child 2
crossover) can be divided to two steps: (1) select

the first candidate ligand Xparent 1
crossover from the current state (population S(t)); (2) conditioned on the

first selected candidate Xparent 1
crossover, select the second candidate ligand Xparent 2

crossover from the remaining
candidate ligand set S(t) − {Xparent 1

crossover} and apply crossover (Section 3.1) to them.
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Figure 1: We illustrate one generation (iteration) of GA (top) and RGA pipeline (bottom). Specifically,
we train policy networks that take the target and ligand as input to make informed choices on parents
and mutation types in RGA.

Mutation (Xparent
mutation

mutated by ξ−−−−−−−→ Xchild
mutation) can be divided to two steps: (1) select the candidate ligand

Xparent
mutated to be mutated from the current state (population S(t)); (2) conditioned on the selected

candidate ligand Xparent
mutated, select the reaction ξ from the reaction set R and apply it to Xparent

mutated.

As applying the crossover and mutation steps are deterministic, the actions in an EMDP focus on
selecting parents and mutation types. Upon finish the action, we could obtain offspring pool, Q(t).

State Transition Dynamics. The state transition in an EMDP is identical to the evolution in
an evolutionary process. Once we finish the actions and obtain the offspring pool, Q(t) =
{Xchild 1, Xchild 2, · · · }, we apply molecular quality filters to filter out the ones unlikely to be drug
and then select the most promising K to form the parent set for the next generation (S(t+1)).

Reward. We define the reward as the binding affinity change (docking score). The actions leading to
stronger binding score would be prioritized. As there is no “episode” concept in an EMDP, we treat
every step equally.

3.3 Target-Ligand Policy Network

To utilize molecular structures’ translational and rotational invariance, we adopt equivariance neural
networks (ENNs) [19] as the target-ligand policy neural networks to select the actions in both mutation
and crossover steps. Each ligand has a 3D pose that binds to the target protein, and the complex
serves as the input of ENN.

Specifically, we want to model a 3D graph Y , which can be ligand, target, or target-ligand complex.
The input feature can be described as Y = (A,Z), where A represents atoms’ categories (the
vocabulary set V = {H,C,O,N, · · · }) and Z represents 3D coordinates of the atoms. Suppose
D ∈ R|V|×d is the embedding matrix of all the categories of atoms in a vocabulary set V , is randomly
initialized and learnable, d is the hidden dimension in ENN. Each kind of atom corresponds to a row
in D. We suppose there are N atoms, and each atom corresponds to a node in the 3D graph. Node
embeddings at the l-th layer are denoted as H(l) = {h(l)

i }Ni=1, where l = 0, 1, · · · , L, L is number
of layers in ENN. The initial node embedding h

(0)
i = D⊤ai ∈ Rd embeds the i-th node, where
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ai is one-hot vector that encode the category of the i-th atom. Coordinate embeddings at the l-th
layer are denoted Z(l) = {z(l)i }Ni=1. The initial coordinate embeddings Z(0) = {zi}Ni=1 are the real
3D coordinates of all the nodes. The following equation defines the feedforward rules of ENN, for
i, j = 1, · · · , N, i ̸= j, l = 0, 1, · · · , L− 1, we have

w
(l+1)
ij = MLPe

(
h
(l)
i ⊕ h

(l)
j ⊕ ||z(l)i − z

(l)
j ||22

)
∈ Rd, v

(l+1)
i =

N∑
j=1,j ̸=i

w
(l+1)
ij ∈ Rd,

z
(l+1)
i = z

(l)
i +

N∑
j=1,j ̸=i

(
z
(l)
i − z

(l)
j

)
MLPx

(
w

(l)
ij

)
∈ R3, h

(l+1)
i = MLPh

(
h
(l)
i ⊕ v

(l+1)
i

)
∈ Rd,

hY =

N∑
i=1

h
(L)
i ∈ Rd =⇒ hY = ENN(Y)

(1)
where ⊕ denotes the concatenation of vectors; MLPe(·) : R2d+1 −→ Rd;MLPx(·) : Rd −→
R;MLPh(·) : R2d −→ Rd are all two-layer multiple layer perceptrons (MLPs) with Swish acti-
vation in the hidden layer [51]. At the l-th layer, w(l)

ij represents the message vector for the edge from

node i to node j; v(l)
i represents the message vector for node i, z(l)i is the position embedding for node

i; h(l)
i is the node embedding for node i. H(L) = [h

(L)
1 , · · · ,h(L)

N ] are the node embeddings of the
L-th (last) layer. We aggregate them using sum function as readout function to obtain a representation
of the 3D graph, denoted hY . The whole process is written as hY = ENN(Y).

Crossover Policy Network. We design two policy networks for two corresponding actions in a
crossover, as mentioned in Section 3.2. (1) the first action in crossover operation is to select the
first parent ligand Xparent 1

crossover from the population S(t). Similar to the first action in mutation opera-
tion, we obtain a valid probability distribution over all the available ligands based on target-ligand
complex as input feature and ENN as the neural network architecture, the selection probability

of the ligand Xparent 1
crossover ∈ S(t) is p

(1)
crossover(X

parent 1
crossover|S(t)) =

exp
(

MLP(h
T &X

parent 1
crossover

)
)

∑
X′∈S(t) exp

(
MLP(hT &X′ )

) , where T

and X denotes target and ligand (including 3D pose), respectively, T &X denotes target-ligand
complex. (2) The second action is to select the second parent ligand conditioned on the first par-
ent ligand selected in the first action. Specifically, for ligand in the remaining population set, we
concatenate the ENN’s embedding of the target, first parent ligand Xparent 1

crossover and the second par-
ent ligand Xparent 2

mutation, and feed it into an MLP to estimate a scalar as an unnormalized probability.
The unnormalized probabilities for all the ligands in the remaining population set are normalized
via softmax function, i.e., p(2)crossover(X

parent 2
crossover|Xparent 1

crossover,S(t)) = Softmax
{

MLP(hT ⊕ hXparent 1
crossover

⊕
hXparent 2

crossover
), · · · ,

}
Xparent 2

crossover∈S(t)−{Xparent 1
crossover}

. Given two parents ligands, crossover finds the largest sub-
structure that the two parent compounds share and generates a child by combining their decorating
moieties. Thus, the generation of child ligands are deterministic, and the probability of the generated
ligands Xchild

crossover is

pcrossover(X
child 1
crossover, X

child 2
crossover|S(t)) = pcrossover(X

parent 1
crossover, X

parent 2
crossover|S(t))

