
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: One-Shot Sequential Federated
Learning for Non-IID Data by Enhancing Local Model Diversity

Anonymous Authors

1 EXPERIMENTAL SETUP
Adaptation Details In an effort to ensure a fair comparison, we
adapted the decentralized algorithms DFedAvgM, DFedSAM, and
FedSeq to the one-shot setting, and adjusted these methods to select
all clients for both training and communication to fit the one-shot
setting. This modification means we operate these methods for only
one round of communication and select all clients for training and
model distribution instead of just a portion, ensuring that all the
clients’ local data are utilized.
Implementation Details In all methods, for local model training,
we select the model with the highest validation accuracy as the
final model. We employed the Adam optimizer (excluding DFed-
SAM, which utilized the SAM optimizer) with a learning rate of
𝜂 = 5×10−5 applicable for the CIFAR-10, PACS, and Tiny-ImageNet
datasets. Due to the relatively smaller size of the Office-Caltech-10
dataset, we adopted the Adam optimizer with a learning rate of
𝜂 = 0.001. For the MA-Echo method, we used the learning rate of
0.01 for all datasets as specified in their paper. In all cases, the Adam
optimizer’s weight decay was fixed at 1 × 10−4. As for the other
hyperparameters of the baselines, we adhered to the values sug-
gested in their papers, which were kept constant and chosen based
on optimal validation accuracy. We applied the optimal hyperpa-
rameters obtained through the grid-search strategy for our method.
Specifically, we set 𝐸w to 30 for the CIFAR-10 dataset, 20 for all
other datasets; we set 𝑆 to 5 for the CIFAR-10 dataset, 10 for the
PACS and Office-Caltech-10 dataset, and 3 for the Tiny-ImageNet
dataset; we set 𝛼 to 0.06 for the CIFAR-10 dataset, 1 for the PACS
and Tiny-ImageNet dataset, 0.001 for the Office-Caltech-10 dataset;
we set 𝛽 to 1 for the CIFAR-10, PACS and Tiny-ImageNet dataset,
0.001 for the Office-Caltech-10 dataset. During the local training
phase of every client, in addition to utilizing scale hyperparameters
𝛼 and 𝛽 , our method also included control over the magnitudes
of the distance parameters 𝑑1 and 𝑑2 to one order of magnitude
smaller than the original loss ℓ , which was achieved through the
logarithmic scaling. For instance, assuming the initial loss ℓ is 6.02
and the original distance𝑑1 is 45, wewould first normalize𝑑1 to 0.45.
Following this, we multiply this normalized distance by the scaling
factor 𝛼 and subsequently integrate it into the comprehensive loss
function L. This calibration ensures the original loss maintains
primacy in influencing the training process, while the distance reg-
ularization terms play an ancillary role, thereby preventing their
dominance over the central objective.
Environment All our experiments were conducted on a single
machine with 1TB RAM and 256-core AMD EPYC 7742 64-Core
Processor @ 3.4GHz CPU. The GPU we used is NVIDIA A100 SXM4
with 40GB memory. The software environment settings are: Python
3.7.4, PyTorch 1.13.1 with CUDA 11.6 on Ubuntu 20.04.4 LTS. All
the experimental results are the average over three trials.

Algorithm 1: Few-Shot Adaptation of FedELMY

Input: Local datasets D = {𝐷𝑖 }𝑁𝑖=1, warm-up epoch 𝐸w,
learning rate 𝜂, number of local iterations 𝐸𝑙𝑜𝑐𝑎𝑙 ,
model number to be trained per client 𝑆 , scale
hyperparameters 𝛼 , 𝛽

Output: The final model𝑚𝑓 𝑖𝑛𝑎𝑙

1 Initialization: For client 1, warm up a randomly initialized
model𝑚0

𝑎𝑣𝑔 for 𝐸w epochs
2 for shot 𝑟 = 1 : 𝑇 do
3 for client 𝑖 = 1 : 𝑁 do
4 Receives𝑚𝑖−1

𝑎𝑣𝑔 from client 𝑖 − 1 (for client 1 from
shot 𝑟 > 1, receives from client 𝑁 )

5 // Initialize model poolM𝑖 for client 𝑖
6 M𝑖 = {𝑚𝑖

0} with𝑚
𝑖
0 ←𝑚𝑖−1

𝑎𝑣𝑔

7 for 𝑗 = 1 : 𝑆 do
8 // Initialize𝑚𝑖

𝑗

9 𝑚𝑖
𝑗
← 1
|M𝑖 |

∑ |M𝑖 |−1
𝑡=0 𝑚𝑖

𝑡

10 // Local training for𝑚𝑖
𝑗

11 for 𝑘 = 1 : 𝐸𝑙𝑜𝑐𝑎𝑙 do
12 L(𝑚𝑖

𝑗
) ← ℓ (𝑚𝑖

𝑗
;𝐷𝑖 ) − 𝛼 · 𝑑1 + 𝛽 · 𝑑2

13 𝑚𝑖
𝑗
←𝑚𝑖

𝑗
− 𝜂∇𝑚L(𝑚𝑖

𝑗
)

