
OmniPrint - Appendix

Haozhe Sun∗, Wei-Wei Tu#+, Isabelle Guyon∗+

∗ LISN (CNRS/INRIA) Université Paris-Saclay, France
4Paradigm Inc, Beijing, China

+ ChaLearn, California, USA
omniprint@chalearn.org

A Datasheet for dataset for OmniPrint-meta[X] datasets

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific
gap that needed to be filled? Please provide a description.

This dataset was created to be a drop-in replacement of Omniglot, which is more challenging.
Omniglot can hardly push further the state-of-the-art since recent methods achieved almost perfect
performances. Furthermore, Omniglot was not intended to be a realistic dataset: the characters were
drawn online and do not look natural. The associated task would be the classical N -way-K-shot
few-shot classification task [6, 27, 12].

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

Haozhe Sun created the dataset, under the supervision of Isabelle Guyon. The work was performed
at LISN laboratory, Université Paris-Saclay, France, in the TAU team, as part of the HUMANIA
project, funded by the French research agency ANR. ChaLearn also supported the development of
the software.

Who funded the creation of the dataset? If there is an associated grant, please provide the name
of the grantor and the grant name and number.

ANR (Agence Nationale de la Recherche, National Agency for Research, https://anr.fr/),
grant number 20HR0134 and ChaLearn (http://www.chalearn.org/) a 501(c)(3) non-for-profit
California organization.

Any other comments?

Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description.

The instances are 32×32 RGB images of synthetic printed characters.

How many instances are there in total (of each type, if appropriate)?

OmniPrint-meta[X] is a collection of five datasets. These 5 datasets, called OmniPrint-meta[1-5],
share the same set of characters and data split and only differ in transformations and styles. For each

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://anr.fr/
http://www.chalearn.org/

OmniPrint-meta[X] dataset, there are 1409 classes (characters) in total. Each class has 20 image
instances. In consequence, each OmniPrint-meta[X] dataset has 1409× 20 = 28180 images. There
are 28180× 5 = 140900 images in total.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this representa-
tiveness was validated/verified. If it is not representative of the larger set, please describe why not
(e.g., to cover a more diverse range of instances, because instances were withheld or unavailable).

These datasets are synthesized from the data synthesizer OmniPrint, thus they can be viewed as a
sample of instances from all the possible images given the nuisance parameters (fonts, styles, noises,
etc.). OmniPrint-meta[X] are representative of such images because the synthesis parameters of
each instance were uniformly sampled, no further selection was performed. The involved scripts
are Arabic, Armenian, Balinese, Latin, Bengali, Devanagari, Ethiopic, Georgian, Greek, Gujarati,
Hebrew, Hiragana, Katakana, Khmer, Lao, Mongolian, Myanmar, N’Ko, Oriya, Russian, Sinhala,
Tamil, Telugu, Thai and Tibetan.

What data does each instance consist of? "Raw" data (e.g., unprocessed text or images) or
features? In either case, please provide a description.

Each instance is a 32×32 RGB image. Each image contains one single character from a certain script,
rendered in a particular way (background, foreground, distortions, noises).

Is there a label or target associated with each instance? If so, please provide a description.

Yes, there is a label (character) associated with each instance. Furthermore, the metadata is provided
for each instance, which can also serve as labels for specific tasks. The metadata includes e.g., the
font, background, stroke width (if applicable), blur radius, margins, rotation angle, shear, text color,
etc., and the alphabet of the character.

Is any information missing from individual instances? If so, please provide a description, ex-
plaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.

No. All of the metadata is provided for each instance.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit.

All relationships are contained in the labels and metadata, all provided.

Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them.

Yes, there is a recommended data split in the context of N -way-K-shot learning, between meta-train,
meta-validation and meta-test. For each of the 5 OmniPrint-meta[X] datasets, there are 1409 classes
(characters), each class contains 20 image instances. The first 900 classes belong to meta-train,
then 149 classes belong to meta-validation, the last 360 classes belong to meta-test. This data split
is chosen in order to imitate the proportion of meta-train/meta-validation/meta-test of the popular
Vinyals split [33] of Omniglot [16]. The recommended data split is provided via a data loader which
forms the episodes of few-shot learning.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

We intentionally introduced various transformations and noises to each image instance. The transfor-
mation parameter space is large so there is little chance that two instances are identical.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees
that they will exist, and remain constant, over time; b) are there official archival versions of the
complete dataset (i.e., including the external resources as they existed at the time the dataset was

2

created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources
that might apply to a future user? Please provide descriptions of all external resources and any
restrictions associated with them, as well as links or other access points, as appropriate.