= p(1)crossover(X
parent 1
crossover|S(t)) · p(2)crossover(X

parent 2
crossover|Xparent 1

crossover,S(t)).
(2)

Mutation Policy Network. We design two policy networks for two corresponding actions in
mutation, as mentioned in Section 3.2. (1) the first action in mutation operation is to select a
candidate ligand to be mutated from population S(t). It models the 3D target-ligand complex to
learn if there is improvement space in the current complex. Formally, we obtain a valid prob-
ability distribution over all the available ligands based on target-ligand complex as input fea-
ture and ENN as neural architecture, the selection probability of the ligand Xparent

mutation ∈ S(t) is

p
(1)
mutation(X

parent
mutation|S(t)) =

exp
(

MLP(hT &X
parent
mutation

)
)

∑
X′∈S(t) exp

(
MLP(hT &X′ )

) , where T &X denotes target-ligand complex,

hT &X = ENN(T &X) represents the ENN’s embedding of target-ligand complex. (2) The sec-
ond action is to select the SMARTS reaction from the reaction set conditioned on the selected
ligand in the first action. Specifically, for each reaction, we generate the new ligand Xchild

mutation, then
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obtain the embedding of target, first ligand Xparent
mutation and the new ligand Xchild

mutation through ENN,
concatenate these three embeddings and feed it into an MLP to estimate a scalar as unnormalized
probability. The unnormalized probabilities for all the reactions are normalized via softmax func-
tion, i.e., p(2)mutation(ξ|X

parent
mutation,S(t)) = Softmax

{
MLP(hT ⊕ hXparent

mutation
⊕ hXchild

mutation
]), · · · ,

}
ξ∈R, where

Xparent
mutation

mutated by ξ−−−−−−−→ Xchild
mutation, R is the reaction set. The probability of the generated ligand Xchild

mutation
is

pmutation(X
child
mutation|S(t)) = p

(1)
mutation(X

parent
mutation|S

(t)) · p(2)mutation(ξ|X
parent
mutation,S

(t)). (3)

Policy Gradient. We leverage policy gradient to train the target-ligand policy neural network.
Specifically, we consider maximizing the expected reward as objective via REINFORCE [29],

max EX∼p(X|S(t))

[
Reward(X)

]
, (4)

where p(X) is defined in Equation (2) and (3) for crossover and mutation, respectively. The whole
pipeline is illustrated in Figure 1. To provide a warm start and leverage the structural information,
we pretrain the ENNs on 3D target-ligand binding affinity prediction task, where the inputs are the
target-ligand complexes, and the outputs are their binding affinity.

4 Experiment

In this section, we briefly describe the experimental setup and results. The Appendix includes more
details, including software configuration, implementation details, dataset description & processing,
hyperparameter tuning, ablation study, and additional experimental results. The code is available at
https://github.com/futianfan/reinforced-genetic-algorithm.

4.1 Experimental Setup

Docking Simulation. We adopt AutoDock Vina [52] to evaluate the binding affinity. The docking
score estimated by AutoDock Vina is called Vina score and roughly characterizes the free energy
changes of binding processes in kcal/mol. Thus lower Vina score means a stronger binding affinity
between the ligand and target. We picked various disease-related proteins, including G-protein
coupling receptors (GPCRs) and kinases from DUD-E [53] and the SARS-CoV-2 main protease [54]
as targets. Please see the Appendix for more information.

Baselines. The baseline methods cover traditional brute-force search methods (Screening), deep
generative models (JTVAE and Gen3D), genetic algorithm (GA+D, graph-GA, Autogrow 4.0),
reinforcement learning methods (MolDQN, RationaleRL, REINVENT, GEGL), and MCMC method
(MARS). Gen3D and Autogrow 4.0 are structure-based drug design methods, while others are
general-purpose molecular design methods. Although methods explicitly utilizing target structures are
relatively few, we add general-purpose molecular design methods optimizing the same docking oracle
scores as ours, which is a common use case, as baselines [16, 14]. Concretely, Screening mimics high
throughput screening via sampling from ZINC database randomly; JTVAE (Junction Tree Variational
Auto-Encoder) [21] uses a Bayesian optimization on the latent space to indirectly optimize molecules;
Gen3D [10] is an auto-regressive generative model that grows 3D structures atom-wise inside the
binding pocket; GA+D [27] represents molecule as SELFIES string [55] and uses genetic algorithm
enhanced by a discriminator neural network; Graph-GA [16] conduct genetic algorithm on molecular
graph representation; Autogrow 4.0 [17] is the state-of-the-art genetic algorithm in structure-based
drug design; MolDQN (Molecule Deep Q-Network) [31] leverages deep Q-value learning to grow
molecules atom-wisely; RationaleRL [32] uses rationale (e.g., functional groups or subgraphs) as
the building block and a policy gradient method to guide the training of graph neural network-based
generator; REINVENT [29] represent molecules as SMILES string and uses policy gradient based
reinforcement learning methods to guide the training of the RNN generator; GEGL (genetic expert-
guided learning) [33] uses LSTM guided by reinforcement learning to imitate the GA exploration;
MARS (Markov Molecule Sampling) [36] leverages Markov chain Monte Carlo sampling (MCMC)
with adaptive proposal and annealing scheme to search chemical space. To conduct a fair comparison,
we limit the number of oracle calls to 1,000 times for each method. All the baselines can be run
with one-line code using the software (https://github.com/wenhao-gao/mol_opt) in practical
molecular optimization benchmark [15].
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Table 1: The summarized performance of different methods. The mean and standard deviation across
targets are reported. Arrows (↑, ↓) indicate the direction of better performance. For each metric,
the best method is underlined and the top-3 methods are bolded. RGA-pretrain and RGA-KT are two
variants of RGA that without pretraining and without training on different target proteins, respectively.