14 end
15 M𝑖 ←M𝑖 ∪ {𝑚𝑖

𝑗
}

16 end

17 𝑚𝑖
𝑎𝑣𝑔 ← 1

|M𝑖 |
∑ |M𝑖 |−1
𝑡=0 𝑚𝑖

𝑡

18 Sends𝑚𝑖
𝑎𝑣𝑔 to client 𝑖 + 1 (for client 𝑁 , sends to

client 1)
19 end
20 end
21 // For the final client 𝑖 = 𝑁 , outputs model𝑚𝑓 𝑖𝑛𝑎𝑙

22 𝑚𝑓 𝑖𝑛𝑎𝑙 ←𝑚𝑁
𝑎𝑣𝑔

2 FEW-SHOT ADAPTATION
Alg. 1 illustrates the implementation details and overview of our
method in few-shot scenarios. In this scenario, after the local train-
ing of the final client 𝑁 , it will send its averaged model𝑚𝑁

𝑎𝑣𝑔 to the
first client 1 to start a new cycle of model training, this process will
be repeated for multiple rounds. After completing 𝑟 = 𝑇 iterations,
we regard𝑚𝑁

𝑎𝑣𝑔 as the final global model𝑚𝑓 𝑖𝑛𝑎𝑙 .

3 ADAPTATION TO DECENTRALIZED
PARALLEL FEDERATED LEARNING

Our method can also be adapted to the decentralized Parallel Feder-
ated Learning (PFL) setting. Alg. 2 demonstrates the implementation
details of our method under the decentralized PFL environment.
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Algorithm 2: FedELMY for Decentralized PFL

Input: Local datasets D = {𝐷𝑖 }𝑁𝑖=1, warm-up epoch 𝐸w,
learning rate 𝜂, number of local iterations 𝐸𝑙𝑜𝑐𝑎𝑙 ,
model number to be trained per client 𝑆 , scale
hyperparameters 𝛼 , 𝛽

Output: The final model𝑚𝑓 𝑖𝑛𝑎𝑙

1 Initialization: For every client 𝑖 , warm up a randomly
initialized model𝑚𝑖

0 for 𝐸w epochs
2 for client 𝑖 = 1 : 𝑁 in parallel do
3 // Initialize model poolM𝑖 for client 𝑖
4 M𝑖 = {𝑚𝑖

0}
5 for 𝑗 = 1 : 𝑆 do
6 // Initialize𝑚𝑖

𝑗

7 𝑚𝑖
𝑗
← 1
|M𝑖 |

∑ |M𝑖 |−1
𝑡=0 𝑚𝑖

𝑡

8 // Local training for𝑚𝑖
𝑗

9 for 𝑘 = 1 : 𝐸𝑙𝑜𝑐𝑎𝑙 do
10 L(𝑚𝑖

𝑗
) ← ℓ (𝑚𝑖

𝑗
;𝐷𝑖 ) − 𝛼 · 𝑑1 + 𝛽 · 𝑑2

11 𝑚𝑖
𝑗
←𝑚𝑖

𝑗
− 𝜂∇𝑚L(𝑚𝑖

𝑗
)

12 end
13 M𝑖 ←M𝑖 ∪ {𝑚𝑖

𝑗
}

14 end

15 𝑚𝑖
𝑎𝑣𝑔 ← 1

|M𝑖 |
∑ |M𝑖 |−1
𝑡=0 𝑚𝑖

𝑡

16 Sends𝑚𝑖
𝑎𝑣𝑔 to all other clients 𝑗 = 1 : 𝑁 , 𝑗 ≠ 𝑖

17 end
18 // For any client 𝑖 = 1 : 𝑁 , output model𝑚𝑓 𝑖𝑛𝑎𝑙

19 𝑚𝑓 𝑖𝑛𝑎𝑙 ← 1
𝑁

∑𝑁
𝑖=1𝑚

𝑖
𝑎𝑣𝑔

As we can see, under this setting, clients will train their models
concurrently (in parallel). During the training process, each client
begins with a randomly initialized model𝑚𝑖

0. Upon completion of
local training, each client will simultaneously transmit the locally
averaged model𝑚𝑖

𝑎𝑣𝑔 to all other clients. Once a client 𝑖 receives all
models from every neighbor, it will calculate an aggregated model
by averaging its own averaged model 𝑚𝑖

𝑎𝑣𝑔 with those received
averaged models as the final model𝑚𝑓 𝑖𝑛𝑎𝑙 . Please note that our
framework can also be adjusted for a centralized PFL environment
with a central server. In this setup, each client will send its averaged
model𝑚𝑖

𝑎𝑣𝑔 to the central server. The overall performance will be
consistent with that of the decentralized PFL adaptation since the
server will finally average all models in a manner identical to the
decentralized setting. Experimental results of such an adaptation
are shown in Sec. 4.

