
The motion planning neural circuit in goal-directed
navigation as Lie group operator search:

Supplementary Information

Junfeng Zuo1,3

zuojunfeng@pku.edu.cn
Ying Nian Wu2

ywu@stat.ucla.edu

Si Wu1

siwu@pku.edu.cn
Wen-Hao Zhang3,4∗

wenhao.zhang@utsouthwestern.edu

1Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies,
School of Psychology and Cognitive Sciences, IDG/McGovern Institute for Brain Research,

Center of Quantitative Biology, Peking University.
2Department of Statistics, University of California, Los Angeles.

3Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center.
4O’Donnell Brain Institute, UT Southwestern Medical Center.

Contents

1 The one-dimensional rotation Lie group 2

1.1 The structure of U(1) . 2

1.2 The representation space of U(1) . 3

2 Computational complexity 4

3 The full circuit model 5

4 Theoretical analysis of the full circuit dynamics 6

4.1 Stationary network responses . 6

4.2 Rotation of sensory representation . 6

4.3 Calculation of speed . 7

5 Network simulation details 8

6 Extension to 2D scenarios 9

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1 The one-dimensional rotation Lie group

1.1 The structure of U(1)

We consider a 1D rotation Lie group U(1) which rotates the 1D stimulus s. A group element
R(θ) ∈ U(1) rotates the stimulus s to s+θ, and mathematically it can be denoted as R(θ)◦s = s+θ
where ◦ denotes a group action. Based on the requirement of equivariant representation (Eq. (1)), a
neural representation u(x− s) which is equivariant to the 1D rotation group should satisfy (Fig. 1B),

u
[
x−R(θ) ◦ s

]
= u[x− (s+ θ)] = R̂(θ) ◦ u(x− s), (S1)

where R̂(θ) is the 1D rotation operator inducing the rotation of neural representation (Fig. 1B).
It is worthy to distinguish that R̂(θ) and R(θ) act on different spaces: R(θ) induces rotation on
the original stimulus s space, while R̂(θ) is the rotation operator acting on the space of neural
representation u(s). From the definition (Eq. (S1)) we could directly derive the properties of 1D
rotation operators R̂(θ) [1],

R̂(0) = 1, (S2a)

R̂(θ)R̂(ϕ) = R̂(θ + ϕ) = R̂(ϕ)R̂(θ), (S2b)

R̂(θ)−1 = R̂(−θ). (S2c)

Since the rotation is continuous, the amount of rotation can be made infinitesimally small. Con-
sider an infinitesimal rotation δθ → 0 on the stimulus s, then the corresponding change of neural
representation is,

R̂(δθ) ◦ u(x− s) = u(x− s− δθ),

Taking a first-order Taylor expansion of the above equation,

R̂(δθ) ◦ u(x− s) ≈ u(x− s)− δθ∂xu(x− s),

= (1− δθ∂x) ◦ u(x− s),

= (1 + δθĴ) ◦ u(x− s),

(S3)

where ∂s = ∂/∂s denotes the derivative over s. Also in Eq. (S3) we define

Ĵ ≡ −∂x, (S4)

as the rotation generator. The generator characterizes the tangential direction of rotation near the
identity element and forms a basis of the Lie algebra.

Eq. (S2b) suggests a large rotation can be decomposed as a composition of many infinitesimal
rotations,

R̂(θ) = R̂

(
θ

N

)
· · · R̂

(
θ

N

)
︸ ︷︷ ︸

N

≡
[
R̂

(
θ

N

)]N
. (S5)

Considering the large limit of N and utilizing Eq. (S3), the above equation can be converted into

R̂(θ) = lim
N→∞

[
R̂
(a

N

)]N
,

≈ lim
N→∞

(
1 +

θ

N
Ĵ

)N

,

= exp(θĴ).

(S6)

It is clear to see the rotation operator R̂ is an exponential map of the rotation generator Ĵ . Also, the
exponential map can be derived by differentiating the rotation operator:

dR̂(θ)

dθ
= Ĵ · R̂(θ),

then we can further derive R̂(θ) = exp(θĴ).

