
Under review as a conference paper at ICLR 2024

Source city Target city

Transfer the
learned parameter

(a) Data-space Knowledge

Source city Target city

(b) Weight-space Knowledge

Hypernetwork

Pre-train Generate

Transfer the hypernetwork

Figure 7: Comparison of data-space and weight-space knowledge across cities. Colorful points
represent divided regions in the city.

A METHODOLOGY DETAILS

A.1 DIFFERENT KNOWLEDGE FOR TRANSFER

Figure 7 compares the difference between our framework and other STG transfer learning methods,
which focus on weight-space knowledge and data-space knowledge, respectively.

A.2 REGION PROMPTS

We design region prompts to leverage auxiliary data that captures city characteristics. This prompt-
ing technique facilitates to utilize external information more flexibly. In our experiments, we adopt
a granular approach by crafting distinct prompts for each region within the city. These prompts are
meticulously designed to encapsulate the unique characteristics of each region. To facilitate accu-
rate spatio-temporal predictions, we create two specific types of prompts: a spatial prompt and a
temporal prompt. The spatial prompt is tailored to provide an in-depth representation of the spa-
tial attributes, encompassing geographical features, environmental conditions, and interconnections
with neighboring regions. Complementing the spatial prompt, we also introduce a temporal prompt.
This prompt captures the temporal dynamics of each region.

Spatial Prompt. The spatial prompt is obtained by pre-training an urban knowledge graph
(UKG) (Zhou et al., 2023), which is meticulously designed to encapsulate the extensive environ-
mental information within a city. Specifically, we represent urban regions as distinct entities within
the UKG framework. We use relations “BorderBy” and “NearBy” to capture the spatial adjacency
among regions. By leveraging this adjacency representation, we aim to capture the influence that
proximate regions exert on one another. Furthermore, our UKG incorporates an understanding of the
functional similarity between these urban regions. This insight is quantified by computing the cosine
similarity of the distribution of Points of Interest (POI) categories between region pairs. We establish
a “SimilarFunc” relation to establish connections between regions that exhibit functional similarity,
which emphasizes the critical role played by shared functions in shaping the urban landscape.

Relation Head & Tail Entity Types Semantic Information
BorderBy (Region, Region) Regions share part of the boundary
NearBy (Region, Region) Regions are within a certain distance

SimilarFunc (Region, Region) Regions have similar functions

Table 3: The details of relations in the urban knowledge graph.

To extract the spatial prompts from the constructed Urban Knowledge Graph (UKG), we employ
a state-of-the-art KG embedding model, TuckER (Balažević et al., 2019), to learn an embedding
representation for each region. TuckER evaluates the plausibility of triplets as follows:

ϕ(h, r, t) =W ×1 eh ×2 er ×3 et, (3)

13

Under review as a conference paper at ICLR 2024

whereW ∈ Rd3
KG is a learnable tensor,×n denotes the tensor product along the nth dimension, and

eh, er, et ∈ Rd
KG are the embeddings of head entity h, tail entity t and relation r respectively. The

primary objective of the KG embedding model is to maximize the scoring function for triplets that
exist in the UKG, thereby preserving the knowledge contained within the UKG.

In summary, our UKG leverages the ’BorderBy’ and ’NearBy’ relationships to articulate spatial
connections and the ’SimilarFunc’ relationship to underscore functional parallels between urban
regions. The benefits of UKG are twofold. First, it integrates various relationships within the city,
allowing the learned embeddings of regions to provide descriptive information about their respective
urban environments. Secondly, in contrast to time series data collected by sensors or GPS devices,
the features utilized in the Urban Knowledge Graph (UKG) are readily available in all urban ar-
eas. This accessibility makes the UKG scalable and adaptable to cities, even those with limited
development levels. The details of relations in UKG are shown in Table 3.