4 ADDITIONAL EXPERIMENTS
In the remaining parts, unless otherwise specified, we set the local
training epoch 𝐸𝑙𝑜𝑐𝑎𝑙 to 200, use the ResNet-18 model structure and
follow the Dirichlet distribution 𝐷𝑖𝑟 (0.5) for the label-skew tasks
in our experiments.

4.1 Comparison on more datasets. We compare our method to other
baselines on four more public datasets, including both label-skew
and domain-shift datasets to enrich our experimental results. As

Table 1: Test accuracy (%) comparison onmore public datasets,
including both label-skew and domain-shift datasets.

Distrubution Label-Skew Domain-Shift

Dataset MNIST SVHN Office31 Office-
Home

DFedAvgM 11.35±4.01 18.60±5.66 3.47±1.11 1.71±0.23
DFedSAM 12.53±3.93 22.97±4.98 3.49±1.29 1.25±0.32
FedOV 73.10±0.33 37.47±1.48 3.39±0.46 2.31±0.15
DENSE 95.88±1.59 73.76±1.25 3.15±0.58 1.68±0.17
MetaFed 98.07±0.39 76.66±1.78 2.97±0.43 2.40±0.50
FedSeq 98.31±0.65 76.18±2.45 3.46±0.22 2.47±0.29

FedELMY 98.91±0.23 79.55±4.12 3.57±0.09 2.70±0.13

(a) Effect of warm-up epoch 𝐸w. (b) Effect of model quantity 𝑆 .

(c) Effect of scale parameter 𝛼 . (d) Effect of scale parameter 𝛽 .

Figure 1: Grid search results for PACS dataset to investigate
the sensitivity of our method to different hyperparameters.

shown in Table 1, our method consistently outperforms all other
baselines on both label-skew and domain-shift scenarios, which
further validates the effectiveness of our approach.

4.2 Hyperparameter sensitivity. We investigate the sensitivity of
our method to different choices of hyperparameters for the PACS
dataset as a supplement, as shown in Fig. 1. The findings show
that our method maintains consistent robustness irrespective of the
search strategies implemented, as observed across all four evaluated
hyperparameters (when 𝑆 grew to around 10, the performance
started to become stable). Such evidence underscores the method’s
limited reliance on hyperparameter selection.

4.3 Impact of computation cost. We show another experiment about
the effect of different computation costs on the PACS dataset with
Resnet-18 structure. As we can see from Fig. 2, our method can still
get the best performance under different computation cost settings,
which validates the efficacy of our model training procedures by
the diversity-enhanced mechanism.

4.4 Impact of client numbers.We assessed the performance of vari-
ous methods across all datasets by changing the number of clients



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: One-Shot Sequential Federated Learning for Non-IID Data by Enhancing Local Model Diversity ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 2: Test accuracy (%) comparison of our FedELMY method to other baselines on different numbers of clients 𝑁 . For the
domain-shift tasks like the PACS dataset, the number of clients 𝑁 = 8means we split the whole dataset into 8 parts and allocate
them to the clients following the order of “Photo (client 1)→ Art-Painting (client 2)→ Cartoon (client 3)→ Sketch (client 4)→
Photo (client 5)→ Art-Painting (client 6)→ Cartoon (client 7)→ Sketch (client 8)" for subsequent training.

Distribution Label-Skew Domain-Shift
Dataset CIFAR-10 Tiny-ImageNet PACS Office-Caltech-10

𝑁 5 20 50 100 5 20 50 100 8 20 40 8 20 40
DFedAvgM 21.27 18.22 19.50 24.48 2.64 1.96 1.99 3.09 17.55 16.37 16.62 10.65 9.73 8.94
DFedSAM 30.62 18.75 10.00 10.01 4.34 2.67 0.64 0.51 16.56 16.48 16.58 14.88 11.58 11.52
FedOV 41.49 30.93 31.93 38.42 1.33 1.23 1.11 1.08 18.59 17.73 17.32 15.78 10.56 9.34
DENSE 67.54 52.77 48.38 19.04 3.88 3.03 3.12 3.01 19.18 9.24 14.53 20.72 9.52 11.07
MetaFed 72.53 57.73 47.47 32.13 31.44 20.46 16.16 13.04 27.33 20.35 16.76 19.43 11.33 11.45
FedSeq 73.84 64.05 53.62 35.82 31.97 23.38 14.92 15.27 33.01 17.29 12.20 18.40 12.23 9.78

FedELMY 80.99 68.18 64.31 40.01 38.43 29.52 19.93 20.83 36.10 25.19 23.60 24.45 12.48 12.21

Figure 2: Test accuracy comparison with different computa-
tion costs on PACS dataset.