Method TOP-100↓ TOP-10↓ TOP-1↓ Nov↑ Div↑ QED↑ SA↓
screening -9.351±0.643 -10.433±0.563 -11.400±0.630 0.0±0.0% 0.858±0.005 0.678±0.022 2.689±0.077

MARS -7.758±0.612 -8.875±0.711 -9.257±0.791 100.0±0.0% 0.877±0.001 0.709±0.008 2.450±0.034
MolDQN -6.287±0.396 -7.043±0.487 -7.501±0.402 100.0±0.0% 0.877±0.009 0.170±0.024 5.833±0.182

GEGL -9.064±0.920 -9.91±0.990 -10.45±1.040 100.0±0.0% 0.853±0.003 0.643±0.014 2.99±0.054

REINVENT -10.181±0.441 -11.234±0.632 -12.010±0.833 100.0±0.0% 0.857±0.011 0.445±0.058 2.596±0.116

RationaleRL -9.233±0.920 -10.834±0.856 -11.642±1.102 100.0±0.0% 0.717±0.025 0.315±0.023 2.919±0.126

JTVAE -9.291±0.702 -10.242±0.839 -10.963±1.133 98.0±0.027% 0.867±0.001 0.593±0.035 3.222±0.136

Gen3D -8.686±0.450 -9.285±0.584 -9.832±0.324 100.0±0.0% 0.870±0.006 0.701±0.016 3.450±0.120

GA+D -7.487±0.757 -8.305±0.803 -8.760±0.796 99.2±0.011% 0.834±0.035 0.405±0.024 5.024±0.164

Graph-GA -10.848±0.860 -11.702±0.930 -12.302±1.010 100.0±0.0% 0.811±0.037 0.456±0.067 3.503±0.367

Autogrow 4.0 -11.371±0.398 -12.213±0.623 -12.474±0.839 100.0±0.0% 0.852±0.011 0.748±0.022 2.497±0.049
RGA (ours) -11.867±0.170 -12.564±0.287 -12.869±0.473 100.0±0.0% 0.857±0.020 0.742±0.036 2.473±0.048

RGA - pretrain -11.443±0.219 -12.424±0.386 -12.435±0.654 100.0±0.0% 0.854±0.035 0.750±0.034 2.494±0.043

RGA - KT -11.434±0.169 -12.437±0.354 -12.502±0.603 100.0±0.0% 0.853±0.028 0.738±0.034 2.501±0.050

Dataset: we randomly select molecules from ZINC [56] database (around 250 thousands drug-like
molecules) as 0-th generation of the genetic algorithms (RGA, Autogrow 4.0, GA+D). ZINC also
serves as the training data for pretraining the model in JTVAE, REINVENT, RationaleRL, etc. We
adopt CrossDocked2020 [57] dataset that contains around 22 million ligand-protein complexes as
the training data for pretraining the policy neural networks, as mentioned in Section 3.3. More
descriptions are available in Appendix.

Metrics. The selection of evaluation metrics follows recent works in molecule optimization [21, 27,
32, 36] and structure-based drug design [17, 10, 14]. For each method, we select top-100 molecules
with the best docking scores for evaluation and consider the following metrics: TOP-1/10/100
(average docking score of top-1/10/100 molecules): docking score directly measures the binding
affinity between the ligand and target and is the most informative metric in structure-based drug
design; Novelty (Nov) (% of the generated molecules that are not in training set); Diversity (Div)
(average pairwise Tanimoto distance between the Morgan fingerprints); We also evaluate some simple
pharmaceutical properties, including quantitative drug-likeness (QED) and synthetic accessibility
(SA). QED score indicates drug-likeliness ranging from 0 to 1 (higher the better). SA score ranges
from 1 to 10 (lower the better). All the evaluation functions are available at Therapeutics data
commons (TDC, https://tdcommons.ai/fct_overview) [14, 58].

4.2 Results

Stronger Optimization Performance. We summarized the main results of the structure-based
drug design in Table 1. We evaluate all the methods on all targets and report each metric’s mean
and standard deviations across all targets. Our result shows RGA achieves the best performance in
TOP-100/10/1 scores among all methods we compared. Compared to Autogrow 4.0, RGA’s better
performance in docking score demonstrates that the policy networks contribute positively to the
chemical space navigation and eventually help discover more potent binding molecules. On the other
hand, including longer-range navigation steps enabled by crossover leads to superior performance
than other RL methods (REINVENT, MolDQN, GEGL and RationaleRL) that only focus on local
modifications. In addition, we also observed competitive structure quality measured by QED (> 0.7)
and SA_Score (< 2.5) in Autogrow 4.0 and RGA without involving them as optimization objectives,
thanks to the mutation steps originating from chemical reactions. We visualize two designed ligands
with optimal affinity for closer inspection in Figure 2(a) and 2(b), and find both ligands bind tightly
with the targets.

Suppressed Random-Walk Behavior. Especially in SBDD, when the oracle functions are expen-
sive molecular simulations, robustness to random seeds is essential for improving the worst-case
performance of algorithms. One of the major issues in traditional GAs is that they have a signifi-
cant variance between multiple independent runs as they randomly select parents for crossover and
mutation types. To examine this behavior, we run five independent runs for RGA, Autogrow 4.0 and
graph-GA (three best baselines, all are GA methods) on all targets and plot the standard deviations
between runs in Figure 2(c) and 2(d). With policy networks guiding the action steps, we observed that
the random-walk behavior in Autogrow 4.0 was suppressed in RGA, indicated by the smaller variance.
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(a) Example of 7l11, -10.8 kcal/mol (b) Example of 3eml, -13.2 kcal/mol

(c) TOP-100 vs # oracle call (d) Score bar for different runs

Figure 2: (a) and (b): Example of ligand poses (generated by RGA) and binding sites of target
structures. Example of 7l11: the PDB ID of target is 7l11, which is SARS-COV-2(2019-NCOV)
main protease, the Vina score is -10.8 kcal/mol. Example of 3eml: the PDB ID is 3eml, which is a
human A2A Adenosine receptor, the Vina score is -13.2 kcal/mol. (c) and (d): studies of suppressed
random-walk behavior. (c) reports TOP-100 docking score as a function of oracle calls. The results
are the means and standard deviations of 5 independent runs. (d) shows the bars of TOP-100 docking
score for various independent runs.

Especially in the later learning phase (after 500 oracle calls), the policy networks are fine-tuned and
guide the search more intelligently. This advantage leads to improved worst-case performance and a
higher probability of successfully identifying bioactive drug candidates with constrained resources.

