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Figure 7: Top 200 frequent FOL term pairs in MALLS. Many terms are associated with a wide range
of other terms, which suggests the rules are semantically and contextually diverse.

A APPENDIX

In the following, we provide further details about the dataset creation, logical equivalence computation
and experimental settings.

B MALLS DATASET CREATION DETAILS

B.1 DATA COLLECTION

Prompt table. Table 4 shows the prompt templates used for prompt generation.

B.2 FOL PARSING AND VERIFICATION

FOL CFG grammar. We define the FOL with the following CFG grammar:

S -> F | Q F

Q -> QUANT VAR | QUANT VAR Q

F -> ‘¬’ ‘(’ F ‘)’ | ‘(’ F ‘)’ | F OP F | L

OP -> ‘⊕’ | ‘∨’ | ‘∧’ | ‘→’ | ‘↔’

L -> ‘¬’ PRED ‘(’ TERMS ‘)’ | PRED ‘(’ TERMS ‘)’

TERMS -> TERM | TERM ‘,’ TERMS

TERM -> CONST | VAR
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Figure 8: Top 40 frequent FOL terms (MALLS).
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Figure 9: Literal frequency distribution (MALLS).

QUANT -> ‘∀’ | ‘∃’

Note that, for PRED, CONST, and VAR they have corresponding production rules generated
for each FOL rule example. For example, for rule “∀x((Person(x) ∧ Drinks(x)) →
DependentOn(x,Caffeine))”, the production rules are

PRED → "Person" | "Drinks" | "DependentOn"
CONST → "Caffeine"

VAR → "x".

We show two example parse trees in Figure 10 and Figure 11.

B.3 NL-FOL ALIGNMENT CHECK

We recruit 6 graduate students to label 1K samples, where each sample is annotated by 3 annotators
on a 3-point scale: correct ,partial, and incorrect. We provide detailed instruction as follows:

You will evaluate how well the FOL rule aligns with the meaning of the NL sentence on a 3-point
scale: Correct, Partial, and Incorrect. Let’s use a running example to show you how to rate the
translation:

"""

NL: A turtle has a shell and can swim.

FOL: ∃x(Turtle(x) ∧ Shell(x) ∧ CanSwim(x))

"""

Your evaluation involves checking the following rubrics:

• Whether the rule has the right predicates, i.e., "Turtle", "Shell", and "CanSwim".
– Having a slightly different predicate name is fine (e.g., "Shell" instead of "hasShell");

this is still a Correct example.
– However, if some important notions in the NL are missing in the FOL (e.g., "Shell"

missing in the FOL) or some predicates in FOL are not present in the NL (e.g.,
"CanRun(x)" found in FOL), it is one Partial error.
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Table 4: List of prompt templates used for prompting GPT4 for NL-FOL pairs.

System
prompt

I want to create a dataset for translating natural language (NL) statements into first-order logic (FOL) rules.
You will help me to create a diverse set of NL-FOL pairs.

For natural language (NL) generation, you should:
1. Come up with a statement stating either complex or simple real-world commonsense facts
2. The statements are meaningful, and diverse from each other

For FOL rule generation:
1. You SHOULD USE the following logical operators: ⊕ (either or), ∨ (disjunction),
∧ (conjunction), → (implication), ∀ (universal), ∃ (existential), ¬ (negation),
↔ (equivalence)
2. You *SHOULD NEVER USE* the following symbols for FOL: "", " ̸=", "%", "="
3. The literals in FOL SHOULD ALWAYS have predicate and entities, e.g., "Rounded(x, y)" or "City(guilin)";
expressions such as "y = a ∨ y = b" or "a ∧ b ∧ c" are NOT ALLOWED
4. The FOL rule SHOULD ACCURATELY reflect the meaning of the NL statement
5. You SHOULD ALWAYS put quantifiers and variables at the beginning of the FOL
6. You SHOULD generate FOL rules with either: (1) no variables; (2) one variable "x"; (3) two variables "x",
"y"; or (4) three variables "x", "y" and "z"

