
8 Supplementary Material

8.1 Details and Proofs for the Proposed EOC

8.1.1 Calculation of T

Given data D, disaggregate Y into M equal-size bins, and the m-th bin is denoted as Bm. Let
�m = |Bm| denote the number of samples in Bm. For distribution p 2 �(V ⇥A⇥ Y) conditioned
on y in Bm, pV,A|ym

, pV |ym
and pA|ym

are denoted as the joint distribution of (V,A), marginal
distribution of V and A, respectively. Let Um denote an unbiased estimator of the L

2
2 distance

between pV |ym
pA|ym

and pV,A|ym
, i.e.,
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2
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(pV |ym

(v)pA|ym
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(v, a))2. (2)

As detailed in Section 5.1 of [33] and Algorithm 4 of [32], Um could be calculated through U-statistic.
Specifically, in [33], they consider designing kernel as �ij(av) = I(Ai = a, Vi = v) � I(Ai =
a)I(Vi = v), for i and j-th sample in Dt. Next, they take 4 distinct i, j, k, l-th observations from
Dt, and calculate the kernel function hijkl =

1
4!

P
⇡2[4!]

P
a2A,v2V �⇡1⇡2(av)�⇡3⇡4(av), where ⇡

is a permutation of i, j, k, l. Afterward, the kernel function is calculated on every 4 distinct samples
from Dt. This process is utilized to construct the U-statistic: U(Dt) :=

1

(Zk)
P

i<j<k<l
hijkl, where

Z = |Dt|. This U-statistic is an unbiased estimator of L2
2 distance in 2. Poisson sampling is also

introduced as an effective technique for reducing computation expenses while maintaining the desired
unbiased properties. With this technique, they suggest to calculate U(Dt) with only Zp ⇠ Poi(Z/2)
randomly selected samples. However, the algorithm based on the U-statistic still exhibits a time
complexity of O(�m!) in each bin and the expectation of sample number in each bin E[�m] = Z

3
5 /2.

The total time complexity for each run is at least O((Z
3
5 /2)! · Z 2

5 ), which is too computationally
expensive for large datasets.

As an alternative to the U-statistic, we turn to the V-statistic in [57, 58], which could also serve as an
unbiased estimator for independence distance. According to the Parseval-Plancherel formula, the
Fourier transform of a power of a Euclidean distance, i.e., L2

2 distance, is also a (constant multiple
of a) power of the same Euclidean distance. Therefore, we could calculate the energy distance of
independence, which is a weighted L

2
2 distance between the characteristic function of V,A|ym and

the product of marginal characteristic functions of V |ym and A|ym. Formally, let f̂· denote the
characteristic function of any variable, the energy distance of independence between V |ym and A|ym
is then defined as
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|2w(a, v)dadv, where

w(a, v) is a weight function. According to [58], this distance is a scaled L
2
2 distance multiplied by

a constant, which is only related to the dimensions of calculated variables. Since we only utilize
distance for comparison and evaluation, the constant could be ignored. Adopting the similar Poisson
sampling strategy, the V-statistic of energy distance in a bin of �m samples could be computed in
O(�2

m
). Specifically, in each bin, we first compute two �m ⇥ �m distance matrices Ma, Mv. Ma

i,j

and M
v

i,j
, the elements i-th row and j-th column denotes the distance between i-th and j-th sample

in A and V , respectively. Then an unbiased estimator of independence distance in the bin could
be calculated as 1
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)), where Mv

·,·, Mv

i,· and M
v

·,j denotes the row i sum, row j

sum and grand sum, respectively of the distance matrix M
v . Notably, though the unbiased estimators

come with a faithful expectation, we suggest running the evaluation repeatedly (e.g., 10 times) to
reduce the variance of estimators.

Regardless of which statistic is employed for estimation, each Um can be considered a local test of
independence within the bin Bm. Since �m must be larger than 4 to achieve an unbiased estimator, we
eventually obtain the test statistic T =

P
m

(�m > 4)�mUm, and employ it as one of the evaluation
metrics.
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8.1.2 Proofs of lemma 3.2

Assumption 2 (Lipschitizness). For any distribution p 2 �(V ⇥ A ⇥ Y), we claim it to sat-
isfy Lipschitizness if for all y, y

0 2 Y , there exists a Lipschitizness constant L such that��pA,V |Y=y � pA,V |Y=y0
��
1
 L|y � y

0|, where pA,V |Y=y denotes the conditional distribution of
A, V |Y = y under p.