Knowledge Transfer Between Protein Targets. To verify if RGA benefited from learning the shared
physics of ligand-target interaction, we conducted an ablation study whose results are in the last
two rows of Table 1. Specifically, we compare RGA with two variants: (1) RGA-pretrain that does not
pretrain the policy network with all native complex structures in the CrossDocked2020; (2) RGA-KT
(knowledge transfer) that fine-tune the networks with data of individual target independently. We
find that both strategies positively contribute to RGA on TOP-100/10/1 docking score. These results
demonstrate the policy networks successfully learn the shared physics of ligand-target interactions
and leverage the knowledge to improve their performance.

5 Conclusion

In this paper, we propose Reinforced Genetic Algorithm (RGA) to tackle the structure-based drug
design problem. RGA reformulate the evolutionary process in genetic algorithms as a Markov decision
process called evolutionary Markov decision process (EMDP) so that the searching processes could
benefit from trained neural models. Specifically, we train policy networks to choose the parents to
crossover and mutate instead of randomly sampling them. Further, we also leverage the common
physics of the ligand-target interaction and adopt a knowledge-transfer strategy that uses data from
other targets to train the networks. Through empirical study, we show that RGA has strong and robust
optimization performance, consistently outperforming baseline methods in terms of docking score.

Though we adopted mutations originating from chemical reactions and the structural quality metrics
seem good, we need to emphasize that the designed molecules from RGA do not guarantee synthesiz-
ability [49], as the crossover operations may break inheriting synthesizability. Directly working on
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synthetic pathways could solve the problem [28, 59], but the extension is not trivial. As for future
direction, we expect to theoretically analyze the EMDP formulation and the performance of RGA.
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A Mathematical Notation

For ease of exposition, we list the mathematical notations in Table 2. All the mathematical nota-
tions are divided into three parts: (1) notation for genetic algorithm (Section 3.1); (2) notation for
equivariance neural networks (ENN) [19] (Section 3.3); (3) notations for policy network (Section 3.3).

Table 2: Mathematical Notations. All the mathematical notations are divided into three parts: (1)
notation for genetic algorithm (Section 3.1); (2) notation for equivariance neural networks (ENN) [19]
(Section 3.3); (3) notations for policy network (Section 3.3).

Notations Descriptions
X ligand (drug molecule, including 3D pose)
T target (target protein related to the disease)
S(t) the state (population of molecule) at the t-th generation.
Q(t) offspring pool at the t-th generation.
K the number of molecule in the state, i.e., size of population.

Xparent 1/2
crossover the first/second parent molecule in the crossover.

Xchild 1/2
crossover the first/second child molecule in the crossover.

Xparent
mutation parent molecule in the mutation

Xchild
mutation child molecule in the mutation

ξ ∈ R the selection reaction in the mutation
R the reaction set (library) for mutation

ENN equivariance neural networks [19]
V = {H,C,O,N, · · · } vocabulary set of atoms

Y = (A,Z) 3D structure
A categories of all the atoms
ai one-hot vector that encode category of i-th atom
Z 3D coordinates of the atoms

D ∈ R|V|×d the embedding matrix of all the categories of atoms
d the hidden dimension in ENN.
N number of atoms in the input of ENN.
L number of layers in ENN

l = 0, 1, · · · , L index of layer in ENN
MLP multiple layer perceptrons

MLPe(·),MLPx(·),MLPh(·) two-layer MLP in ENN with Swish activation [51] in hidden layer
⊕ the concatenation of vectors

Z(0) = {zi}Ni=1 initial coordinate embeddings, real 3D coordinates of all the nodes.
H(l) = {h(l)

i }Ni=1 Node embeddings at the l-th layer
h
(0)
i = D⊤ai ∈ Rd The initial node embedding that embeds the i-th node
Z(l) = {z(l)i }Ni=1 Coordinate embeddings at the l-th layer

w
(l)
ij message vector for the edge from node i to node j at l-th layer

v
(l)
i message vector for node i at l-th layer

z
(l)
i the position embedding for node i at l-th layer

h
(l)
i the node embedding for node i at l-th layer

hY = ENN(Y) ENN representation of the 3D graph Y (Equation 1)
p
(1)
crossover(X

parent 1
crossover|S(t)) probability to select the first parent molecule in crossover

p
(2)
crossover(X

parent 2
crossover|Xparent 1

crossover,S(t)) probability to select the second parent molecule in crossover
pcrossover(X

child 1
crossover, X

child 2
crossover|S(t)) probability of two generated child molecules in crossover (Eq 2)

p
(1)
mutation(X

parent
mutation|S

(t)) probability to select the parent molecule in mutation
p
(2)
mutation(ξ|X

parent
mutation,S

(t)) probability to select the reaction in mutation
pmutation(X

child
mutation|S(t)) probability of generated child molecule in mutation (Eq 3)
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B Illustration of Genetic Algorithm

Figure 3 provides two examples to illustrate crossover and mutation operations in genetic algorithm
described in Section 3.1.

Crossover, also called recombination, combines the structure of two parents to generate new children.
Following Autogrow 4.0 [17], as shown in Figure 3(a), we select two parents from the last generation
and search for the largest common substructure shared between them. Then we generate two children
by randomly switching their decorating moieties, i.e., the side chains attached to the common
substructure.

Mutation operator performs an in silico chemical reaction to generate an altered child compound
(i.e., product in the chemical reaction) derived from a parent (reactant in the chemical reaction), as
shown in Figure 3(b). The chemical reaction here contains two reactants, one is parent molecule,
another is from reaction set. The reaction set R is generated via merging two public reaction libraries:
(1) the AutoClickChemRxn set (36 reactions) [47] and (2) RobustRxn set (58 reactions [50]). Each
reaction ξ in reaction set R contains a SMARTS string based reaction template and a reactant. It uses
SMARTS reaction template, together with RDKit [60], to perform chemical mutations efficiently.

The process is written as Xparent
mutation

mutated by ξ−−−−−−−→ Xchild
mutation, where ξ is selected reaction (with a reaction

template and another reactant). The ligand to be mutated and the reaction used for mutation are both
randomly selected from previous generation and reaction set R, respectively. Compared with the
mutation operator in conventional GA that randomly flipping an arbitrary bit, the reaction-based
mutation enhance synthesizability of the generated molecules [17]. Mutation operator performs an in
silico chemical reaction to generate an altered child compound (i.e., product in the chemical reaction)
derived from a parent (reactant in the chemical reaction). The chemical reaction here contains two
reactants, one is parent molecule, another is from reaction set.