The 5 datasets OmniPrint-meta[X] are self-contained. They will exist, and remain constant, over time
once we release them after the NeurIPS 2021 meta-learning challenge.

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient confidentiality, data that includes the content of
individuals’ non-public communications)? If so, please provide a description.

The OmniPrint-meta[X] datasets were considered confidential before the NeurIPS 2021 meta-learning
challenge, they have been publicly released.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.

No.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions within
the dataset.

No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.

No.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union
mem- berships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)? If so, please
provide a description.

No.

Any other comments?

Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If
so, please describe how.

Each instance is synthesized by OmniPrint. Each instance is an image and is directly observable.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mechanisms
or procedures validated?

The data are synthesized using the data synthesizer OmniPrint. The involved Unicode characters
were manually selected from the Unicode standard, which constitutes a set of characters from several

3

languages around the world. The involved fonts were downloaded from a manually-defined list of
URLs, the downloaded fonts were then filtered by a python program in order to filter corrupted
fonts. Several distortions and noises were involved, including affine and perspective transformations,
random elastic transformations, natural background, foreground text filling, etc.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

The data is synthesized by a data synthesizer OmniPrint. The sampling is uniformly random in the
given transformation parameter space.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?

The data is synthesized by a computer software. However the design and implementation of the
software, the choice of characters and fonts involve the authors of this paper.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created.

The five datasets were synthesized on May 22, 2021.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link or
other access point to any supporting documentation.

N/A

Does the dataset relate to people? If not, you may skip the remainder of the questions in this
section.

No.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?

N/A

Were the individuals in question notified about the data collection? If so, please describe (or
show with screenshots or other information) how notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact language of the notification itself.

N/A

Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and provided,
and provide a link or other access point to, or otherwise reproduce, the exact language to which the
individuals consented.

N/A

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a link
or other access point to the mechanism (if appropriate).

N/A

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis)been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.

N/A

4

Any other comments?

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remainder of the
questions in this section.

No preprocessing/cleaning/labeling was performed. The datasets are made available as they were
synthesized. No feature extraction or removal of instances was done.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.

N/A

Is the software used to preprocess/clean/label the instances available? If so, please provide a
link or other access point.

N/A

Any other comments?

Uses

Has the dataset been used for any tasks already? If so, please provide a description.

No, however a variant of these datasets will be used by the NeurIPS 2021 meta-learning challenge.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.

Yes, the link is https://github.com/SunHaozhe/OmniPrint-datasets. This repository is also used to
announce any necessary information related to the OmniPrint datasets e.g., potential changes of the
dataset hosting address.

What (other) tasks could the dataset be used for?

Besides few-shot learning classification tasks, the five OmniPrint-meta[X] datasets can be used for
classification tasks of a large number of characters, and for transfer learning (each dataset being used
either as a source domain or a target domain). Furthermore, as the metadata can serve as labels,
other kinds of classification or regression problems can also be considered e.g., classification of fonts,
classification of languages, regression of rotation angle, regression of horizontal shear, etc. Finally,
the datasets can be used to study disentangling the label (class character) from the nuisance variables
(font, style, distortions).

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? For example, is there anything that a future
user might need to know to avoid uses that could result in unfair treatment of individuals or groups
(e.g., stereotyping, quality of service issues) or other undesirable harms (e.g., financial harms, legal
risks) If so, please provide a description. Is there anything a future user could do to mitigate these
undesirable harms?

The datasets can be used without further considerations.

Are there tasks for which the dataset should not be used? If so, please provide a description.

5

https://github.com/SunHaozhe/OmniPrint-datasets

Not that we know of.

Any other comments?

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.

The datasets are made available to everyone via the Internet.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

The OmniPrint-meta[X] datasets are publicly released via Kaggle Datasets. The digital object
identifier (DOI) is 10.34740/kaggle/dsv/2763401. The access information and any necessary updates
are announced via https://github.com/SunHaozhe/OmniPrint-datasets.

When will the dataset be distributed?

The datasets have been released after the NeurIPS 2021 meta-learning challenge.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU,
as well as any fees associated with these restrictions.