Temporal Prompt. The temporal prompt is derived through a strategic application of an unsuper-
vised pre-training model designed for time series, as introduced by Shao et al (Shao et al., 2022).
This approach shares similarities with the concept of a Masked AutoEncoder (MAE) (He et al.,
2022) for sequence data. Initially, the time series data for each region is subjected to a masking
procedure, where random patches within the time series are concealed. Subsequently, an encoder-
decoder model is trained on this modified data to reconstruct the original time series. This training
process is centered around the objective of reconstructing the complete time series based solely on
the partially observable series patches. Given that time series data often exhibits lower information
density, a relatively high masking ratio (75%) is employed. This higher masking ratio is crucial
for creating a self-supervised learning challenge that encourages the model to capture meaningful
temporal patterns from incomplete observations. Upon successful completion of the self-supervised
learning phase for time series data, the output of the encoder yields the temporal embeddings. In
essence, this method capitalizes on self-supervised learning to extract valuable temporal features
from time series data, which can subsequently be used as temporal prompts.

A.3 CONDITIONING STRATEGIES

Pre-conditioning. “Pre” denotes that the prompt is integrated into the token sequence before being
fed into self-attention layers. In this method, we simply add the region prompt p to the token
embeddings within the input sequence.

Pre-conditioning with inductive bias. In this variant, we adopt a different approach to add the re-
gion prompt p to the token embeddings within the input sequence. The spatial prompt is incorporated
into spatial-related parameters uniformly and the temporal prompt into temporal-related parameters
uniformly as follows:

[xs,1,xs,1, · · · ,xs,m] = [xs,1,xs,1, · · · ,xs,m] + [ps,ps, · · · ,ps︸ ︷︷ ︸
m

]

[xt,1,xt,1, · · · ,xt,n] = [xt,1,xt,1, · · · ,xt,n] + [pt,pt, · · · ,pt︸ ︷︷ ︸
n

],
(4)

where m and n represent the number of tokens for spatial parameters and temporal parameters, ps
denotes the spatial prompt, and pt denotes the temporal prompt.

Pre-adaptive conditioning. In this variant, we introduce an attention mechanism, which determines
to what extent the prompt should be added to specific token embeddings. We denote the prompt as
p ∈ R2×E , where E is the embedding size of spatial and temporal prompts. This approach aims
to empower the model to learn how to adaptively utilize the prompts, enhancing its conditioning
capabilities. The utilization of the prompt can be formulated as follows:

14

Under review as a conference paper at ICLR 2024

Noised tokens

Layer norm

Multi-head
Self-Attention

Pointwise
Feedforward

+

+

Layer norm

+

Step Emb

Prompt

Temporal
Prompt

Spatial
Prompt

Attention

Adaptive Emb

(a) Post-Adaptive Conditioning Strategy

Query

Noised tokens

Layer norm

Multi-head
Self-Attention

Pointwise
Feedforward

+

+

Layer norm

+

Step Emb

Prompt

Temporal
Prompt

Spatial
Prompt

Attention

Adaptive Emb

(b) Adaptive Norm Conditioning Strategy

Re-Scale

Re-Scale

Figure 8: Illustration of two conditioning strategies: (a) “Post-Adaptive Conditioning” and (b)
“Adaptive Norm Conditioning”.

uj = tanh(Wwpj + bw), j ∈ {0, 1} (5)

αi,j =
exp(uT

j , xi)∑
k exp(uT

k , xi)
(6)

Pi =
∑
j

αi,jpj , j ∈ {0, 1} (7)

where p0 and p1 represent the spatial prompt and temporal prompt, respectively, Pi denotes the
aggregated prompt from two aspects for the ith token.

Post-adaptive Conditioning. Figure 8 (a) illustrates this conditioning strategy. The aggregated
prompt based on the attention mechanism is added after the multi-head self-attention in each trans-
former layer. Specifically, the query used for spatio-temporal attentive aggregation is the output of
the multi-head self-attention layer.

Adaptive norm conditioning. Figure 8 (b) illustrates this conditioning strategy. The aggregated
prompt based on the attention mechanism is used for re-scaling the output in each layer norm.