(a) crossover (b) mutation

Figure 3: Illustration of GA operations: (a) crossover finds the largest substructure that the two parent
compounds share and generates a child by combining their decorating moieties. (b) mutation: given
a reactant (i.e., parent), mutation operator uses SMARTS-reaction template (with another reactant) to
performs an in silico chemical reaction to generate child compound (i.e., product).

C Baseline Setup

In this section, we describe the experimental setting for baseline methods. Most of the settings follow
the original papers.

• GA+D (genetic algorithm enhanced by discriminator neural network) [27] utilizes SELFIES
string as the representation of molecules, thus guaranteeing the 100% chemical validity of
the generated molecules. Following their original paper, the discriminator neural network is
a two-layer fully connected neural network with ReLU activation and sigmoid output layer.
The hidden size is 100. the size of the output layer is 1. The input feature of discrimina-
tor neural network is a vector of chemical and geometrical properties characterizing the
molecules. The population size is set to 300. Maximal generation number is set to 1000.
The patience is set to 5. When the property does not improve when the patience exhausts,
the process early stops. We used Adam optimizer with 1e-3 as the initial learning rate. beta
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(β) is the weight of discriminator neural network’s score in fitness evaluation, which is used
to select most promising molecules in each generation. We set β = 1.

• Graph-GA [16] uses molecular graph to represent molecules and uses crossover and
mutation operations to edit the molecular graph. After tuning, the size of population is set
to 120. The size of offspring is set to 70. The mutation rate is set to 0.067. Graph-GA
do not have learnable parameters and is easy to implement. We use the implementation in
GuacaMol [13].

• MolDQN (Molecule Deep Q-Networks) [31] uses molecular graph to represent molecules,
formulate the molecule optimization process as a Markov Decision Process (MDP) and
utilize Deep Q-value learning to optimize it. It grows molecular graph atom-wise, that is,
in each episode, it adds one atom to the partially generated molecular graph. The reward
function is the negative value of the Vina score. Following the original paper, maximal
step in each episode is 40. Each step calls oracle once. The discount factor is 0.9. Deep
Q-network is a multilayer perceptron (MLP) whose hidden dimensions are 1024, 512, 128,
32, respectively. The model size is 6.4 M. The input of the Q-network is the concatenation
of the molecule feature (2048-bit Morgan fingerprint, with a radius of 3) and the number of
left steps. Adam is used as an optimizer with 1e-4 as the initial learning rate. Only rings
with a size of 5 and 6 are allowed. It leverages ϵ-greedy together with randomized value
functions (bootstrapped-DQN) as an exploration policy, ϵ is annealed from 1 to 0.01 in a
piecewise linear way.

• RationaleRL [32]. The architecture of the generator is a message-passing network (MPN)
followed by MLPs applied in breadth-first order. The generator is pre-trained on general
molecules combined with an encoder and then fine-tuned to maximize the reward function
using policy gradient. The encoder and decoder MPNs both have hidden dimensions of 400.
The dimension of the latent variable is 50. Adam optimizer is used on both pre-training and
fine-tuning with initial learning rates of 1e-3, 5e-4, respectively. The annealing rate is 0.9.
We pre-trained the model with 20 epochs.

• MARS [36] leverage Markov chain Monte Carlo sampling (MCMC) on molecules with
an annealing scheme and an adaptive proposal. The proposal is parameterized by a graph
neural network, which is trained on MCMC samples. We follow most of the settings in the
original paper. The message passing network has six layers, where the node embedding
size is set to 64. Adam is used as an optimizer with 3e-4 initial learning rate. To generate a
basic unit, top-1000 frequent fragments are drawn from ZINC database [56] by enumerating
single bonds to break. During the annealing process, the temperature T = 0.95⌊t/5⌋ would
gradually decrease to 0.

• Autogrow 4.0 [17] is the base model for RGA and have been briefly described in Section 3.1.
The setup of Autogrow is the same as RGA for fair comparison, the only difference is that
RGA use policy network to guide the selection of ligands and reaction for crossover and
mutation while Autogrow randomly selects them. The reaction set R is generated via
merging two public reaction libraries: (1) the AutoClickChemRxn set (36 reactions) [47]
and (2) RobustRxn set (58 reactions [50]). In each generation, It generates 200 offspring
(100 from crossover and 100 from mutation) and keep 50 most promising (with lowest Vina
scores) ones for the next generation.

• Screening exhaustively searches the ZINC database [56] within oracle budget. It is the
traditional high-throughput screening approach.

• REINVENT [29] is a reinforcement learning approach, represent molecule as SMILES
string and uses recurrent neural network to model SMILES string. It pretrains a prior
model using molecules on ZINC and finetune the model using the reward function. It uses
REINFORCE to maximize the expected reward function. The learning rate is set to 0.0005;
the batch size is set to 64; The hyperparameter σ weighs the pretrained prior model and the
reward function, and is set to 60. The model size is 16.3M.

• JTVAE [21] build a junction tree to represent molecule via using substructure (either ring
or atom) to represent molecule. It uses both molecular graph-leven and junction tree-level
encoder and decoder. The VAE model is pretrained on ZINC databases. Then Bayesian
Optimization is used to optimize the docking score on the continuous latent space. We
use “botorch”, the python’s Bayesian optimization package, to implement the Bayesian
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optimization process. It has 703 substructures in vocabulary, extracted from ZINC. The
hidden size is 450. The latent size of VAE is set to 56. The model size is 21.8 M.

• Gen3D [10] uses 3D deep generative models and grow the molecule via adding atoms
auto-regressively. It train a universal model for all the targets. The number of message
passing layers in context encoder is 6, and the hidden dimension is 256. We train the model
using the Adam optimizer at learning rate 0.0001. The model size is 17.4 M.

• GEGL (Genetic Expert Guided Learning) [33] uses LSTM (guided by RL agent) to imitate
GA process, however, it is unable to inherit the GA’s flexible assembling manner due to the
auto-regressive essence of LSTM. It use Adam as optimizer with initial learning rate 1e-3.
The batch size during sampling is 512, the batch size during optimization is 256. In GA,
mutation rate is 0.01. The similarity threshold is 0.4, which constrain the similarity between
the original molecule and the edited molecule. The maximal SMILES length is set to 120.