The datasets OmniPrint-meta[1-5] are distributed via Kaggle datasets. They are licensed under a
Creative Commons license CC BY 4.0 https://creativecommons.org/licenses/by/4.0/. This comes
with the following guarantee disclaimer: Unless otherwise separately undertaken by the Licensor, to
the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no
representations or warranties of any kind concerning the Licensed Material, whether express, implied,
statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a
particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or
absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not
allowed in full or in part, this disclaimer may not apply to You. To the extent possible, in no event
will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or
otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other
losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material,
even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages.
Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.

Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? If so, please describe these restrictions, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.

No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.

No.

Any other comments?

Maintenance

6

https://www.kaggle.com/datasets
https://github.com/SunHaozhe/OmniPrint-datasets
https://creativecommons.org/licenses/by/4.0/

Who is supporting/hosting/maintaining the dataset?

The authors of this paper are responsible for supporting the datasets.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The preferred way to contact the maintainers is to raise issues on
https://github.com/SunHaozhe/OmniPrint-datasets. In case of emergency, the authors of
this paper can be contacted via email: omniprint@chalearn.org.

Is there an erratum? If so, please provide a link or other access point.

Any necessary information or updates will be accessible via https://github.com/SunHaozhe/OmniPrint-
datasets.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by whom, and how updates will be communicated to
users (e.g., mailing list, GitHub)?

No. New needs will be met by synthesizing new datasets.

If the dataset relates to people, are there applicable limits on the retention of the data associ-
ated with the instances (e.g., were individuals in question told that their data would be retained
for a fixed period of time and then deleted)? If so, please describe these limits and explain how
they will be enforced.

N/A

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users.

Any necessary information or updates will be accessible via https://github.com/SunHaozhe/OmniPrint-
datasets.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified? If
so, please describe how. If not, why not? Is there a process for communicating/distributing these
contributions to other users? If so, please provide a description.

Users are free to extend or augment the dataset for their purposes. They can also use the data
synthesizer OmniPrint to directly synthesize new datasets.

Any other comments?

7

https://github.com/SunHaozhe/OmniPrint-datasets
https://github.com/SunHaozhe/OmniPrint-datasets
https://github.com/SunHaozhe/OmniPrint-datasets
https://github.com/SunHaozhe/OmniPrint-datasets
https://github.com/SunHaozhe/OmniPrint-datasets

B Experimental details of the few-shot learning use case

This section provides the experimental details of Section 4.1 of the main paper.

B.1 Data split

We split the data into 900 characters for meta-train, 149 characters for meta-validation, 360 characters
for meta-test. The full details are provided with the code. The implementation of the few-shot
learning data loader which forms the few-shot learning episodes is inspired by [18] which is under
MIT License.

B.2 Evaluation and reproducibility

MAML [6] and Prototypical Networks [27] were trained during 300 epochs, where each epoch is
defined to be 6 batches of episodes, each batch contains 32 episodes. During meta-training, the model
checkpoints were evaluated on meta-validation episodes every 5 epochs. Only the checkpoint that has
the highest accuracy on meta-validation episodes during training is selected to be tested on meta-test
episodes.

The backbone neural network architecture is the same for each combination of method and dataset
except for the last fully-connected layer, if applicable. It is the concatenation of three modules of
Convolution-BatchNorm-Relu-Maxpool.

The metric of interest is the average classification accuracy of 1000 randomly generated meta-test
episodes (of the best checkpoint on meta-validation episodes). The reported accuracy and 95%
confidence intervals in the main paper are computed with 5 independent runs (5 random seeds). The
random seeds were fixed in advance, no cherry-picking was performed afterwards.

B.3 Baseline implementation and compute resources

The implementation of MAML baseline [6] uses the Higher library [9] of PyTorch [20]. It is
adapted from [8] which is under Apache License Version 2.0. The implementation of Prototypical
Networks [27] is adapted from [5] which is under MIT License.

The experiments were run on an internal cluster which is managed through SLURM [13]. The
involved GPUs are Tesla K80, Tesla V100-PCIE-32GB, Tesla V100-SXM2-32GB. Each run uses one
single GPU. The experiments involve 5 datasets OmniPrint-meta[1-5], 3 baseline methods (MAML,
PyTorch, Naive), 4 settings (5-way-1-shot, 5-way-5-shot, 20-way-1-shot, 20-way-5-shot), 5 random
seeds. The total amount of computation time is about 280 hours.