Proof of (1). The first part of the lemma gives an upper bound of E(T ) when p satisfies EOC. Assume
the smoothness conditions as defined in [33], let L denote the Lipschitzness constant.

Define qav(m) =
R
Bm

pA,V |Y (a,v|y)dPY (y)

P(Y 2Bm) =
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pA,V |Y (a, v|y)dP̃Y (y), where pA,V |Y (a, v|y) is
the conditional distribution of A, V |Y = y, and PY (y) is the distribution of Y that is absolutely
continuous regarding the Lebesgue measure, and dP̃Y (y) =

dPY (y)
P(Y 2Bm) is the conditional distribution

of Y |Y 2 Bm. Further define qa·(m) =
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By the law of total expectation, we have E[T ] = E[E[T |�]], where � = (�m)m2[M ].
Since E[Um|�m] =
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(qav(m) � qa·(m)q·y(m)) is independent of �m, and T =P
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Further,
P
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d2 .

Proof of (2). The second part of the lemma gives a lower bound of E[T ] when dTV (p, p0) = ✏. Let
pm = P(Ym). Take two values y, y0 2 Ym, by triangle inequality and Lipschitzness assumption, we
can get the continuity of
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Assume that each Bm has sufficient samples such that �m > 4, E[T ] = E[E[T ]|�] =P
m2[M ] E[Um|�m]E[�m (�m > 4)] =
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8.2 Details and Proofs for the Proposed Approach BFQR (Section 4)

8.2.1 Pseudocode for Algorithm 1

The pseudocode for the main component of BFQR is detailed in Algorithm 1.

Algorithm 1 Binned Fair Quantile Regression (BFQR)
Input: Training Data Dtr , Calibration Data Dc, Test Data Xt with sensitive attributes At, Desired

error rate ↵.
1: Train quantile regression models q̂↵lo and q̂↵hi on Dtr, ↵lo = ↵/2 and ↵hi = 1� ↵/2.
2: for all i 2 Dc do

3: Fit q̂↵lo and q̂↵hi on Dc, get prediction intervals Ĉ(Xi) = [q̂↵lo(Xi), q̂↵hi(Xi)].
4: Compute conformity scores R(Xi, Yi) = max{q̂↵lo(Xi)� Yi, Yi � q̂↵hi(Xi)}.
5: end for

6: Divide [Ymin, Ymax] into M equal-mass bins, B1, ..., BM .
7: Call Algorithm 2 to optimized �m, m 2 {1, . . . ,M}.
8: for all m 2 {1, . . . ,M} do

9: for all a 2 A do

10: Compute quantile value Ga,m(�m).
11: end for

12: end for

13: for all a 2 A do

14: for all i 2 Dc(a) = {i : i 2 Dc, Ai = a} do

15: for all m 2 {1, . . . ,M} do

16: Assume the true label Yi 2 Bm, compute corresponding prediction interval
Cm(Xi) = Bm \ [q̂↵lo(Xi)�Ga,m(�m), q̂↵hi(Xi) +Ga,m(�m)].

17: end for

18: C(Xi) =
S

m
Cm(Xi)

19: end for

20: end for

Output: Conformalized Prediction Interval C(Xt).

8.2.2 Proofs

Proof of Theorem 4.1. According to Assumption 1 about exchangeability, for any sensitive group
a and calibration bin Bm, the conformity scores S for all samples in this group Dc(a,m) are
exchangeable. Adding the score of new test data within the same group would not change the
distribution of the scores in this group, then exchangeability still holds. With the additional assumption
that conformity scores are almost surely distinct [20, 28, 59, 35, 11], we get the following:

�m  P{Sn+1  Ga,m(�m)|An+1 = a, Yn+1 2 Bm}
=P{Yn+1 2 C(Xn+1)|An+1 = a, Yn+1 2 Bm}
�m + 1/(|Dc(a,m)|+ 1).

Hence, �m  E[Yn+1 2 C(Xn+1)|An+1 = a, Yn+1 2 Bm]  �m + 1/(|Dc(a,m)| + 1). In the
worst case, there exists a group such that the expectation equals �m whilst the expectation for the
group with the least samples equals �m + 1/(|Dc(a,m)| + 1). Therefore, the expectation of max
coverage gap inside the m-th bin is upper bounded by maxa{1/(|Dc(a,m)|+ 1)}.