D Additional Experimental Setup

D.1 Docking Simulation

Molecular docking is a computational method which predicts the preferred orientation of one molecule
to a second when a ligand and a target are bound to each other to form a stable complex. Knowledge
of the preferred orientation in turn may be used to predict the strength of association or binding
affinity between two molecules using, for example, scoring functions. We adopt AutoDock Vina [52]
to evaluate the binding affinity. The docking score estimated by AutoDock Vina is called Vina score
and roughly characterizes the free energy changes of binding processes in kcal/mol. Vina score is
usually smaller than 0 and lower Vina score means a stronger binding affinity between the ligand and
target. We leverage the negative value of the docking score as reward function (Equation 4).

D.2 Dataset

In this paper, we use ZINC [56] database and CrossDocked2020 [57] dataset. ZINC is a free database
of 250 thousands commercially-available drug-like chemical compounds for virtual screening [56].
We randomly select molecules from ZINC [56] database (around 250 thousands drug-like molecules)
as 0-th generation of the genetic algorithms (RGA, Autogrow 4.0, graph-GA GA+D). Other baseline
methods also use ZINC to either pretrain the models, e.g., JTVAE, REINVENT, RationaleRL or
provide searching database, e.g., screening. We adopt CrossDocked2020 [57] dataset that contains
around 22 million ligand-protein complexes as the training data for pretraining the policy neural
networks, as mentioned in Section 3.3.

Regarding the target proteins, we picked various disease-related proteins, including G-protein cou-
pling receptors (GPCRs) and kinases from DUD-E [53] and the SARS-CoV-2 main protease [54] as
targets. for all the selected target protein, the binding pocket size for all the targets are set to (15.0,
15.0, 15.0). The units of coordinate are Angstrom Å (10−10 m). Detailed descriptions of these targets
are available at https://www.rcsb.org/.

D.3 Evaluation metrics

We leverage the following evaluation metrics to measure the optimization performance:

• Novelty is the fraction of the generated molecules that do not appear in the training set.
• Diversity of generated molecules is defined as the average pairwise Tanimoto distance

between the Morgan fingerprints [30, 32, 36].

diversity = 1− 1

|M|(|M| − 1)

∑
m1,m2∈M

sim(m1,m2), (5)

where M is the set of generated molecules that we want to evaluate. sim(m1,m2) is
the Tanimoto similarity between molecule m1 and m2, where (Tanimoto) Similarity mea-
sures the similarity between the input molecule and generated molecules. It is defined as
sim(X,Y ) =

FP⊤
XFPY

∥FPX∥2∥FPY ∥2
, FPX is the binary Morgan fingerprint vector for the molecule

X . In this paper, it is a 2048-bit binary vector.
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• QED represents a quantitative estimate of drug-likeness. QED score ranges from 0 to 1. It
can be evaluated by the RDKit package (https://www.rdkit.org/).

• SA (Synthetic Accessibility) score measures how hard it is to synthesize a given molecule,
based on a combination of the molecule’s fragments contributions [61]. It is evaluated via
RDKit [60]. The raw SA score ranges from 1 to 10. A higher SA score means the molecule
is hard to be synthesized and is not desirable.

• Run Time. Unlike optimizing some simple oracles such as QED and LogP scores, the
docking simulation need to search 3D molecular conformation docked in the target, which is
computationally expensive. Thus run time is an important metric to measure the efficiency
of the methods.

E Implementation Details

E.1 Software/Hardware Configuration

We implemented RGA using Pytorch 1.10.2, Python 3.7, RDKit v2020.09.1.0 on an Intel Xeon
E5-2690 machine with 256G RAM and NVIDIA Pascal Titan X GPUs.

E.2 Hyperparameter Setup

The neural architectures of policy networks are E(3)-equivariant neural network (ENN) [19]. The
vocabulary set V = {C,N,O, S,H, other}. In ENN, the number of layers is set to 3, i.e., L = 3;
the hidden dimension is set to 100, i.e., d = 100. In Equation 1, MLPe(·),MLPx(·),MLPh(·) are
two-layer MLP in ENN with Swish activation [51] in hidden layer. Summation function is used
as aggregation function to aggregate the last-layer’s node embedding into graph-level embedding.
All the atoms that within the binding site are used as the input of ENN. REINFORCE is used to
implement policy gradient [62, 29]. Adam is utilized as optimizer with learning rate 0.001 for both
crossover and mutation policy networks. The reaction set R is generated via merging two public
reaction libraries: (1) the AutoClickChemRxn set (36 reactions) [47] and (2) RobustRxn set (58
reactions [50]). We use RDKit [60] to perform in silico chemical reaction based on SMARTS reaction
template, then we have |R| = 36 + 58 = 94. In each generation, we generate up to 200 offspring
(100 from crossover and 100 from mutation) and keep 50 most promising (with lowest Vina scores)
ones for the next generation, i.e., K = 50.

E.3 Code Repository

The code repository is uploaded in supplementary material for reproducibility.

F Additional Experiment

F.1 Efficiency Study

As mentioned before, unlike optimizing some simple oracles such as QED and LogP scores, the
docking simulation need to search 3D molecular conformation docked in the target, which is time-
consuming. Thus run time is an important measurement to evaluate the efficiency of the methods.
We report the bar of run time over different targets for all the compared methods in Figure 4. The
run times varies greatly over different methods. Thus, for ease of visualization, we divided all the
methods into two groups. One is slow group, containing 5 methods: screening, GEGL, REINVENT,
RationaleRL and JTVAE, where all the methods take more than 10 hours. Another is fast group (<10
hours), containing 7 methods, MARS, MolDQN, Gen3D, GA+D, GraphGA, Autogrow, and RGA.
We find that both Autogrow and RGA are efficient compared with other methods. This attributes to
the unique design of genetic algorithm (both crossover and mutation operations) and the usage of
filter after GA operators, as described in Section 3.1. RGA is only slightly slower than Autogrow
because it requires additional computation to pretrain/train the policy neural networks.

20

https://www.rdkit.org/


(a) Slower Group (>10 hours)

(b) Fast Group (<10 hours)

Figure 4: Efficiency evaluation measured by run time for all the methods. The unit of run time is
hours. Due to the big variance in run time, for ease of visualization, we divide all the methods into two
groups. One is slow group, containing 5 methods: screening, GEGL, REINVENT, RationaleRL and
JTVAE. Another is fast group, containing 7 methods, MARS, MolDQN, Gen3D, GA+D, GraphGA,
Autogrow, and RGA.