B.4 Hyperparameters

The baseline methods used the default or recommended hyperparameters of the original paper/code.
A small number of hyperparameters e.g., learning rates, were adjusted according to preliminary
experiments. No large-scale hyperparameter optimization was performed.

While the full details are provided with the code, we highlight some important hyperparameters:

• MAML [6] 5 inner steps were used for meta-train, meta-validation and meta-test. The meta
learner is optimized using Adam [15] with the learning rate 10−3. The inner loops were
optimized using SGD [23] with the learning rate 10−1.

• Prototypical Networks [27] By following the original paper, each meta-train episode is a
60-way-K-shot regardless the meta-validation/meta-test setting. No learning rate decay was
used. The backbone neural network was optimized using Adam [15] with the learning rate
5× 10−4.

• Naive The neural network for each meta-test episode was trained from scratch (random
initialization) with 20 gradient steps. It was optimized using Adam [15] with the learning
rate 10−4.

8

B.5 Data synthesis

The background images used for OmniPrint-meta5 dataset were taken using a personal mobile phone.

C Fonts

Fonts are usually protected under their own licenses. We do not provide any warranty for this. Please
be aware that some fonts cannot be redistributed or modified. This is the reason why we do not
redistribute fonts with our code. However, we provide the font preparation scripts that we used. These
fonts were downloaded from a manually-collected list of URLs.

We provide the font preparation scripts. If some URLs fail, please consider re-run the scripts at a
later time (possibly related to network problems). If some URLs continue to fail, please contact the
authors of this paper (via GitHub Issues page or via email: omniprint@chalearn.org). On the other
hand, the users are free to collect their own set of fonts depending on their needs.

We gathered a list of URLs and prepared scripts which automatically download, filter and format the
fonts. These scripts also record metadata of these fonts. The workflow of the font preparation scripts
can be summarized into 2 stages:

• Downloading Download files from the given URLs, logs will be generated to keep track
of potential failures. After unzipping, reformat file names which handles decoding error,
converts file names to lower case, remove invalid symbols and translate Chinese file names.
Generate metadata about sources of each font: some URLs contain several fonts, the same
font can also be downloaded from different URLs.

• Building Filter out corrupted or unwanted fonts and move all font files to the dedicated
directory. Move all license files to the dedicated directory. Build the so-called index files for
each alphabet. Each alphabet has an index file which contains a list of fonts that support all
of the characters it contains. Generate the lists of variable fonts and save the metadata of
fonts e.g., family name, style name, the range of possible stroke width (if any), etc. into a
csv file.

Importing new fonts is easy in OmniPrint.

1. Move new fonts to the directory fonts/fonts/

2. Optionally, update the index file under the directory fonts/index/ if users want to randomly
select fonts

3. Optionally, update the metadata of fonts under the directory fonts/metadata/

4. Users should not forget to include license files in the directory fonts/licenses/

If users want to collect their own set of fonts, please be aware that some fonts can produce false
rendering (empty image, square as a placeholder or even random symbols) without reporting any
warnings or errors.

D Pre-rasterization transformations

The rendering process of modern digital fonts (TrueType/OpenType) is divided into two phases by
the rasterization. Digital fonts are originally stored as anchor points expressed in font units within the
EM square. Before being able to be rendered into bitmaps, the anchor points are scaled to be aligned
with the device pixel grid. The grid-fitting (also called hinting) and rasterization are performed by the
FreeType engine (Figure 1).

Pre-rasterization transformations refer to direct manipulation of the anchor points of the digital font
files. Modern fonts (e.g., TrueType or OpenType) are made of straight line segments and quadratic
Bézier curves, connecting anchor points. OmniPrint uses the low-level Freetype font rasterization
engine [31] (Python binding [22] which is under BSD license), which makes direct manipulation
of anchor points possible. With pre-rasterization transformations, one can deform the characters
without incurring aberrations due to aliasing and generate some local deformations that would be

9

Figure 1: Conversion process from TrueType/OpenType fonts to digital images. In OmniPrint,
pre-rasterization elastic transformation is performed on the original anchor points (yellow), linear
transformations of anchor points are performed on the scaled anchor points (green).

difficult to achieve with post-rasterization transformations (digital image processing) i.e., natural
elastic transformation, variation of character proportion, structured deformation of specific characters,
etc.