Proof of Theorem 4.2. According to the law of total probability and Theorem 4.1, we have

P{Yn+1 2 C(Xn+1)}

=
X

a

X

m

P{Yn+1 2 C(Xn+1)|An+1 = a, Yn+1 2 Bm}P{An+1 = a, Yn+1 2 Bm}

�
X

a

X

m

�mP{An+1 = a, Yn+1 2 Bm} = �m.
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8.3 Details for the Constrained Optimization (Section 4.3)

8.3.1 Detailed Methods

A feasible solution to Equation (1) can be quickly found. Recall split conformal prediction introduced
in Section 2, Q̂1�↵(S,Dc) denotes the 1� ↵ quantile value of scores in Dc. Adjust Ĉ(Xi), Xi 2 Dc

by Q̂1�↵(S,Dc). For example, let CS(Xi) = [q̂↵lo(Xi)� Q̂1�↵(S,Dc), q̂↵hi(Xi) + Q̂1�↵(S,Dc)],
then C

S(Xi), Xi 2 Dc naturally has coverage of 1� ↵. Compute the coverage rate �m of adjusted
calibration prediction sets in each bin Bm, we get a feasible solution which we use as a starting point
of the optimization process.

For any i, let m�
i

and m
+
i

denote the number of the first bin and last bin that has a non-null
intersection Cm(Xi). In the relaxed dummy prediction set Cd(Xi), Cm(Xi) are substituted by Bm

for m�
i

< m < m
+
i

. Naturally, the width of continuous prediction interval Cd(Xi) is an upper
bound of the original C(Xi), as all the possible disjoint gaps are filled.

Denote W to be the objective function in Eq. 1, i.e., the mean width of the prediction intervals on test
data. Using the dummy prediction interval Cd(Xi) as a bridge, and let WS =

P
i2|Dt| |C

S(Xi)|/|Dt|
denote the mean width of prediction intervals at the starting point, we provide an upper bound of the
mean width of our prediction intervals W :

Proposition 1. W W
S +

P
i2|Dt| [GAi,m

�
i
(�

m
�
i
) +G

Ai,m
+
i
(�

m
+
i
)� 2Q̂1�↵(S,Dc(a))]/|Dt|.

Though easier to compute, the RHS of 1 is still a combination of quantile functions, and the number
of first and last intersecting bins m�

i
and m

+
i

are related with GAi,m(�m), meaning they vary with
the change of �m. Therefore, we propose several good properties that allow us to approximate
subgradients of quantile functions. Denote Qa,m(�) as the underlying distribution for the quantile
function of scores on the calibration data Dc(a,m), which is what Ga,m(�) estimates for.

Lemma 8.1. For an exchangeable sequence of random variables, almost surely, the difference
between the empirical and the predictive distribution functions converges to zero uniformly. [40]

Proposition 2. For any 0 < � < 1, there exists a ✏ such that |Qa,m(�) �Ga,m(�)|  ✏. Then for
any 0 < �1 < �2 < 1, the maximal absolute difference between the slope of true quantile function
ta,m = Qa,m(�1)�Qa,m(�2)

�1��2
and the slope of empirical quantile functiont̂a,m = Ga,m(�1)�Ga,m(�2)

�1��2
is

upper bounded by 2✏
�1��2

. This difference converges to 0 almost surely when |Dc(a,m)|!1.

The dummy prediction interval Cd(Xi) also exhibits some properties that can be further utilized to
facilitate computation. First, any change of �m for bins whose m is between m

� and m
+
i

would not
change C

d(Xi). Second, for any increase in �m, the length of the intersection |Cm(Xi)| in bin Bm

for any Xi can not decrease, there are three cases: 1) |Cm(Xi)| stays at 0 or Y +
m
� Y

�
m

, meaning still
no intersection between prediction interval [q̂↵lo(Xi)�Ga,m(�m), q̂↵hi(Xi) +Ga,m(�m)] and bin
Bm, or the prediction interval are all covered in bin, therefore, the true change in interval lengths is
0; 2) |Cm(Xi)| increases from 0 to any number within (0, Y +

m
� Y

�
m
), or from any number within

(0, Y +
m
� Y

�
m
) to all covered in bin; 3) |Cm(Xi)| increases from one number to another within

(0, Y +
m
� Y

�
m
). For the first two cases, our estimation Ga,m(�1)�Ga,m(�2) exceeds the true value,

and for the last one, our estimation is exact. A similar property holds for the decrease in �m.