F.2 Pretraining Equivariant neural network

Pretraining equivariant neural network is a crucial step to RGA. We adopt CrossDocked2020 [57]
dataset that contains around 22 million ligand-protein complexes as the training data for pretraining the
policy neural networks, as mentioned in Section 3.3. We split the whole dataset into training/validation
dataset with ratio of 9:1. Each data point is a target-ligand complex and the binding affinity (scalar).
We report the validation loss of ENN on target-ligand binding affinity prediction task. The validation
loss function is root mean square error (RMSE). We find the learning process converges rapidly when
passing 150K data points (within an epoch) in terms of validation RMSE loss.

F.3 Additional Ablation Study

To further understand our model and GA process, we conduct an ablation study to investigate the
impact of each component/strategy to optimization performance. Specifically, we consider the
following four variants of RGA. RGA-pretrain is a variant of RGA that does not pretrain the policy
neural network. RGA-KT (Knowledge Transfer) is a variant of RGA that does not training policy
neural network on different target proteins, i.e., optimizing ligand for one target at a time. RGA-MU
(mutation) is a variant of RGA that does not involve mutation operation in GA. That is, all the ligands
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Figure 5: Learning curve of pretraining Equivariant neural network based on target-ligand binding
affinity prediction. We plot the root-mean-square error (RMSE) loss as a function of number of
passed data. We use early stop strategy to terminate the learning process earlier when the validation
loss would not decrease to save computational resource and avoid overfitting. We found the learning
process would converges when passing 150K data samples (within an epoch), RMSE loss decreases
from more than 8 to less than 1.

Table 3: Ablation studies. Arrows (↑, ↓) indicate the direction of better performance. For each
metric, the best method is underlined. RGA-pretrain is a variant of RGA that does not pretrain the
policy neural network. RGA-KT (Knowledge Transfer) is a variant of RGA that does not training policy
neural network on different target proteins, i.e., optimizing ligand for one target at a time. RGA-MU
(mutation) is a variant of RGA that does not involve mutation operation in GA. That is, all the ligands
are generated via crossover operator. Correspondingly, RGA-CO (crossover) is a variant that does
not use crossover operation in GA, which means no mutation operator. Via comparing the results
with RGA (full) in the first line, we observe that removing either component would cause a drop in
optimization performance (i.e., increase in TOP-100/10/1 scores).

Method TOP-100↓ TOP-10↓ TOP-1↓ Nov↑ Div↑ QED↑ SA↓
RGA (full) -11.867±0.170 -12.564±0.287 -12.869±0.473 100.0±0.0% 0.857±0.020 0.742±0.036 2.473±0.048

RGA - pretrain -11.443±0.219 -12.424±0.386 -12.435±0.654 100.0±0.0% 0.854±0.035 0.750±0.034 2.494±0.043

RGA - KT -11.434±0.169 -12.437±0.354 -12.502±0.603 100.0±0.0% 0.853±0.028 0.738±0.034 2.501±0.050

RGA - MU -10.919±0.166 -11.135±0.362 -11.747±0.455 100.0±0.0% 0.812±0.032 0.702±0.050 2.970±0.048

RGA - CO -9.866±0.169 -10.320±0.296 -10.793±0.501 100.0±0.0% 0.737±0.048 0.748±0.067 2.467±0.034

are generated via crossover operator. Correspondingly, RGA-CO (crossover) is a variant that does
not use crossover operation in GA, which means no mutation operator. The results are reported
in Table 3. We find that removing either component/strategy will cause a drop in optimization
performance (i.e., increase in TOP-100/10/1 scores). Both crossover and mutation are critical to
the optimization performance. Also, both pretraining the policy networks and knowledge transfer
between different target have positive contribution to the performance. The ablation study furtherly
validates the effectiveness of the proposed RGA method.

F.4 Scalability

As mentioned before, the population size in RGA is K. Then we analyze the computational complexity
within each generation. There are two operations, including crossover and mutation operations, as
described in Section 3.3.

For crossover, the first step is to select the first parent molecule, we need to evaluate the probability
over all the molecules in current population, whose complexity is O(K). The second step is to select
the second parent molecule based on the first parent molecule, we need to evaluate the probability
over all the remaining molecules in current population, as shown in Equation (2), whose complexity
is O(K − 1). The complexity of crossover operation is O(K).

On the other hand, for mutation operation, the first step is to select the parent molecule (only
one parent) via evaluating the probability over all the molecules in the current population, i.e.,
p
(1)
mutation(X

parent
mutation|S(t)), whose complexity is O(K). The second step is to select a mutated molecules
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Table 4: Results of hypothesis testing. We conduct hypothesis testing to show the statistical signifi-
cance of our method over other GA-based methods. Specifically, we compare the significance of the
improvement over GA methods (AutoGrow4, Graph-GA, GA+D, GEGL) via running 5 independent
trials with different random seeds and then evaluating p-value. We consider top-100/10/1 scores, the
most important metrics for optimization performance.

p-value on TOP-100 p-value on TOP-10 p-value on TOP-1
RGA v.s. AutoGrow 4 0.002 0.005 0.07
RGA v.s. Graph-GA 0.003 0.010 0.046
RGA v.s. GA+D 1.0e-7 5.0e-5 3e-4
RGA v.s. GEGL 2.5e-4 3.7e-3 5.0e-3

(generated by chemical reaction), as shown in Equation (3). The complexity is O(|R|), where R is
the reaction set (see Table 2). The complexity of mutation operation is O(|R|+K).

To summarize, the complexity of RGA is O(K + |R|). That is, RGA scales linearly in population size
K and the size of the chemical reaction set |R|. As mentioned in Section E.2, |R| = 94, K = 50.
Thus, RGA owns desired scalability and is not computational expensive.

F.5 Significance Studies

In this section, we present the significance studies. Specifically, we conduct the hypothesis testing
to show the statistical significance of our method over the other GA methods. We compare the
significance of the improvement over other GA methods (including AutoGrow4, Graph-GA, GA+D,
and GEGL) via running 5 independent trials with different random seeds and then evaluating the
p-value. We consider the top-100 and top-10 score as the major metrics, which are the most important
metrics for optimization performance. We compare RGA versus AutoGrow 4, Graph-GA and GA+D.
The results (p-value) are shown in Table 4. We find almost all the p-values are less than 0.05 (except
one value), which indicates that the improvements of RGA over other GA methods are statistically
significant.