2

1.2 The representation space of U(1)

According to Eq. (S2b), rotation group is an abelian group (group operators are commutative). It
can be proved that such commutative operators share a set of common eigenfunctions that expand a
representation space. To illustrate this concept, we explore the eigenfunction of the generator Ĵ :

Ĵ · e−iωx = −∂xe
−iωx = iωe−iωx, i =

√
−1. (S7)

Eq. (S7) reveals that exp(−iωx) performs as the eigenfunctions of rotation group generator Ĵ ,
associated with the corresponding eigenvalue iω. With these eigenvalues, we concrete the abstract
group actions into specific elements in the representation space spanned by the eigenfunctions.
exp(−iωx) also happens to be the basis of Fourier transformation.

Through the exponential map, we can extend this representation into each group operator:

R̂(θ) = eθĴ = eiωθ, (S8)

which shows how the group operator R̂θ rotates the eigenfunction:

R̂(θ) · e−iωx = eiωθ · e−iωx = e−iω(x−θ). (S9)

If we denote fω = e−iωx/
√
2π, its easy to check that the set of functions fω = {fω(x)} constitutes a

representation space of the rotation group. Consider an arbitrary function g(x) and its representation
gω = [gω] in this space, then g(x) = gω · fω =

∑
ω gωfω(x). The rotation of g(x) can be applied by

a dot product:

R̂(θ) ◦ g(x) =
∑
ω

gω[ρω(θ)fω(x)] =
∑
ω

gωfω(x− θ) = g(x− θ), (S10)

where ρω(θ) is the component of R̂(θ) in the representation space.

Naturally, the objective function defined in Eq. (2) can be formulated as:

L(θ) =

∫
x

[R̂(θ) ◦ us(x− s)]u(x− h)dx

= ⟨ρ(θ)U(s), U(h)⟩,

=
∑
ω

ρω(θ)Uω(s)U
†
ω(h),

(S11)

where subscript ω denotes the vector components.

3

2 Computational complexity

We argue that our model performs operator searching in a computation-saving manner. In the main
text, we have compared our model with two canonical algorithm. Here we provide a more detailed
comparison in Tab. S1S2S3. We consider the stimulus and goal directions are represented by N
neurons respectively (corresponding to discretizing the continuous function u(s) and u(h)), each of
which is a N dimensional vector. The group convolution takes N iterations within which performs
N multiplications, so the overall complexity is in O(N2) (ignoring the complexity of sorting). The
complexity of Fourier transformation is mainly determined by fast Fourier transform (FFT), which is
O(N logN). Each iteration of our model performs two inner products containing N multiplications.
It’s worth noting that our model does not need to traverse all possible operators, but go along the
gradient direction. If we take an assumption that the gradient (as well as speed) decreases linearly
when approaching the optimal, the time (iterations) it takes will be in O(log |h− s|), and the overal
complexity will be O(N ln |h− s|).

Table S1: Group convolution: algorithm and complexity of finding and applying operators
Group convolution
1: procedure FINDING OPERATOR
2: for i = to N do ▷ Iteration over all rotation operators
3: θi ← θi−1 + 2π/N

4: L(i)←
∑N

j=1 u(xj − h)u(xj − s+ θi) ▷ O(N) addition, O(N) multiplication
5: end for
6: k ← argmaxi L(i) ▷ The most efficient sorting algorithm: O(N logN)
7: θ∗ ← θk
8: return R̂(θ∗)
9: end procedure

10: procedure APPLYING OPERATOR

11: u(h)← R̂(θ∗) ◦ u(s) ▷ Rotate sensory responses: O(N)
12: end procedure
13: ▷ Total complexity: O(N2)

