Under review as a conference paper at ICLR 2021

Supplementary Document

Can one hear the shape of a neural network?:
Snooping the GPU via Magnetic Side Channel

A BILSTM NETWORK STRUCTURE

Classifying steps in a network model requires taking in a time-series signal and converting it to
labeled operations. The EM signal responds only to the GPU’s instantaneous performance, but
because the GPU executes a neural network sequence, there is rich context in both the window
before and after any one segment of the signal. Some steps are often followed by others, such as
pooling operations after a series of convolutions. We take advantage of this bidirectional context
in our sequence to sequence classification problem by utilizing a BILSTM network to classify the
observed signal. To retrive a network’s topology, we pass normalized EM values into a two-layer
BLSTM network, with dropout of 0.2 in between. From there we compute a categorical cross-
entropy loss on a time-distributed output that we achieve by sliding an input window across our EM
signal. This approach proves robust, and is the method used by all of our experiments, and on all
GPU’s tested.

The segmented output of our BiLSTM network on our extracted signal is for the most part unambigu-
ous. Operations that follow one another (i.e. convolution, non-linear activation function, pooling)
are distinct in their signatures and easily captured from the context enabled by the sliding window
signal we use as input to the BILSTM classifier. Issues arise for very small-sized steps, closer to our
sensor’s sampling limit. In such regions a non-linear activation may be over-segmented and split
into two (possibly different) activation steps. To ensure consistency we postprocess the segmented
results to merge identical steps that are output in sequence, cull out temporal inconsistencies such
as pooling before a non-linear activation, and remove activation functions that are larger than the
convolutions that precede them.

B ADDITIONAL EXPERIMENTS

B.1 USING LEVENSHTEIN DISTANCE TO MEASURE NETWORK RECONSTRUCTION QUALITY

To provide a sense of how the Levenshtein edit distance is related to the network’s ultimate perfor-
mance, we consider AlexNet (referred as model A) and its five variants (refered as model B, C, D,
and E, respectively). The variants are constructed by randomly altering some of the network steps
in model A. The Levenshtein distances between model A and its variants are 1, 2, 2, 5, respectively
(see Fig. [ST), and the normalized Levenshtein distances are shown in the brackets of Fig.[ST| We
then measure the performance (i.e., standard test accuracy) of these models on CIFAR-10. As the
edit distance increases, the model’s performance drops.

0.83

0.798

0.765

0.732

o
3

Classification test accuracy

A B c D E
Edit Distance: 0  1(0.05) 2(0.11) 2(0.11) 5(0.28)

Figure S1: The model’s classification accuracy drops as its Levenshtein distance from the original
model (model A: AlexNet) increases.

B.2 RECONSTRUCTION QUALITY ON IMAGENET

We treat ResNet18 and ResNet50 for ImageNet classification as our black-box models, and recon-
struct them from their magnetic signals. We then train those reconstructed networks and compare
their test accuracies with the original networks’ performance. Both the reconstructed and original

12



Under review as a conference paper at ICLR 2021

Table S1: Model reconstruction evaluated on ImageNet classification.

Model . 'ResNet18 . .ResNetSO
Original Extracted | Original Extracted
Top-1 Acc. | 64.130 64.608 62.550 61.842
Top-5 Acc. | 86.136 86.195 85.482 84.738
KL Div. - 2.39 - 4.85

60%

50%

40%

20%

10%

— L — — — —

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 05 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 0.5

normalized edit distance normalized edit distance
Figure S2: Distribution of normalized Levenshtein distance. (left) We plot the distribution of
the normalized Levenshtein distances between the reconstructed and target networks. This results,
corresponding to Table[T]in the main text, use signals collected on Nvidia TITAN V. (right) We also
conduct similar experiments on two Nvidia GTX-1080 GPUs. One is used for collecting training

signals, and the other is used for testing our side-channel-based reconstruction algorithm.

networks are trained with the same training dataset for the same number of epochs. The results
are shown in Table [ST] where we report both top-1 and top-5 classification accuracies. In addition,
we also report a KL-divergence measuring the difference between the 1000-class image label distri-
bution (over the entire ImageNet test dataset) predicted by the original network and that predicted
by the reconstructed network. Not only are those KL-divergence values small, we also observe
that for the reconstructed network that has a smaller KL-divergence from the original network (i.e.,
ResNet18), its performance approaches more closely to the original network.

B.3 GPU TRANSFERABILITY

Here we verify that (i) the leaked magnetic signals are largely related to GPU brand/version but not
the other factors such as CPUs and (ii) the signal characteristics from two physical copies of the
same GPU type stay consistent.

We obtain two copies of an Nvidia GTX-1080 GPU running on two different machines. When
we run the same network structure on both GPUs, the resulting magnetic signals are similar to
each other, as shown in Fig.[S3] This suggests that the GPU cards are indeed the primary sources
contributing the captured magnetic signals.