Algorithm 1: Pre-rasterization elastic transformation
Input: A sequence of characters S, a digital font F , a probability distribution D
Output: Rendered text image I
// C denotes characters, P denotes anchor points, the function load loads the
initial anchor points of a digital font for a certain character. The function
enumerate returns the index as well as the value of an array.
// First pass to compute bounding box of the sequence

1 xmin, xmax, ymin, ymax = 0, 0, 0, 0
2 Initialize cache // In order to save random vibration
3 for C in S do
4 for P in load(C, F) do
5 xdelta ∼ D
6 ydelta ∼ D
7 P .x← P .x + xdelta
8 P .y← P .y + ydelta
9 cache.append((xdelta, ydelta))

10 xmin, xmax, ymin, ymax← update(xmin, xmax, ymin, ymax, P)
11 end
12 end
13 I ← build_image(xmin, xmax, ymin, ymax)

// Second pass to render text
14 for i, C in enumerate(S) do
15 for j, P in enumerate(load(C, F)) do
16 P .x← P .x + cache[i][j][0]
17 P .y← P .y + cache[i][j][1]
18 end
19 I ← fill_image(I, C)
20 end

The implemented pre-rasterization transformations are listed as follows:

• Elastic transformation (pre-rasterization) corresponds to random vibration of indepen-
dent anchor points. The pseudocode is shown in Algorithm 1. Of note is that elastic
transformations are implemented in both pre-rasterization phase and post-rasterization
phase, which can also be used together. All the elastic transformations mentioned in the
main paper refer to pre-rasterization elastic transformation.

• Stroke width variation Variation of the stroke width e.g., thinning or thickening of the
strokes. Only variable fonts support stroke width variation, each variable font has its own
continuous range of permissible stroke width.

• Variation of character proportion e.g., variation of length of ascenders and descenders by
some font units.

10

• Linear transformations Rotation, shear, scaling, stretch are assembled into a 2× 2 matrix,
see Equation 1. θ denotes the angle (in degree) of counter clockwise rotation, λ1, λ2 denote
the shear parameters along horizontal axis and vertical axis respectively, s1, s2 denote the
scaling (stretch) parameters along horizontal axis and vertical axis respectively. If s1 = s2,
this corresponds to a scaling operation, otherwise this corresponds to a stretch operation
along horizontal or vertical axes. The stretch along main diagonal axis and anti-diagonal
axis by setting β = γ ∈ R or λ1 = λ2 ∈ R [26]. The four parameters α, β, γ, δ allow
inserting an arbitrary linear transform into the default linear transformation pipeline. Users
are also allowed to directly set the values of a, b, d, e i.e., the composed linear transformation
matrix L.

L =

(
a b
d e

)
=

(
cos θ − sin θ
sin θ cos θ

)(
1 λ1
λ2 1

)(
α β
γ δ

)(
s1 0
0 s2

)
=

(
s1((α+ γλ1) cos θ − (αλ2 + γ) sin θ) s2((β + δλ1) cos θ − (βλ2 + δ) sin θ)
s1((α+ γλ1) sin θ + (αλ2 + γ) cos θ) s2((β + δλ1) sin θ + (βλ2 + δ) cos θ)

) (1)

In order to add new pre-rasterization transformations, users can edit the function render_lt_text in the
script freetype_text_generator.py. More specifically, this function contains 2 passes over the sequence
of characters to synthesize (a sequence containing a single character is a special case), the first pass
computes the bounding box, the second pass performs the actual rendering. In each pass, users can
loop over the anchor points of each character and perform the required transformations accordingly
in the font unit space [3, 30, 1]. Algorithm 1 shows an example.

E Post-rasterization transformations

• Translation is performed, if any, when the foreground text is blended into the background.

• Perspective transformations can be used to imitate the effect of different camera view-
points. A perspective transformation is generally parameterized by a 3 × 3 matrix in
homogeneous coordinates. The homogeneous matrix coefficients are computed from 4 pairs
of 2D points in the two projection planes by solving a linear system.

• Morphological image processing is a set of operations on the shape of the character and
they operate on binary images (foreground vs background). In total, 7 morphological
transformations are available via OpenCV [4]: morphological erosion, morphological
dilation, morphological opening, morphological closing, morphological gradient, Top Hat,
Black Hat.