Table S2: Fourier transform: algorithm and complexity of finding and applying operators
Fourier transform
1: procedure FINDING OPERATOR
2: U(s)← F [u(s)] ▷ Fast Fourier transform: O(N logN)
3: U(h)← F [u(h)] ▷ Fast Fourier transform: O(N logN)
4: ρ(θ∗)← U(h)/U(s) ▷ O(N) divisions
5: end procedure
6: procedure APPLYING OPERATOR
7: U(s′ = h)← ρ(θ∗)U(S) ▷ O(N) multiplications
8: u(s′)← F−1[u(s′)] ▷ Inverse fast Fourier transform: O(N logN)
9: return R(θ∗)

10: end procedure ▷ Total complexity: O(N logN)

4

Table S3: The feedforward circuit model: computation and complexity in sequential rotation
Feedforward circuit model

1: while |h− s| ≥ ϵ do ▷ Iteration over time ∼ O(|h− s|)
2: for j = to N do ▷ Iteration over N neuron
3: rθ+(xj)← F [u(xj − s+∆θ) + u(xj − h)] ▷ 1 addition, 1 multiplication
4: rθ−(xj)← F [u(xj − s−∆θ) + u(xj − h)] ▷ 1 addition, 1 multiplication
5: end for
6: rv+ =

∑
j rθ+(xj) ▷ O(N) addition

7: rv− =
∑

j rθ−(xj) ▷ O(N) addition
8: vt ← rv+ − rv−
9: return R(vt∆t)

10: end while ▷ Total complexity: O(N log |h− s|)

3 The full circuit model

We construct a full circuit model of the sensory-action loop, which contains three neural circuit
modules with complementary functions. It has a sensory circuit model generating neural responses
representing stimulus direction, u(s), a motor circuit module implementing the rotation generator Ĵ
(Eq. (17)), and a sensorimotor transformation circuit module as we derived to do motion planning by
computing computing the rotation speed vt (Eq. (28)).

A recent study built a recurrent circuit model of Drosophila’s internal compass circuit corresponding
to the sensory and the motor circuit module, and interpreted each module from Lie group equivariance
perspective [2]. Therefore, we will construct the full circuit by combining the derived feedforward
sensorimotor transformation circuit above, with the sensory and motor circuit from the recent study
[2]. In below, we will use um(x) and rm(x) to denote respectively the synaptic input and firing rate
of a neuron with index (preferred stimulus/goal) x at neuronal population m at time t, while t is
suppressed for concise.

Sensory circuit module. The sensory circuit module us(x) represents the stimulus direction,
corresponding to the internal compass circuit composed of E-PG neurons in Drosophila’s brain. The
sensory module is modeled as a canonical ring attractor network dynamics ([3]),

τ u̇s(x) = −us(x) + ρWs,s ⋆ rs(x) + ρ
∑

m=s±
Ws,m ⋆ rm(x), (S12)

where the firing rate rs(x) = [us(x, t)]
2
+/(1 + kρ

∫
[us(x, t)]

2
+dx) via divisive normalization ([4]),

with k determining global inhibition strength. The recurrent input ρWs,s⋆rs is obtained by convolving
the sensory neurons’ activity with a Gaussian-profile kernel, Ws,s(x) = w0 exp(−x2/2a2). It was
suggested that the recurrent convolution kernel is the key to form the (rotation) group equivariant
representation in a ring attractor dynamics [2]. τ and ρ are time constant and neuron density along
the rotation group manifold respectively. rs±(x) are two populations of P-EN neurons that will rotate
the stimulus direction in us(x) whose dynamics will described below.