Generation Format: you SHOULD ALWAYS generate the NL and FOL pairs in the following format
"""
— NL:
{your generated NL}
—
— FOL:
{your generated FOL}
—
"""

Initial
FOLIO
Few-shot
examples
prompt

— NL:
If someone is entire, then he is not serious, and vice versa.
— FOL:
∃x entire(x) ↔¬serious(x)

— NL:
If there is at least one people who is both not excited and not timid, then Jonathan is elderly.
— FOL:
∀x (¬excited(x) ∧ ¬timid(x)) → elderly(Jonathan)

— NL:
Someone who is eithor not fresh or entire is always not serious.
— FOL:
∀x (¬concerned(x) ∨ fresh(x)) → entire(John)

— NL:
If Nathalie is not blue, then Collier is entire.
— FOL:
¬blue(Nathalie) → entire(Collier)

— NL:
Someone is courteous and not elderly if and only if he is not excited and not various.
— FOL:
∃x (courteous(x) ∧ ¬elderly(x)) ↔ (¬excited(x) ∧ ¬various(x))

Negative
N-gram
prompt

They DO NOT involve concepts and terms (and the synonyms) such as "considered","person","either","water",
"if it has","if it is","it has a","is considered a","A person is"

FOL prompts They are [complex | simple] statements involving at least [1 | 2 | 3] logical variables

The statement involves diverse logical operators such as logical negation, logical xor and disjunction

Break-down
prompt [IMPORTANT] AVOID making long predicate names like "MoonShinesAtNight","SunShinesDuringDay"

• Whether the rule has the right quantifiers.

– You should only examine this item if the NL explicitly contains the following phrases:
If NL explicitly says "Every A has sth" or "For all A..." then the FOL must have "∀".
On the other hand, if it says "Some A has sth" or "There exists A that...", then the FOL
must have "∃". Failing to have the right quantifiers is one Partial error.
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Figure 10: CFG parse tree of FOL rule ∀x(Athlete(x) ∧ WinsGold(x,Olympics) →
OlympicChampion(x)).

Figure 11: CFG parse tree of FOL rule ∀x(Doctor(x) → HasMedicalDegree(x)).

– If NL does not have these explicit hints, then using either "∀" or "∃" is fine (e.g., the
turtle example above can use either "∀" or "∃")

• Whether the FOL rule has the same logical meaning as the NL sentence. This involves
comprehending the meaning FOL rule and comparing it against the NL sentence

– FOL misaligns with the NL meaning due to a wrong expression being used. It is one
Partial error if the FOL simply misaligns with but not contradicts the NL; but if the
meaning explicitly contradicts the NL, then it is an Incorrect example. E.g.:

* Using the wrong logic operators, e.g., "Turtle(x) ∨ Shell(x) " instead of "Turtle(x)
∧ Shell(x)", is an Incorrect example as the meaning is obviously different.

* Having the wrong implication, e.g., "A person has legs" translated into "HasLegs(x)
→ Person(X)", where it should be "Person(X) → HasLegs(x)". This is also an
Incorrect example.

– Caveat on "→" vs "∧" vs "↔": Sometimes these three operators can be used inter-
changeably to express the same meaning despite they are logically inequivalent. For
example,
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* "Turtle(x) → Shell(x) ∧ CanSwim(x)", "Turtle(x) ∧ Shell(x) ∧ CanSwim(x)", and
“Turtle(x) ↔ Shell(x) ∧ CanSwim(x)” all express a similar meaning, and should be
considered a Correct case.

* However, there are cases where they obviously lead to different meanings and this
should be considered one Partial error.

– Caveat on “∨” vs “⊕”: we know “A ∨ B” includes the case that A and B are both True,
whereas, “A ⊕ B” means either A or B is True but not both. So how to judge which
one is better in the alignment?

* If NL explicitly says “either A or B but not both” or something similar, then FOL
must use “⊕”, otherwise using “∨” is fine even if it does not reflect the reality. E.g.,
“water is solid or liquid” then it is fine to have “Water(x) ∨ Solid(x) ∨ liquid(x)”
even though we know it cannot be in two states at the same time.