Table 3: Test accuracy (%) comparison of our FedELMY
method to other baselines with the CNN model structure.

Dataset CIFAR-10 Tiny-
ImageNet PACS Office-

Caltech-10
DFedAvgM 15.08 3.56 20.56 22.84
DFedSAM 13.25 0.49 15.79 9.20
FedOV 53.49 0.69 12.17 22.65
DENSE 61.42 6.72 27.16 34.88
MetaFed 56.11 6.68 28.46 29.99
FedSeq 66.08 14.49 38.36 38.22

FedELMY 69.49 17.05 39.89 39.77

𝑁 , as shown in Table 2. It is evident that there is a general trend
toward diminishing accuracy for all methods as the client num-
ber 𝑁 increases, aligning with findings reported in other literature
on traditional federated learning. However, it is noteworthy that
despite the influence of client quantity on one-shot federated learn-
ing, our approach consistently surpasses other baseline methods in
performance. To conclude, these experiments consistently confirm
the effectiveness and robustness of our proposed method to deal
with one-shot sequential federated learning.

Table 4: Test accuracy (%) comparison of FedELMY to other
baselines for different Dirichlet distributions.

Dataset CIFAR-10 Tiny-ImageNet
𝐷𝑖𝑟 (·) 0.1 0.3 0.5 0.1 0.3 0.5

DFedAvgM 10.33 16.14 18.50 1.07 1.68 2.04
DFedSAM 15.62 21.84 19.48 1.74 2.80 3.41
FedOV 25.92 31.93 45.69 0.94 1.23 1.59
DENSE 26.53 61.73 64.33 1.94 2.37 1.48
MetaFed 27.18 57.24 71.29 9.96 19.45 24.53
FedSeq 27.41 57.91 73.54 15.00 22.23 24.74

FedELMY 29.13 66.32 80.08 16.76 26.85 30.49

4.5 Impact of model structure. To evaluate the scalability of our
approach, we modified the model structure to a three-layer convo-
lutional neural network (CNN) and replicated the corresponding
experiments across all datasets. The results of these tests, which
compare the test accuracy of our method to various baseline meth-
ods under different scenarios, are presented in Table 3, consistent
with the primary analyses reported in the main paper. These find-
ings affirm the robustness and scalability of our proposed method.

4.6 Impact of data distribution. To investigate the label-skew scenar-
ios using the CIFAR-10 and Tiny-ImageNet datasets, we performed
experiments across varying levels of skew by manipulating the
Dirichlet distribution, denoted as 𝐷𝑖𝑟 (·). The results, detailed in
Table 4, reveal that our approach outperforms other competing
methods in all scenarios, which demonstrates considerable advan-
tages of our method, particularly in terms of scalability and privacy
preservation, marking it as a more robust solution in these contexts.

4.7 PFL Adaptation. Although our method is not exclusively de-
signed for PFL, we have nevertheless adjusted our algorithm to
fit the decentralized PFL setup for a fair comparison. As shown in
Table 5, it is evident that our method, even when adapted to the
decentralized PFL structure, secures optimal results on most of the
datasets relative to other baselines (we compare withMA-Echo [1],
which represents the state-of-the-art one-shot decentralized PFL
method; DENSE and FedOV which do not conform to the decentral-
ized structure, are excluded from the comparison). It also surpasses
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Table 5: Test accuracy (%, mean±std) comparison of our
method under the decentralized PFL setting to other sim-
ilar baselines with the Resnet-18 model structure.

Dataset CIFAR-10 Tiny-
ImageNet PACS Office-

Caltech-10
MA-Echo 10.03±1.38 0.51±0.02 16.70±0.60 11.67±2.39
DFedAvgM 18.59±1.65 2.02±0.20 21.58±2.28 10.01±0.70
DFedSAM 18.51±1.28 3.15±0.29 20.79±1.36 15.09±1.04
FedELMY
(PFL) 24.71±2.62 4.12±0.94 24.13±1.57 12.66±1.36

most existing methods on the Office-Caltech-10 dataset. There-
fore, our method successfully adapts to various settings and data
distributions, highlighting its broad applicability.
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