A.4 NETWORK LAYERS OF SPATIO-TEMPORAL PREDICTION MODELS

We provide details of parameter tokenizers introduced in Section 3.5. In our experiments, we im-
plement our framework on two spatio-temporal prediction models, STGCN (Yu et al., 2017) and
GWN (Wu et al., 2019). We present how to transform their network layers into a vector-based token
sequence. According to Table 4 and Table 5, the transformation from parameter layers to a token
sequence can be formulated as follows:

gcd = GCD(numel(s1), numel(s2), . . . , numel(sm))

Li = ci ∗ numel(si)/gcd

L =
∑
i

Li,
(8)

where GCD denotes the calculation of the Greatest Common Divisor, m denotes the number of
different layer types, si denotes the shape, numel denotes the total number of elements in the tensor

15

Under review as a conference paper at ICLR 2024

Layer name Parameter shape Count

Block1
Block1-TimeBlock1-conv [32,2,1,4] 3

Block1-GraphConv Theta1 [32,8] 1
Block1-TimeBlock2-conv [32,8,1,4] 3

TimeBlock last TimeBlock-conv [32,32,1,4] 3
Linear Fully Connected Layer [6,96] 1

Table 4: Parameter structure of a STGCN Model

Layer name Parameter shape Count
filter convs.x [32, 32, 1, 2] 8
gate convs.x [32, 32, 1, 2] 8

residual convs.x [32, 32, 1, 1] 8
skip convs.x [32, 32, 1, 1] 8

bn.x [32] + [32] 8
gconv.x.mlp.mlp [32, 160, 1, 1] 8

start conv [32, 2, 1, 1] 1
end conv1 [32, 32, 1, 1] 1
end conv2 [6, 32, 1, 1] 1

Table 5: Parameter structure of a GWN Model

ci denotes the count of this type of layer. In this way, we obtain a token sequence with length as L
and embedding size as gcd.

STGCN (Yu et al., 2017). Spatio-temporal graph convolution network. Different from regular
convolutional and recurrent units, this model build convolutional structures on graphs. We use a
3-layer STGCN block, and utilize a 1-layer MLP as the output predictor. Table 4 shows the detailed
network layers of a STGCN.

GWN (Wu et al., 2019). Graph WaveNet. This model developed a novel adaptive dependency
matrix and learned it through node embeddings to capture the spatial dependency. It also combines
with a stacked dilated causal convolution component. We use a 2-layer 4-block GWN model. Table 4
shows the detailed network layers of a GWN.

A.5 ALGORITHMS

We present the training algorithm for spatio-temporal graph prediction in Algorithm 1. Besides, we
present the training algorithm and sampling algorithm for the diffusion model in Algorithm 2 and
Algorithm 3, respectively.

Algorithm 1 Model Parameter Preparation
1: Input: Dataset D = {D1, D2, . . . , DMs}, neural networks F = {fθ1 , fθ2 , . . . , fθMs

} of the
spatio-temporal prediction model, loss function L, parameter storage S.

2: Output: Parameter storage S.
3: Initialize: Learnable parameters θm for fm, parameter storage S = {}.
4: for m ∈ {1, 2, . . . ,Ms} do
5: for epoch ∈ {1, 2, . . . , Niter} do
6: Sample a mini-batch of inputs and labels from the dataset Dm {x, y} ∼ Dm

7: Compute the predictions ŷ ← fθm(x)
8: Compute the loss L ← L(ŷ, y)
9: Update the model’s parameters θm ← update(L; θm)

10: end for
11: Save the optimized model S ← S ∪ {θm}
12: end for

16

Under review as a conference paper at ICLR 2024

Algorithm 2 Hypernetwork Pre-training
1: Input: Parameter storage S, hypernetwork G.
2: Initialize: Learnable parameters γ for G
3: for epoch ∈ {1, 2, . . . , Niter} do
4: Sample a parameter sample θ0 ∼ q(θ0) and ϵ ∼ N (0, I)
5: Sample diffusion step k ∼ Uniform(1, . . . ,K)
6: Take gradient descent step on