F.6 Example of the generated ligand

This section shows some examples of the generated ligands with desirable binding affinity for various
target proteins in Figure 6, 7, 8 and 9, respectively. We observe that the generated ligands bind tightly
with the target proteins.

G Additional Discussion on Related Work

Methodology. The molecule generations methods can be divided into two categories. The first
one is deep generative models (DGMs), which leverage the continuous representation to estimate
the data distribution using various kinds of deep neural networks, including variational autoencoder
(VAE) [20, 21], generative adversarial network (GAN) [22, 23], normalizing flow model [24, 63, 25],
energy based model [26] and diffusion model [64], etc. The second one is combinatorial optimization
methods, which directly search the discrete chemical space, including genetic algorithm (GA) [16, 27,
28], reinforcement learning approaches (RL) [29, 30, 31, 32], Bayesian Optimization (BO) [34, 65],
Monte Carlo Tree Search (MCTS) [66, 67, 32] and Markov Chain Monte Carlo (MCMC) [35, 36, 37].
Deep generative models (DGMs) usually require a large amount of data to fit, which impedes their
usage in low data regime. In contrast, combinatorial optimization methods require less training data,
while the trade-off is the need to call the optimization oracles during the exploration in the chemical
space [31, 38, 49, 28, 13].

Among all the machine learning methods, Genetic algorithm (GA) exhibits superior performance
in some standard benchmarks [13, 14, 15]. The key reason is GA’s global assembling strategy.
Specifically, in each generation (iteration), GA maintains a population of molecule candidates (a.k.a.
parents), and conducts the crossover operation between two (random-selected) parent candidates,
which enables relatively large exchanges on molecular sub-graph between molecular graphs. However,
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(a) -12.8 kcal/mol (b) -12.7 kcal/mol (c) -12.7 kcal/mol

(d) -12.7 kcal/mol (e) -12.6 kcal/mol (f) -12.6 kcal/mol

(g) -12.6 kcal/mol (h) -12.6 kcal/mol

Figure 6: Example of ligand poses (generated by RGA) and binding sites of target structures “2rgp”.

GA is leveraging random-walk based mutation and crossover operations [16, 17] and is essentially
based on brute-force trial and error.

On the other hand, Reinforcement learning (RL) methods are good at navigating the discrete space via
prioritizing the promising searching branches and circumventing brute-force search. The current RL-
based methods [29, 30, 31, 32] slightly left behind other state-of-the-art combinatorial optimization
methods [38, 14]. The main reason is that current RL based molecule optimization approaches are
based on auto-regressive assembling strategy, i.e., growing molecules iteratively via adding a basic
building block one time, where the building block can be either a token in SMILES representation [29]
or a substructure in molecular graph representation [30, 31, 32]. Such assembling strategy are
essentially local search methods, which hinders the algorithm’s ability to overcome the rough
optimization landscape (or energy barrier) and is easy to be stuck in the local optimum [68, 69].
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(a) -13.4 kcal/mol (b) -13.4 kcal/mol (c) -13.4 kcal/mol

(d) -13.4 kcal/mol (e) -13.3 kcal/mol (f) -13.3 kcal/mol

(g) -13.3 kcal/mol (h) -13.3 kcal/mol (i) -13.3 kcal/mol

Figure 7: Example of ligand poses (generated by RGA) and binding sites of target structures “3ny8”.

Discussion. Among all the machine learning methods, molecular graph level genetic algorithm (GA)
exhibits state-of-the-art performance in some standard molecule optimization benchmarks [13, 14, 15].
The key reason is GA’s assembling manner. Specifically, in each generation (iteration), GA maintains
a population of possible candidates (a.k.a. parents), and conducts the crossover operation between
two candidates to generate new offspring, which enables thorough exploration to the chemical space.
However, there is still improvement space for GA. GA are leveraging random-walk based mutation
and crossover operations [16] and suffers from brute-force trial and error strategy.
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(a) -13.1 kcal/mol (b) -13.1 kcal/mol (c) -13.1 kcal/mol

(d) -13.0 kcal/mol (e) -12.9 kcal/mol (f) -12.8 kcal/mol

Figure 8: Example of ligand poses (generated by RGA) and binding sites of target structures “1iep”.

On the other hand, reinforcement learning approaches are good at navigating the discrete space via
prioritizing the promising decisions that are worth investigating, for example, AlphaGo successfully
applied RL to defeat a professional human Go player [70]. However, the current RL based drug
design methods [29, 30, 31] slightly left behind other state-of-the-art combinatorial optimization
methods. The main reason lies at the inferior assembling strategy, which grows molecule in an
auto-regressive fashion. It is hard for this kind of local search strategy to overcome the barrier of the
objective, so it is easy to be trapped into the local optimum.

Deep learning methods can also enhance genetic algorithm. Due to the random selection used in
genetic algorithm, it is challenging to apply deep learning methods in the generation of new candidates
(molecules in this paper). Deep learning can be used to compose fitness evaluation to select the
offspring. For example, GA+D [27] leverages deep neural network as a discriminator to measure
the drug’s proximity to the training data, which is incorporated as a scorer in fitness evaluation. [71]
train a deep neural network-based property predictor and leverage it to enhance the evolutionary
algorithm.

In this paper, we attempt to enhance genetic algorithm using reinforcement learning technique.
Specifically, we propose Reinforced Genetic Algorithm (RGA), which inherits the assembling manner
from genetic algorithm and use reinforcement learning to guide the search over the chemical space.
[33] also combine RL and GA, which uses LSTM (guided by RL agent) to imitate GA process,
however, it is unable to inherit the GA’s flexible assembling manner due to the auto-regressive essence
of LSTM.
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(a) -12.4 kcal/mol (b) -12.4 kcal/mol (c) -12.3 kcal/mol

(d) -12.3 kcal/mol (e) -12.3 kcal/mol (f) -12.2 kcal/mol

(g) -12.2 kcal/mol (h) -12.1 kcal/mol (i) -12.1 kcal/mol

Figure 9: Example of ligand poses (generated by RGA) and binding sites of target structures “4unn”.
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