* If NL does not explicitly say the above, but FOL contains “⊕”, then we need to
judge with common sense. For example, “Water(x) → Solid(x) ⊕ liquid(x)” also
aligns with the above despite no explicit hints in NL.

– Logic variable issues:

* Associating the wrong logic variables, e.g.: "if x is greater than y and y is greater
than z, then x is greater than z" translated to "GreaterThan(x, y) ∧ GreaterThan(y,
z) → GreaterThan(z, x)", where it should be "GreaterThan(x, y) ∧ GreaterThan(y,
z) → GreaterThan(x, z)". This is one Partial error.

* Redefining variables, e.g. “Turtle(x) ∧ Fish(x) ∧ CanSwim(x)”, where variable x
is defined with two unary predicates (or classes) where one does not subsume the
other one. This is one Partial error. For cases like “Animal(x) ∧ Turtle(x)”, it is a
Correct use because Animal subsumes Turtle

* Free/redundant logic variables, e.g.:
· “Person(x) ∧ Has(x, y)” — It has a free variable/redundant variable y, which is

one Partial error.
· “Person(x) ∧ Has(x, y) → Ownby(y, x)” — Note that this is a Correct use of

variables: variables do not need to be defined by unary predicates (or “classes”)
to be valid, e.g., “Tool(y)”, as long it appears at least twice in different literals.

By checking the above rubrics, you will rate the rule with one of the four ratings:

• Correct:

– The FOL rule aligns with the meaning of the NL sentence
– Possible slightly different predicate names or quantifiers.
– Some ambiguities in the usage of "→" vs "∧" vs "↔", but it does not lead to an

obviously different meaning

• Partial: one and only one of the following errors occur

– The FOL rule does not align with the NL in some parts but does not explicitly contradict
the NL

– Missing important predicates, or having obviously irrelevant predicates
– Wrong quantifier when the NL has explicit hints such as “For all. . . ” or “Some. . . ”
– Wrong use of variables, such as free/redundant variables, wrong variable association,

or redefining variables

• Incorrect:

– More than one Partial error was found in an example
– The FOL rule explicitly contradicts the NL meaning.

B.4 MALLS STATISTICS

General statistics. Figure 8 and Figure 9 show the top 40 frequent FOL terms and the literal count
distribution in MALLS.

Frequent FOL term pairs. Figure 7 shows the top 200 frequent FOL term pairs in MALLS.
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Table 5: The list of all atomic perturbations.

Operation Type Subtypes Original Perturbed

Label Change

Change Predicate P (A) ∧R(B) R(A) ∧R(B)

Change Term ∀x P (x) ∧ P (B)
∀y P (x) ∧ P (B)
∀x P (x) ∧ P (x)

Change Operator ∀x P (x) ∧ P (B) ∀x P (x) ∨ P (B)

Insert
Insert Term ∀x P (x) ∧ P (B)

∀x ∃y P (x) ∧ P (B)
∀x P (x) ∧ P (x, B)

Insert Negation P (A) ∧ P (B) ∧ P (C) P (A) ∧ ¬(P (B) ∧ P (C))
Insert Formula P (A) ∧ P (B) P (A) ∧ P (B) → R(C)

Delete
Delete Term ∀x ∀y P (x) ∧R(x, y) ∀y P (x) ∧R(x, y)

∀x ∀y P (x) ∧R(x, y) ∀x ∀y P (x) ∧R(y)
Delete Negation ¬(P (A) ∧ P (B)) ¬(P (A) ∧ P (B))
Delete Formula P (A) ∧ P (B) ∧ P (C) P (A) ∧ P (C)

C DETAILS ON ITERATIVE CORRECTION VIA RLHF

C.1 FOL RULE PERTURBATIONS AND SFT

Since we do not have the ground-truth steps X̂∆ for the real output x̂FOL, we generate synthetic steps
and the output sequence by randomly perturbing the FOL rules in MALLS.