Sensorimotor transformation circuit module. Although theoretical derivations consider memory-
less neurons in the sensorimotor transformation circuit (Eq. (19)), the full circuit model uses dynamic
neurons, where the dynamics of rθ± and rv± neurons are (converted from Eqs. (19) and (28)),

τ u̇θ±(x) = −uθ±(x) + ρWθ±,s ⋆ us(x) + ρWθ±,h ⋆ uh(x), rθ±(x) = F [uθ±(x)]. (S13a)

τ u̇v± = −uv± + ρ
∫
rθ±(x)dx, rv± = [uv±]+, (S13b)

where uθ± (analogous to the PFL 3L and 3R neurons) compute the gradient of the objective function,
i.e., dL/dθ (Eq. (19)), and the uv± (analogous to the left and right DN neurons) determines the
rotation speed representing the planned rotation operator parameter (Eq. (28)). In particular, the
feedforward connection kernel Wθ±,s(x) = wθ,sδ(x ∓ δθ) corresponds the ws(xv, x) in Eq. (24)
with a connection phase shift of ±∆θ. Analogously, we have Wθ±,h(x) = wθ,hδ(x) only that there
is no phase shift of goal input. For the sake of simplicity, we set wθ,s = wθ,h.

Motor circuit module and motor-to-sensory feedback. The rotation generator Ĵ for the inner
neural motor-to-sensory feedback loop in Drosophila’s circuit can be implemented by two populations
of P-EN neurons us± sending shifted feedback connections Ws,s± to sensory neurons us (E-PG

5

neurons, Eq. (S12)),

τ u̇s±(x) = −us±(x) + ws±,srs(x), rs±(x) = [(g0 + rv±) · us±(x)]+. (S14)

In particular, the gain of the neuron rs± is determined by the firing rate of rotation speed neurons
rv± in the sensorimotor transformation circuit (Eq. (S13b)). The neurons rs± send shifted feedback
connections to sensory neurons closing the sensory-action loop (Eq. (S12)),

Ws,s± = ws,s± exp[−(x∓∆x)2/2a2], (S15)

where the phase of feedback connections from two populations of rs± shifts the same amount but
towards opposite directions. It was found that the rotation generator Ĵ emerges with non-zero
weight phase shift ∓∆x. Moreover, the actual rotation speed vt will be determined by the firing rate
difference between rs± , i.e.,

∑
x[rs+(x)− rs−(x)] ∝ (rv+ − rv−) ∝ vt which is proportional to the

firing rate difference of rotation speed neurons.

4 Theoretical analysis of the full circuit dynamics

4.1 Stationary network responses

Sensory circuit module. Based on the previous literature[5], we propose the following Gaussian
ansatz of network’s stationary responses,

us(x− s) = Use
−(x−s)2/4a2

, rs(x− s) = Rse
−(x−s)2/2a2

,

us±(x− s) = Rs±e
−(x−s)2/2a2

, rs±(x− s) = Rs±e
−(x−s)2/4a2

,
(S16)

where we have assumed that the P-EN neurons’ responses us±(x− s) and r±(x− s) have the same
position s on the stimulus manifold with the E-PG neurons’ responses, which is equivalent to assume
that the transmission delay from E-PG neurons to P-EN neurons and the time constant of P-EN
neurons are small enough. Substituting the above Gaussian ansatz into the network dynamics of
E-PG neurons (Eq. (S12)),

τUs

2a2
ds

dt
(x− s)e−(x−s)2/4a2

=− Use
−(x−s)2/4a2

+
ρw0Rs√

2
e−(x−s)2/4a2

,

+
ρws,s±√

2

∑
m=±

Rme−(x−s−m∆x)2/4a2

.
(S17)

Similarly, the goal response will be:

uh(x− h) = Use
−(x−s)2/4a2

, rh(x− h) = Rse
−(x−s)2/2a2

, (S18)

Sensorimotor transformation circuit module Since there is no recurrent connection within the
PFL3 neuron groups, the neural responses uθ± and rθ± are completely determined by the heading
and goal inputs currents injected by E-PG and FC neurons. The stationary response will be:

uθ± = ρwθ,srs(x− s) + ρwθ,hrh(x− h), rθ± = ρ2w2
θ,s[rs(x− s) + rh(x− h)]2+, (S19)

and the DN neurons integrate the activity of PFL3 neurons:

uv± =

∫
rθ±dx, rv± = [uv±]+. (S20)

Ultimately, the DN neuron responses are feedback as a gain factor of the P-EN response to modulate
the rotation of sensory representation.