– Morphological erosion can be used to thin the stroke width in the post-rasterization
phase. It erodes away the boundaries of foreground text and it can detach some
previously connected strokes. The principle is to apply a 2D convolution, a pixel in
the foreground text layer will be kept only if all the neighbor pixels are within the
foreground area, otherwise it is eroded. The neighborhood is defined by a convolution
kernel whose shape can be selected among rectangle, ellipse or cross-shaped.

– Morphological dilation can be used to thicken the stroke width in the post-rasterization
phase and join detached strokes, which is the opposite of morphological erosion. A pixel
will be put into the foreground if at least one neighbor pixel is within the foreground
area.

– Morphological opening is the morphological erosion followed by morphological
dilation. It can remove small pixel noises in the background, if any.

– Morphological closing is the morphological dilation followed by the morphological
erosion, which is the opposite of morphological opening. It can close small holes inside
the foreground text, if any.

– Morphological gradient is the difference between morphological dilation and mor-
phological erosion of the input image. It can render hollow text in the post-rasterization
phase.

11

– Top Hat is the difference between the input image and the morphological opening of
the input image.

– Black Hat is the difference between the morphological closing of the input image and
the input image.

• Gaussian blur is implemented using scikit-image [34]. In the synthesis pipeline, Gaussian
blur is usually applied before downsampling to avoid aliasing.

• Variation of contrast, brightness, color enhancement, sharpness is implemented using
Imgaug [14].

• Elastic transformation (post-rasterization) [25, 14] moves pixels locally around using
displacement field. Depending on parameters, this transform can produce pixelated images
or smooth deformation.

• Foreground filling Foreground text can be filled either by uniform color or by natural
image/texture. The sampling distribution (Figure 2) of random color is from [36] (MIT
License). When using random color for both foreground text and background, OmniPrint
automatically ensures that foreground and background colors are visually distinguishable by
thresholding the Delta E value (CIE2000). The computation of the Delta E value (CIE2000)
is enabled by [29] (BSD-3-Clause License).

• Text outline can be generated and filled either by uniform color or by natural image/texture.

• Background blending can be done in two ways: (1) naively paste the foreground text
onto the background while considering the mask; (2) Poisson Image Editing [21] which
ensures seamless blending, this is particularly useful in case of natural background. The
implementation is from [10], which is under Apache License 2.0. Background can be filled
by uniform color, natural image/texture or uniform color augmented with a random regular
polygon.

Figure 2: Kernel density estimation of the marginal color distribution. Each curve is the esti-
mated distribution of one color channel.

New post-rasterization transformations can be added to the image synthesis pipeline. For example, if
one wants to add a transformation called my_transform.

1. Create a Python script called my_transform.py under the directory transforms

2. Implement the desired functionalities in my_transform.py, which contains a function called
transform. The first two positional parameters of the function transform should be the
image and its corresponding mask (the mask is used for masking foreground text layer
such that only the text itself will be pasted onto the background). The image is a RGB
PIL.Image.Image object where text is black (0) and background is white (255). The mask is

12

a grayscale PIL.Image.Image object where text is white (255) and background is black (0).
In principle, the mask should undergo the same operations as the image while taking into
account the difference in image mode and black/white convention. The function transform
can, of course, accept other parameters, which is usually the case. The output of the function
transform is a tuple of size 2: the first is the transformed image, the second is the transformed
mask.

3. Edit the script __init__.py under the directory transforms, add one line: from trans-
forms.my_transform import transform as my_transform

4. Edit the script data_generator.py to insert the implemented transform at appropriate location.
For example, img, mask = my_transform(img, mask)

5. It is recommended to edit the argument parsing function of the entry script run.py, which al-
lows specifying parameters of the newly implemented transformation via command line. It is
also recommended to wrap img, mask = my_transform(img, mask) under data_generator.py
by something like if args.get(my_transform) is not None:, which allows to activate and
deactivate the newly implemented transformation.

F Alphabets

Here we present the character selection criteria:

• For Latin script, we included basic uppercase and lowercase letters, all the variants in
different European languages as well as the International Phonetic Alphabet. They are
classified into basic Latin uppercase, basic Latin lowercase, Latin-1 Supplement, Latin
Extended-A, Latin Extended-B, IPA letters and IPA for disordered speech and sinology, as
defined in Unicode standard.