We consider three types of atomic perturbations: label change, insert, and delete. As shown in
Table 5, label change can be conducted on any terms or logic operators in a FOL rule; insert operation
is applicable to term, negation, and formula; and delete operation can be considered as the inverse
of insertion. Note that, we restrict the perturbations to only produce valid rules. The reasons are
two-fold: (1) the invalid rule space is effectively the space of all possible strings which is prohibitive
to explore; and (2) we found GPT-3.5 rarely generates syntactically invalid rule, thus, limiting the
synthetic data in the valid rule space will already cover a wide range of the actual GPT-3.5 outputs.

Perturbation process. Given a ground-truth pair ⟨xNL,xFOL⟩, a parser (Appendix B) will parse
xFOL into an abstract syntax tree (AST). We randomly perturb the AST with atomic operations in
Table 5 and for NPerturb times. Here, NPerturb is also picked randomly from a list of numbers, and in
the experiments, we set it to {0, 1, 2, ..., 10}. In the case NPerturb = 0, the perturbed rule remains the
same as the ground truth and the step is simply “No changes needed”; this is effectively a negative
example that penalizes the model for over-correcting. During training, we found LOGICLLAMA still
tends to over-correct the samples as negative samples by default account for around 10% of the data,
so we manually set the probability of negative sample generation to 0.2.

Iterative correction. Depending on the capacity of the LLM, it might be difficult for the model to
learn to output many steps (say 10) within one generation. We propose to break down the correction
into multiple generations, where the model is tasked to output at most NCorrect steps of correction
given the perturbed rule and the previous corrections up to NPerturb −NCorrect steps. For example, the
right column of Figure 2 shows an iterative correction sample: it requires total NPerturb = 4 steps
to correct the rule, but we picked a correction steps of NCorrect = 2; this means the perturbed rule
together with the previous two steps are treated as input and the last two steps are the output. Similar
to NPerturb, we randomly choose NCorrect from a list, where we set it to {0, 1, 2, 3}. And apparently,
NCorrect should be no greater than the total steps NCorrect = min(NCorrect, NPerturb).

SFT correction. For this (T3) task, we generate the synthetic dataset consisting of 150K examples in
the form of ⟨xNL,xFOL, X̂∆,prev, X̂∆,corr, x̂FOL⟩ using the above method, where X̂∆,prev, X̂∆,corr, x̂FOL
are the previous correction steps, target correction steps and the perturbed FOL rule respectively. We
then fine-tune the LLaMA-7B/13B with LoRA again using the standard autoregression objective: the
input is [xNL, x̂FOL, X̂∆,prev] and the output is [X̂∆,corr,xFOL].

C.2 SUMMARY OF TRAINING TASKS

We summarize the input, output, and the training objectives of (T1-T4) in Table 6.
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Table 6: Summary of input, output and objectives of task (T1-T4)

Task Input Output Objective

(T1)
Direction Translation xNL xFOL Eq.(2)

(T2)
Naive Correction [xNL, x̂FOL] xFOL Eq.(2)

(T3)
SFT Correction [xNL, x̂FOL, X̂∆,prev] [X̂∆,corr,xFOL] Eq.(2)

(T4)
RLHF Correction [xNL, x̂FOL, X̂∆,prev] [X̂∆,corr,xFOL] Eq.(3)

For task (T1-T3), a standard autoregressive loss is used: where the model is trained to predict the
token xt given the previous tokens x<t with cross-entropy loss

L(θ) = Ex,t[− log pθ(xt,out|x<t,out,xin)]. (2)

For (T1-T3), the xin and xout are shown in 6.

For task (T4), the RLHF objective is used: we implement a reward model RM(xFOL,x
′
FOL) that

measures the logical equivalence between two FOL rules and train the model to maximize the reward
with the PPO algorithm (Schulman et al., 2017). Specifically, the full reward is computed as

R(xFOL,x
′
FOL) = RM(xFOL,x

′
FOL)− β ∗ log

πθ(xFOL, X̂∆,corr|xNL, X̂∆,prev, x̂FOL)

πref(xFOL, X̂∆,corr|xNL, X̂∆,prev, x̂FOL)
, (3)

where the policy πθ is the language model fθ with learnable parameters θ and πref is the reference
model from (T3) with parameters frozen. The second term in Eq.(3) is the KL-divergence between
the learned policy and its original policy from (T3) and its strength is controlled by a hyperparameter
β.