According to the above properties, we maintain a dictionary D that stores the number of data that
have a non-full intersection in each bin, denoted as um, which includes case 3 and part of case 2.
We also deliberately select steps at each iteration at a small value that not exceeds 1/|Dc(a,m)|,
and we allow estimation discrepancies in the algorithm, then case 2 has very little influence that
could be ignored. Therefore, we use grad

+
m

= um · t̂+
m
/|Dm| and grad

�
m

= um · t̂�
m
/|Dm|as the

approximated increasing and decreasing gradient for each bin Bm.

8.3.2 Pseudocode for Algorithm 2

The pseudocode for the constrained optimization is detailed in Algorithm 2.
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Algorithm 2 Robust Optimization Method with EOC Constraint

Input: Bins B1, ..., BM , Prediction intervals Ĉ(Xi) = [q̂↵lo(Xi), q̂↵hi(Xi)] and Scores R(Xi, Yi)
for all i 2 Dc, Desired coverage rate 1� ↵, Max iteration round R, Allowed Estimation Error ✏.

1: Compute Q̂1�↵(S,Dc) as the 1� ↵ quantile of {R(Xi, Yi), i 2 Dc}.
2: Compute C̃(Xi) = [q̂↵lo(Xi)� Q̂1�↵(S,Dc), q̂↵hi(Xi) + Q̂1�↵(S,Dc)] for all i 2 Dc.
3: for all m 2 {1, . . . ,M} do

4: Compute the coverage rate of C̃(Xi) for i 2 Dc(m) as initial value �
0
m

.
5: end for

6: Initiate dictionary D that stores the number of data that have a non-full intersection in each bin
with initial values {�0

m
,m 2 1, . . . ,M}, and r  0.

7: Initiate Array A of shape 2 ⇤A ⇤M that stores the max possible step.
8: while r < R do

9: for all m 2 {1, . . . ,M} do

10: Compute grad
+
m

and grad
�
m

, along with max step ⌘
+
m

and ⌘
�
m

.
11: end for

12: m
+
min
 argminm : grad+

m
, m+

max
 argmaxm : grad�

m
.

13: ⌘
r = min{⌘+

m
, ⌘

�
m
}

14: if m
+
min

+ 2✏/⌘r > m
�
max

then

15: Break.
16: end if

17: Update �
r+1
m

+
min

 �
r

m
+
min

+ ⌘
r, and �

r+1
m

�
max
 �

r

m
�
max
� ⌘

r.
18: Update dictionary D and Array A.
19: end while

Output: Optimal coverage rate �
r
m

for each bin m.

8.4 Experimental Details

Our proposed algorithm is highly computationally efficient. All experiments are conducted on Google
Colab with only CPUs.

8.4.1 Synthetic Data Generation Process

The data generation process for the synthetic experiments is as follows:

Y =

8
>>>>>>><

>>>>>>>:

(A+
10X

i=1

Xi + 10✏1)✏3, A = 0, 0  ✏4  0.1,

10A✏2, A = 1, 0.1 < ✏4  0.3,

(A+
10X

i=1

Xi + 10✏1)✏3, A = 2, 0.3 < ✏4  1,

(6)

where ✏1, ✏2, ✏3, ✏4 ⇠ N (0, 1), Xi ⇠ exp(1).

8.4.2 Convergence Analysis of BFQR

We experiment on the Adult dataset to analyze the convergence of our algorithm with five different
random seeds for data splitting. The convergence process of the width of prediction intervals (W ) is
depicted by solid lines, while the convergence of the dummy upper bound with continuous prediction
intervals (WS) is represented by dotted lines, as shown in Figure 4.
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Figure 4: Converging process of prediction interval width. The number in the legend denotes the seed
selected for splitting data. The dotted lines with ’*’ in the legend show the process for continuous
prediction intervals, while the solid lines show the process for disjoint prediction intervals.

The convergence analysis results demonstrate that both W
S and W exhibit similar convergence

trends. This indicates that optimizing W
S leads to a reduction in W , thereby validating Proposition

1. Furthermore, the continuous decrease in W highlights the efficiency and effectiveness of the
multiple approximation techniques used in Sec. 8.3.1. These techniques enable faster computation
and preserve the information of true gradients.
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