4.2 Rotation of sensory representation

In order to study whether and how feedback inputs from P-EN neurons to E-PG neurons (the last
term in Eq. (S12)) induce rotations on E-PG neurons’ responses, we project Eq. (S17) onto the
eigenfunction f1(x|s) corresponding to the rotation along the continuous stimulus manifold. The
projection is computing the inner product between the E-PG neural dynamics (Eq. (S17)) and f1(x|s)

6

[5]. Denoting the f1(x|s) = Z−1(x − s)e−(x−s)2/4a2

with Z a normalization factor, we list the
major calculations of the projection in the text below.

LHS =

〈
τUs

2a2
ds

dt
(x− s)e−(x−s)2/4a2

, f1(x|s)
〉
,

=
τUs

2a2
ds

dt

1

Z

∫
(x− s)2e−(x−s)2/2a2

dx,

=
τUs

2Z

ds

dt

√
2πa,

The projection of the first two terms on the RHS of Eq. (S17) on f1(x|s) would be zero, because〈
e−(x−s)2/4a2

, Z−1(x− s)e−(x−s)2/4a2
〉
∝

∫
(x− s)e−(x−s)2/2a2

dx = 0.

At last, the projection of the last term of Eq. (S17) on f1(x|s) is
ρws,s±√

2Z

∑
m=±

Rm

〈
e−(x−s−m∆x)2/4a2

, (x− s)e−(x−s)2/4a2
〉
,

=
ρws,s±√

2Z

∑
m=±

Rm

∫
[(x− s−m∆x/2) +m∆x/2] exp

[
− (x− s−m∆x/2)2

2a2
− ∆x2

8a2

]
dx,

=
ρws,s±∆x

2
√
2Z

∑
m=±

mRm exp

(
−∆x2

8a2

)∫
exp

[
− (x− s−m∆x/2)2

2a2

]
dx,

=
ρws,s±∆x

2
√
2Z

√
2πa exp

(
−∆x2

8a2

) ∑
m=±

mRm.

Combining all above calculations, the projection of Eq. (S17) onto the stimulus rotation direction
can be eventually computed as

ds

dt
=

ρws,s±∆x
√
2τUs

∑
m=±

mRme−∆x2/8a2

,

=
ρws,s±∆x
√
2τUs

(R+ − R−)e
−∆x2/8a2

.

(S21)

Suppose the amount of connection shift ∆x is small enough compared with the connection width a,
i.e., (∆x)2 ≪ 8a2, the exponential terms in above equation can be ignored for simplicity. Reorganize
the terms in above equation,

ds

dt
≈

ρws,s±√
2τUs

(R+ − R−)∆x. (S22)

In the stationary state, the network only rotates along the stimulus space and then we can derive the
dynamics of sensory neuron response,

∂us(x− s)

∂t
=

∂us(x− s)

∂s

∂s

∂t
,

=
∂s

∂t
[Ĵ ◦ us(x− s)],

=
ρws,s±√
2τU

(R+ − R−)∆x[Ĵ ◦ us(x− s)].

(S23)

4.3 Calculation of speed

Combining Eq. (S23) with the dynamical equation of P-EN neuron (Eq. (S14), we will find that the
above dynamics is proportional to the difference between rv+ and rv− :

τ u̇s(x− st) ∝ ws,s±ws±,s(rv+ − rv−)Ĵ ◦ us(x− st). (S24)

7

In order to obtain an analytical expression of the above equation, we can formally calculating the
integral of rv± (Eq. (S20):

rv+ =ρ2w2
θ,s

∫
x

(
rs(x− s−∆θ) + rh(x− h)

)2
dx

=ρ2w2
θ,s

∫
x

(∑
ω

Rω(s+∆θ)fω(x) +
∑
ω

Rω(h)fω(x)
)2
dx

=ρ2w2
θ,s

∫
x

(∑
ω1

Rω1
(s+∆θ)fω1

(x)
∑
ω2

Rω2
(s+∆θ)fω2

(x)