D COMPUTING LOGICAL EQUIVALENCE AND BLEU SCORE

logical equivalence. To train and evaluate LOGICLLAMA, we compute the logical equivalence
score (LE) that measures the similarity between two rules R and R′. The computation is done in three
steps: (1) finding the literals of R and R′, that is P = [p1, p2, ...] and Q = [q1, q2, ...]; (2) binding
the literals in P to those in Q (or vice versa); and (3) generating the truth tables for the binding and
computing the score.

Finding the literals of a FOL rule is straightforward after we parse it into a CFG tree: we extract
all the subtrees whose root label is L and remove possible duplicate literals. In the case where the
parsing fails, we simply skip the rest of the computation and return a score of zero, as that indicates
the rule is syntactically invalid.

The main challenge here is to determine the literal binding between P and Q. Using Figure 4
as the example, R has literals P = [Country(x),InEU(x),EUCountry(x)] and R′ has lit-
erals Q = [LocatedInEU(y),EUCountry(y)]. We want to find the one-one matching for
each of the literals, such that we can compare the truth tables. First, we address the case where
|P| ̸= |Q| by adding DUMMY inputs to the shorter one, and in this example, it is Q which be-
comes [LocatedInEU(y),EUCountry(y),DUMMY1]. To match the literals, we first determine
the matching strategy. Note that there are in total !|Q| numbers of bindings (permute Q when keeping
P) and there are many strategies to measure the match: for example, one can enumerate all bindings
and compute the “average” score of all bindings or finding the worst case of the binding. Here, we
choose to find the binding that yields the highest LE score, that is the “best” case binding. To do this,
we implement a simplistic greedy search algorithm that iterates over each literal in P and finds the
closest literal in Q in terms of edit distance. To avoid exponential numbers of bindings, we limit
the search depth to 1000. Finally, given a binding between P and Q, we compute the LE score by
comparing the rows in their truth tables as the one shown in Figure 4.
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FOL BLEU score. We use a specialized tokenizer for computing the FOL BLEU score. This
tokenizer splits every quantifier, operator, and term into tokens. The split token sequence is the same
as the leave nodes in the CFG parse tree (Figure 10 and Figure 11) listed in pre-order.

E EXPERIMENTAL SETTINGS

For all training tasks, we fine-tune LOGICLLAMA using LoRA with rank=8, α = 8,
and dropout 0.05 on all the linear layers in decoder blocks “[q_proj,k_proj,v_proj,o_proj,
gate_proj,down_proj,up_proj]”. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with
lr = 0.0003. For the generation, we use a cutoff length of 256 for (T1) and (T2); and 1024 for (T3)
and (T4), where 748 and 256 are allocated for the input prompt and output sequences respectively. For
(T1-T3), the generation uses temperature=0.1, top_p=0.75, top_k=40 and num_beams=1. For (T4),
we adopt the setting suggested in the TRL library, which uses top_k = 0.0, top_p = 1.0, do_sample
= True and no eos token; this effectively lets the model sample tokens from the logits and always
generate to the full length. This generation configuration is needed to compute a valid KL divergence
score between the actor model and the reference model (a copy of the same model before training).

Recall that (T4) generates corrections in multiple rounds of generations, where previous corrections
are appended to the initial prompt and fed to the model again as the input prompt (Figure 2). For
all experiments, we set the max rounds of generation to 10, except for Table 3 which examines
the model’s performance by varying the max rounds. Also, we found that GPT-3.5 can sometimes
generate syntactically invalid FOL rules that lie outside of rule space simulated in (T3). We address
this by first correcting the GPT-3.5 response with naive correction (T2) and then feeding the output
to (T4).
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