∇γ∥ϵ− ϵγ(
√
αkθ0 +

√
1− αkϵ, p, k)∥2

7: end for

Algorithm 3 Parameter Sampling
1: Input: Gaussian noise θK ∼ N (0, I), prompts P = {p1, p2, . . . ,M}
2: Output: Parameters θt = {θ1,0, θ2,0, . . . , θMt,0}.
3: Initialize: Learnable parameters γ for G, θs = {}.
4: for m ∈ {1, 2, . . . ,Mt} do
5: for k = K → 1 do
6: if K > 1 then
7: z ∼ N (0, I)
8: else
9: z = 0

10: end if
11:

θm,k−1 =
1
√
αk

(θm,k −
βk√
1− αk

ϵγ(θm,k, p, k)) +
√
βkz

12: end for
13: θs = θs ∪ θm,0

14: end for

B EXPERIMENT DETAILS

B.1 DATASETS

In this section, we introduce the details of the used real-world datasets.

B.1.1 CROWD FLOW PREDICTION.

• NYC Dataset. In this dataset, we define regions as census tracts and aggregate taxi trips from
NYC Open Data to derive hourly inflow and outflow information. The division of train and test
regions is based on community districts. Specifically, the Manhattan borough comprises 12 com-
munity districts, and we designate 9 of them as train regions, reserving the remaining 3 for testing.
Region-specific features encompass the count of Points of Interest (POIs), area, and population.

• Washington, D.C. Dataset. Regions in this dataset are defined as census tracts, and inflow data
is calculated based on Point of Interest (POI)-level hourly visits. The partitioning of train and
test regions is done by counties. Specifically, regions within the District of Columbia are selected
as train regions, and regions in Arlington County are designated as test regions. This dataset
comprises rich region features, including demographics and socioeconomic indicators.

• Baltimore Dataset. Similar to the D.C. dataset, regions, and inflow data in the Baltimore dataset
are obtained in the same manner. Train regions consist of regions in Baltimore City, while test
regions encompass Baltimore County. This dataset includes the same set of features as the D.C.
dataset.

B.1.2 TRAFFIC SPEED PREDICTION.

We conducted our performance evaluation using four real-world traffic speed datasets, following
the data preprocessing procedures established in prior literature (Li et al., 2018; Lu et al., 2022).

17

Under review as a conference paper at ICLR 2024

Datasets New York City Washington, D.C. Baltimore
#Nodes 195 194 267
#Edges 555 504 644
Interval 1 hour 1 hour 1 hour

Time span 2016.01.01- 2019.01.01- 2019.01.01-
2016.06.30 2019.05.31 2019.05.31

Mean 70.066 30.871 18.763
Std 71.852 58.953 28.727

Table 6: The basic information and statistics of four real-world datasets for crowd flow prediction.

Datasets METR-LA PEMS-BAY Didi-Chengdu Didi-Shenzhen
#Nodes 207 325 524 627
#Edges 1722 2694 1120 4845
Interval 5 min 5 min 10 min 10 min

Time span 2012.05.01- 2017.01.1- 2018.1.1- 2018.1.1-
2012.06.30 2017.06.30 2018.4.30 2018.4.30

Mean 58.274 61.776 29.023 31.001
Std 13.128 9.285 9.662 10.969

Table 7: The basic information and statistics of four real-world datasets for traffic speed prediction.

To construct the spatio-temporal graph, we treated each traffic sensor or road segment as an indi-
vidual vertex within the graph. We then computed pairwise road network distances between these
sensors. Finally, we construct the adjacency matrix of the nodes using road network distances and a
thresholded Gaussian kernel.

• METR-LA (Li et al., 2018; Lu et al., 2022). The traffic data in our study were obtained from
observation sensors situated along the highways of Los Angeles County. We utilized a total of
207 sensors, and the dataset covered a span of four months, ranging from March 1, 2012, to June
30, 2012. To facilitate our analysis, the sensor readings were aggregated into 5-minute intervals.