• Chinese characters, also known as CJK Unified Ideographs, are numerous and their usage in
real life are extremely imbalanced. In consequence, we only included Chinese characters
from Table of General Standard Chinese Characters [2]. These Chinese characters are
divided into three levels containing 3500, 3000 and 1605 characters respectively. Characters
in group 1 and 2 (the first 6500) are designated as common. Different from other writing sys-
tems, the distinction between simplified Chinese characters, traditional Chinese characters,
Japanese Kanji and Korean Hanja is only handled by fonts in principle, because many of
them share the same code points. The only way to distinguish them is the fonts’ rendering.
Generally, the fonts that were designed for simplified Chinese characters should never be
used when rendering traditional Chinese text or Japanese text, and vice versa. Otherwise, it
can be unintelligible or be unacceptable for native speakers. To avoid this overhead, we only
aim to render simplified Chinese characters.

• For Japanese, all of Hiragana and Katakana are included. Note that each letter of these two
scripts appears twice in the Unicode standard, one corresponds to the normal-sized version,
the other is the smaller version. We only included the normal-sized versions.

• For Korean, there are up to 11172 unique syllabic blocks, we only included 2350 syllabic
blocks which are assumed to be commonly used.

• All letters of Cyrillic script are not included. Only modern Russian alphabet is included,
which consists of 66 upper case and lower case letters.

• Writing systems like Abjad (Arabic, Hebrew, etc.) and Abugida (Thai, Lao, Tibetan,
Devanagari, Bengali, etc.) are only partly included. Typically, we only included consonants,
independent vowels and digits of these languages. For these scripts (Khmer, Balinese,
Bengali, Devanagari, Gujarati, Myanmar, Oriya, Sinhala, Tamil, Telugu, Tibetan, Thai and
Lao.), dependent vowel signs were excluded, independent vowels were included if there are
any.

• Even though the Mongolian script has been adapted to write languages such as Oirat and
Manchu, we only included basic Mongolian letters and Mongolian digits.

• For the Arabic script, we only included the 29 Arabic letters. For the Hebrew script, we only
included the 27 Hebrew letters.

• All of the Ethiopic syllables available in the Unicode standard are included.

13

• Common punctuations and symbols, ASCII digits, some musical symbols and some mathe-
matical operators are also included. However, neither of the collected fonts fully support
these musical symbols.

G Accessibility

The NeurIPS foundation shall not bear any responsibility. The diffusion of the code and data will be
done by the authors, who will be responsible for maintaining them and resolving any dispute.

• The code of the OmniPrint data synthesizer will be made available on Github under
an open source MIT license https://opensource.org/licenses/MIT. A specific guar-
antee disclaimer is associated with the license: THE SOFTWARE IS PROVIDED "AS
IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

• The datasets OmniPrint-meta[1-5] will be distributed via the UCI repository
and/or Kaggle datasets. They will be licensed under a Creative Commons li-
cense CC BY 4.0 https://creativecommons.org/licenses/by/4.0/. This comes
with the following guarantee disclaimer: Unless otherwise separately
undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no
representations or warranties of any kind concerning the Licensed
Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability,
fitness for a particular purpose, non-infringement, absence of
latent or other defects, accuracy, or the presence or absence of
errors, whether or not known or discoverable. Where disclaimers
of warranties are not allowed in full or in part, this disclaimer
may not apply to You. To the extent possible, in no event will the
Licensor be liable to You on any legal theory (including, without
limitation, negligence) or otherwise for any direct, special,
indirect, incidental, consequential, punitive, exemplary, or other
losses, costs, expenses, or damages arising out of this Public
License or use of the Licensed Material, even if the Licensor has
been advised of the possibility of such losses, costs, expenses, or
damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

In general, modern digital fonts are protected under their own licenses, we do not provide any
warranty for this. Some fonts cannot be redistributed or modified. However, the users are free to
collect or make their own fonts.

The code1 and datasets2 have been publicly released after the NeurIPS 2021 meta-learning challenge.
The hosting platform of the datasets OmniPrint-meta[1-5] is Kaggle Datasets, DOI for datasets is
10.34740/kaggle/dsv/2763401, metadata is accessible on the dataset hosting page.