Next, we use one GPU to generate training data and another one to collect signals and test our
black-box reconstruction. The topology reconstruction results are shown in Table[S2] arranged in the
way similar to Table[I] and the distribution of normalized Levenshtein edit distance over the tested
networks are shown in Fig. [S2}right. These accuracies are very close to the case wherein a single
GPU is used. The later part of the reconstruction pipeline (i.e., the hyperparameter recovery) directly
depends on the topology reconstruction. Therefore, it is expected that the final reconstruction is also
very similar to the single-GPU results.

B.4 TRANSFER ATTACKS ON MNIST

We also conduct transfer attack experiments on MNIST dataset. We download four networks online,
which are not commonly used. Two of them are convolutional networks (referred as CNN1 and
CNN2), and the other two are fully connected networks (referred as DNN1 and DNN2). None of
these networks appeared in the training dataset. We treat these networks as black-box models, and
reconstruct a network for each of them. We then use the four reconstructed models to transfer attack
the four original models, and the results are shown in Table |§_7ﬂ As baselines, we also use the four
original models to transfer attack each other including themselves.

13



Under review as a conference paper at ICLR 2021

Table S2: Classification accuracy of network steps (GTX-1080).

Prec. Rec. F1  #samples
LSTM 997 999 998 12186
Conv 985 989 987 141164
Fully-connected | .818 .969 .887 9301
Add 962 941 951 30214
BatchNorm 956 944 950 48433
MaxPool 809  .701 751 1190
AvgPool 927 874  .900 294
ReLU .868 859 .863 11425
ELU 861 .945 901 8311
LeakyReLU 962 801 .874 3338
Sigmoid 462 801 585 5106
Tanh 928 384 543 8050
Weigted Avg. 945 945  .945 -

Table S3: DNN estimation accuracies. Using the 1804 convolutional layers in our test dataset, we
measure the accuracies of our DNN models for estimating the convolutional layers’ hyperparame-
ters. Here, we break the accuracies down into the accuracies for individual hyperparameters.

Kernel Stride Padding Image-in Image-out
Precision | 0.971 0.976  0.965 0.968 0.965
Recall | 0.969 0.975  0.964 0.969 0.968
F1 Score | 0.969 0.975  0.962 0.967 0.965

In Table[S4] every row shows the transfer attack success rates when we use different source (surro-
gate) models to attack a specific original model (CNN1, CNN2, DNN1, or DNN2). Each column
labeled as “extr.” corresponds to the extracted (reconstructed) model whose target model is given
in the previous column right before it. In addition, we also show all the models’ test accuracies
on MNIST in the last row of the table. The results show that all the reconstructed models approx-
imate their targets closely, both in terms of their abilities for launching transfer attacks and their
classification performance.

C SENSOR SETUP

The magnetic induction signal we utilize comes from digitally converting analog readings of a Texas
Instruments DRV425 fluxgate sensor with Measurement Computing’s USB-204 Digital Acquisition
Card. The sensor samples at a frequency of 47Khz and the converter operates at 50Khz to map the
originally -2mT~2mT readings across 0 to 5 Volts using a 12-bit conversion. Calibrating the sensor
requires (a) that the sensor is within range of the electromagnetic signal and that (b) the sensor
orientation is consistent. The magnetic induction signal falls off at a rate inversely proportional to
distance squared, and so the sensor must be placed within 7mm of the GPU power cable for reliable

volts

0 6 12 18 24 30 36 42 48 54 60 ms

Figure S3: Here we plot the resulting signals from the same network model deployed on two differ-
ent instances of a NVIDIA-GTX 1080 (running on two different computers). In the green boxes on
the left are the spikes that we inject on purpose (discussed in Sec. to synchronize the measured
signal with the runtime trace of the GPU operations.

14



Under review as a conference paper at ICLR 2021

Table S4: MNIST results.
Source Model
CNN1 extr. CNN2 extr. DNNI1 extr. DNN2 extr.
CNNI1 .858 .802 226 202 785 795 476 527
CNN2 .395 319 .884 878 354 351 354 211
DNNI1 768 812 239 223 .999 .999 .803 .885
DNN2 703 768 219 .194 975 979 .860 874
Accuracy .989 987 993 991 981 981 .980 .983

Target

measurement. Flipping the flat sensor over will result in a sign change of the magnetic induction

signal, thus a uniform orientation should be maintained to avoid preprocessing readings across the
dataset to align.

15



	Introduction
	Related Work: Model Extraction by Queries and Side-Channel Analysis

	Magnetic Signals from GPUs
	Signal Analysis and Network Reconstruction
	Topology Recovery
	Hyperparameter Estimation

	Experimental Setup
	Hardware Sensors
	Dataset Construction

	Results
	Accuracy of Network Reconstruction
	Transfer Attack
	Discussion: Defenses Against Magnetic Side Channel Leakage

	Concluding Remarks
	BiLSTM Network Structure
	Additional Experiments
	Using Levenshtein Distance to Measure Network Reconstruction Quality
	Reconstruction Quality on ImageNet
	GPU Transferability
	Transfer Attacks on MNIST

	Sensor Setup