• PEMS-BAY (Li et al., 2018; Lu et al., 2022). The PEMS-BAY dataset comprises traffic data
collected over a period of six months, from January 1st, 2017, to June 30th, 2017, within the
Bay Area. The dataset is composed of records from 325 traffic sensors strategically positioned
throughout the region.

• Didi-Chengdu (Lu et al., 2022). We utilized the Traffic Index dataset for Chengdu, China, which
was generously provided by the Didi Chuxing GAIA Initiative. Our dataset selection encompassed
the period from January to April 2018 and covered 524 roads situated within the central urban area
of Chengdu. The data was collected at 10-minute intervals to facilitate our analysis.

• Didi-Shenzhen (Lu et al., 2022). We utilized the Traffic Index dataset for Shenzhen, China, which
was generously provided by the Didi Chuxing GAIA Initiative. Our dataset selection included
data from January to April 2018 and encompassed 627 roads located in the downtown area of
Shenzhen. The data collection was conducted at 10-minute intervals to facilitate our analysis.

B.2 BASELINES

• HA. Historical average approach models time series as a seasonal process and leverages the av-
erage of previous seasons for predictions. In this method, we utilize a limited set of target city
data to compute the daily average value for each node. This historical average then serves as the
baseline for predicting future values.

• ARIMA. Auto-regressive Integrated Moving Average model is a widely recognized method for
comprehending and forecasting future values within a time series.

• RegionTrans (Wang et al., 2019). RegionTrans assesses the similarity between source and target
nodes, employing it as a means to regulate the fine-tuning of the target. We use STGCN and GWN
as its base model.

18

Under review as a conference paper at ICLR 2024

• DASTNet (Tang et al., 2022). Domain Adversarial Spatial-Temporal Network, which undergoes
pre-training on data from multiple source networks and then proceeds to fine-tune using the data
specific to the target network’s traffic.

• AdaRNN (Du et al., 2021). This cutting-edge transfer learning framework is designed for non-
stationary time series data. The primary objective of this model is to mitigate the distribution
disparity within time series data, enabling the training of an adaptive model based on recurrent
neural networks (RNNs).

• MAML (Finn et al., 2017). Model-Agnostic Meta Learning is an advanced meta-learning tech-
nique designed to train a model’s parameters in a way that a minimal number of gradient updates
result in rapid learning on a novel task. MAML achieves this by acquiring an improved initial-
ization model through the utilization of multiple tasks to guide the learning process of the target
task.

• TPB (Liu et al., 2023). Traffic Pattern Bank-based approach. TPB employs a pre-trained traffic
patch encoder to transform raw traffic data from cities with rich data into a high-dimensional
space. In this space, a traffic pattern bank is established through clustering. Subsequently, the
traffic data originating from cities with limited data availability can access and interact with the
traffic pattern bank to establish explicit relationships between them.

• ST-GFSL (Lu et al., 2022). ST-GFSL generates node-specific parameters based on node-level
meta-knowledge drawn from the graph-based traffic data. This approach ensures that parameters
are tailored to individual nodes, promoting parameter similarity among nodes that exhibit similar-
ity in the traffic data.

B.3 IMPLEMENTATION DETAILS

In the experiments, we set the number of diffusion steps N=500. The learning rate is set to 8e-5 and
the number of training epochs ranges from 3000 to 12000. The dimensions of KG embedding and
time embedding are both 128. Regarding the spatio-temporal prediction, we use 12 historical time
steps to predict 6 future time steps. Our framework can be effectively trained within 3 hours and all
experiments were completed on one NVIDIA GeForce RTX 4090.

C ADDITIONAL RESULTS

MAE RMSE
Model Step 1 Step 3 Step 6 Step 1 Step 3 Step 6

HA 21.520 21.520 21.520 47.122 47.122 47.122
ARIMA 19.703 15.063 27.083 37.809 35.093 61.675

RegionTrans 12.116 13.538 15.501 27.622 30.999 36.095
DASTNet 11.501 14.255 17.676 25.551 31.466 38.004
MAML 10.831 13.634 16.192 24.455 30.740 36.271

TPB 9.153 11.870 15.236 23.420 28.756 33.424
STGFSL 9.636 12.178 14.116 22.362 28.287 33.547

Ours 10.339 11.454 13.144 23.348 26.798 30.959

Table 8: Performance comparison of few-shot scenarios on Washington D.C. dataset at different
prediction steps in terms of MAE and RMSE. Bold denotes the best results and underline denotes
the second-best results.