+
∑
ω1

Rω1(h)fω1(h)
∑
ω2

Rω2(h)fω2(h)

+ 2
∑
ω1

Rω1
(s+∆θ)fω1

(x)
∑
ω2

Rω2
(h)fω2

(h)
)
dx

=ρ2w2
θ,s

∑
ω1,ω2

{(
[Rω1

(0)ρω1
(s+∆θ)][Rω2

(0)ρω2
(s+∆θ)]†

+ [Rω1
(0)ρω1

(h)][Rω2
(0)ρω2

(h)]† + 2[Rω1
(0)ρω1

(s+∆θ)][Rω2
(0)ρω2

(h)]†
)

· [
∫
x

fω1
(x)f†

ω2
(x)dx]

}
=ρ2w2

θ,s

∑
ω

(
2Rω(0)R−ω(0) +Rω(0)R−ω(0)ρω(s+∆θ − h)

)
,

(S25a)

rv− =ρ2w2
θ,s

∑
ω

(
2Rω(0)R−ω(0) +Rω(0)R−ω(0)ρω(s−∆θ − h)

)
, (S25b)

where we have utilized ρω(s)
† = ρ−ω(s) = ρω(−s) and Rω(0)

† = R−ω(0). We used Rω to denote
the representation of rs and rh under the basis function fω. Then the firing rate difference can be
obtained by:

rv+ − rv− = ρ2w2
θ,s

∑
ω

∥Rω(0)∥2
(
ρω(s+∆θ − h)− ρω(s−∆θ − h)

)
= ρ2w2

θ,s

∑
ω

∥Rω(0)∥2 sin(ω∆θ) sin[ω(h− s)],
(S26)

where we used the expression of ρω in Eq. (S10) and Euler equation eiθ = cos θ + i sin θ.

If we substitute the stationary states of the network in Eq. (S16)(S18)(S19)(S20), it will yield a
specific expression:

(rv+ − rv−) =
√
πaρ2w2

θ,sRs
2 · e−

(s−h)2

4a2 · e−
∆θ2

4a2 · (e−
∆θ(s−h)

2a2 − e
∆θ(s−h)

2a2),

∆θ→0
≈

√
πa−1ρ2w2

θ,sRs
2 ·∆θ(h− s)e−

(s−h)2

4a2 ∝ v.

(S27)

5 Network simulation details

The typical set of network parameters can be found in Table S4. In the text below we briefly explain
the reasoning of network parameter setting. We simulated a continuous attractor network that was
consist of N = 180 neurons which were uniformly distributed in the space of s. To avoid boundary
effect, we considered s to be a periodic variable in the network simulation and was in the range
of [−π, π). The periodic stimulus s doesn’t affect substantially our theoretical results from the 1d
rotation group which acts on an infinite region, as long as the connection width, i.e., a, is much
smaller than the width of the direction space.

The code was written with BrainPy ([6]) and was simulated on MacBookPro laptop which has a
10-core M1 CPU and 32GB RAM.

To scale the connection strength in the network model, we set the connection strength relative to the
critical strength, wc, under which a CAN can hold a persistent (non-zero) population response by

8

itself. It can be calculated that

wc = 2
√
2(2π)1/4

√
kσ/ρ ≈ 0.896. (S28)

In the network simulation, the instantaneous sensory representation st is linearly read out from the
sensory neurons’ response, rs(x, t) by using the population vector ([7]), i.e.,

st = Angle
[∑

j

r(xj , t)e
ixj

]
. (S29)

where i =
√
−1 is the pure imaginary number.

Symbol Description Typical values (range)
N Number of one neuron group 180
ρ Neuronal density in the stimulus space N/2π
a Tuning width 2π/9
k Global inhibition strength 5× 10−4

τ Synaptic decaying time constant 1 (dimensionless)
dt Time step in numerical simulation 0.1τ
w0 The peak recurrent weight in the E-PG and FC2 1.1wc

wc The critical recurrent weight of non-zero sustained response 0.896 (Eq. S28)
ws±,s The recurrent weight from E-PG to P-EN neurons 0.2
ws,s± The recurrent weight from P-EN to E-PG neurons 1
wθ,s The feedforward weight from E-PG to PFL3 neurons 1
wv,θ The feedforward weight from PFL3 to DN neurons 0.2/N
∆x The connection shift from P-EN neurons to E-PG neurons π/18
∆θ The connection shift from E-PG neurons to PFL3 neurons 3π/8
g0 The baseline activity of speed neurons 0

Table S4: Typical parameters of the network model

6 Extension to 2D scenarios

We simulated our model under 2D scenario as an extension to our model. In an allocentric representa-
tion with an x-y coordinate, where the sensory representation will be shifted along four directions,
i.e., ±x and ±y, and then we expect to have four populations of neurons (the 2D counterparts of
PFL3 left and PFL3 right). Then the pooling operation will be similar to the 1D case while we will
have four output neurons (2D counterparts of DN left and DN right) which will generate actions
along four directions in the 2D plane. The similar shifted connections were also considered in [8],
while it didn’t study the motion planning circuit. Specifically, we represented the location and goal
using two separate 2-dimensional neuronal populations, each containing 128×128 neurons, referred
to as EPG and FC2 neurons, as in the main text. The rest of the model remains largely unchanged,
except for including four groups (north-, south-, east- and west-ward) of PENs, PFL3s, and DNs
instead of two (left- and right-ward). Once we initiate the self-location and goal location, the EPG
equivalent neurons generate an activity bump at the self-location, which then moves toward and
ultimately terminates at the goal location. By plotting the DN neuron activities, we can verify that the
movement velocity along the north-south axis is proportional to the firing rate difference between
DN-North and DN-South neurons, and similarly for the east-west axis. The results are shown in
Fig.S1

9

DN Neurons

Bump locationsA B

C

Figure S1: A. Encoded trajectory from start position to goal position. B. Neuron activity bumps at
different time steps. C. DN neuron activities.

References
[1] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cambridge

university press, 2018.

[2] Wenhao Zhang, Ying Nian Wu, and Si Wu. Translation-equivariant representation in recurrent
networks with a continuous manifold of attractors. Advances in Neural Information Processing
Systems, 35:15770–15783, 2022.

[3] Sung Soo Kim, Hervé Rouault, Shaul Druckmann, and Vivek Jayaraman. Ring attractor dynamics
in the drosophila central brain. Science, 356(6340):849–853, 2017.

[4] Matteo Carandini and David J Heeger. Normalization as a canonical neural computation. Nature
Reviews Neuroscience, 13(1):51–62, 2012.

[5] C. C. Alan Fung, K. Y. Michael Wong, and Si Wu. A moving bump in a continuous manifold: A
comprehensive study of the tracking dynamics of continuous attractor neural networks. Neural
Computation, 22(3):752–792, 2010.

[6] Chaoming Wang, Tianqiu Zhang, Xiaoyu Chen, Sichao He, Shangyang Li, and Si Wu. Brainpy,
a flexible, integrative, efficient, and extensible framework for general-purpose brain dynamics
programming. Elife, 12:e86365, 2023.

[7] Apostolos P Georgopoulos, Andrew B Schwartz, and Ronald E Kettner. Neuronal population
coding of movement direction. Science, 233(4771):1416–1419, 1986.

[8] Yoram Burak and Ila R Fiete. Accurate path integration in continuous attractor network models
of grid cells. PLoS computational biology, 5(2):e1000291, 2009.

10

	The one-dimensional rotation Lie group
	The structure of U(1)
	The representation space of U(1)

	Computational complexity
	The full circuit model
	Theoretical analysis of the full circuit dynamics
	Stationary network responses
	Rotation of sensory representation
	Calculation of speed

	Network simulation details
	Extension to 2D scenarios