19

Under review as a conference paper at ICLR 2024

MAE RMSE
Model Step 1 Step 3 Step 6 Step 1 Step 3 Step 6

HA 15.082 15.082 15.082 26.768 26.768 26.768
ARIMA 11.150 12.344 18.557 19.627 21.665 35.520

RegionTrans 6.782 7.371 7.895 12.454 13.778 14.648
DASTNet 6.454 7.461 8.424 12.304 13.960 15.225
MAML 6.765 8.170 8.834 13.227 14.470 16.953

TPB 6.014 7.322 8.571 9.832 14.512 16.308
STGFSL 5.925 7.244 8.356 11.157 13.450 15.444

Ours 5.570 5.971 6.582 10.165 11.344 13.003

Table 9: Performance comparison of few-shot scenarios on Baltimore dataset at different prediction
steps in terms of MAE and RMSE. Bold denotes the best results and underline denotes the second-
best results.

MAE RMSE
Model Step 1 Step 3 Step 6 Step 1 Step 3 Step 6

HA 34.705 34.705 34.705 52.461 52.461 52.461
ARIMA 27.865 27.695 33.771 40.643 45.003 59.359

RegionTrans 16.138 19.318 22.103 26.248 32.489 37.654
DASTNet 16.480 22.464 27.147 25.788 36.717 43.834
MAML 14.083 19.753 24.493 23.473 33.079 40.407

TPB 16.616 21.835 28.005 20.50 28.386 37.701
STGFSL 13.479 18.654 23.054 21.918 31.106 37.818

Ours 13.580 16.076 18.923 22.081 27.329 32.260

Table 10: Performance comparison of few-shot scenarios on NYC dataset at different prediction
steps in terms of MAE and RMSE. Bold denotes the best results and underline denotes the second-
best results.

MAE RMSE
Model Step 1 Step 3 Step 6 Step 1 Step 3 Step 6

HA 3.257 3.257 3.257 6.547 6.547 6.547
ARIMA 7.176 7.262 7.114 10.84 11.01 10.89

RegionTrans 2.846 3.278 3.925 4.417 5.729 7.039
DASTNet 2.695 3.205 3.809 4.267 5.516 7.028
MAML 2.756 3.121 3.896 4.182 5.584 6.909

TPB 2.485 3.129 3.680 4.094 5.513 6.816
STGFSL 2.679 3.187 3.686 4.147 5.599 6.987

Ours 2.587 3.098 3.674 4.135 5.502 6.715

Table 11: Performance comparison of few-shot scenarios on METR-LA dataset at different pre-
diction steps in terms of MAE and RMSE. Bold denotes the best results and underline denotes the
second-best results.

20

Under review as a conference paper at ICLR 2024

MAE RMSE
Model Step 1 Step 3 Step 6 Step 1 Step 3 Step 6

HA 3.142 3.142 3.142 4.535 4.535 4.535
ARIMA 5.179 5.456 5.413 6.829 7.147 7.144

RegionTrans 2.388 2.845 3.071 3.464 4.166 4.488
DASTNet 2.278 2.818 3.164 3.256 3.909 4.427
MAML 2.396 2.885 3.181 3.327 4.050 4.499

TPB 2.156 2.593 3.116 3.082 3.637 4.382
STGFSL 2.133 2.565 2.901 3.183 3.815 4.291

Ours 2.031 2.381 2.550 2.948 3.422 3.630

Table 12: Performance comparison of few-shot scenarios on Didi-Chengdu dataset at different pre-
diction steps in terms of MAE and RMSE. Bold denotes the best results and underline denotes the
second-best results.

21