Kaggle Datasets make data available for an unlimited time period. The authors will verify that the
data are properly accessible for at least three years and change venue in case of a problem. Likewise
GitHub has no time limitations in terms of code hosting. The authors will maintain the code and
address issues for at least three years. Users will be encouraged to post GitHub issues in case of
problems and/or make pull requests.

Any information and updates regarding to the release and necessary maintenance will be communi-
cated via the README of https://github.com/SunHaozhe/OmniPrint-datasets.

1https://github.com/SunHaozhe/OmniPrint
2https://github.com/SunHaozhe/OmniPrint-datasets

14

https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://github.com/SunHaozhe/OmniPrint-datasets
https://github.com/SunHaozhe/OmniPrint
https://github.com/SunHaozhe/OmniPrint-datasets

Table 1: Unsupervised domain adaptation results on OmniPrint-metaX-31. metaA → metaB
means the source domain is OmniPrint-metaA, the target domain is OmniPrint-metaB, where
A,B ∈ 3, 4, 5. The 95% confidence intervals are computed with 8 random seeds.

meta3→meta4 meta4→meta3 meta3→meta5 meta5→meta3 meta4→meta5 meta5→meta4

DAN [19, 32] 18.0 ± 2.4 3.2 ± 0.0 25.8 ± 1.7 3.5 ± 0.3 10.1 ± 16.0 10.7 ± 16.5
DANN [7] 72.2 ± 2.8 96.8 ± 0.5 65.6 ± 2.9 82.2 ± 2.7 79.8 ± 1.2 81.5 ± 2.1
DeepCoral [28] 22.9 ± 2.5 84.6 ± 1.5 28.6 ± 1.7 69.6 ± 2.5 57.0 ± 1.3 60.2 ± 1.0
DAAN [37] 22.3 ± 1.8 84.5 ± 2.1 25.1 ± 1.7 59.9 ± 5.9 50.9 ± 1.5 53.3 ± 2.3
DSAN [38] 79.3± 2.3 96.9± 0.3 66.4± 2.5 93.5± 0.8 80.5± 1.0 82.8± 1.9

Average 42.9 73.2 42.3 61.7 55.7 57.7
Median 22.9 84.6 28.6 69.6 57.0 60.2

Each dataset synthesized by OmniPrint shares the same folder structure. It contains two subfolders,
the subfolder data contains the images in png format, the subfolder label contains a csv file, called
raw_labels.csv, which stores the label (character class) as well as all the metadata of each image
instance. The columns of raw_labels.csv may vary depending on involved transformations, the
common columns include image_name which specifies which image instance this record is about,
text which contains the rendered character to synthesize, unicode_code_point contains the Unicode
code point (integer) of the character to synthesize, font_file which indicates the involved digital font,
background which specifies which type of background is being used, font_weight which specifies the
stroke width, margin_bottom, margin_left, margin_right, margin_top which indicate the proportion of
each margin in the image and facilitate the construction of bounding boxes, family_name, style_name
which show the family and font style to which the digital font belongs, etc.

The user manual of the data synthesizer OmniPrint and an example dataloader for the datasets
OmniPrint-meta[1-5] are provided with the code.

H Experimental details of domain adaptation

This section provides the experimental details of Section 4.4 of the main paper.

H.1 Unsupervised domain adaptation methods

The 5 unsupervised domain adaptation algorithms are DAN [19, 32], DANN [7], DeepCoral [28],
DAAN [37] and DSAN [38]. The implementation is from DeepDA [35] which is under MIT License.

H.2 Hyperparameters and compute resources

For each combination of task and algorithm, we run 10 epochs with 8 random seeds to get the
confidence interval. The 8 random seeds were fixed in advance. The backbone neural network
is Resnet50 [11]. The model is optimized using SGD [23] with 10−3 as the learning rate. No
hyperparameter optimization was performed. The other experimental details are provided with the
code at https://github.com/SunHaozhe/transferlearning. The experiments were run on an internal
cluster with Tesla V100-PCIE-32GB, Tesla V100-SXM2-32GB. The total amount of computation
time is about 182 hours.

The results are available in Table 1.

H.3 Unsupervised domain adaptation from Fake-MNIST to MNIST

We used OmniPrint to generate a dataset, called Fake-MNIST, which is similar to MNIST [17] and
performed the unsupervised domain adaptation (the 5 DeepDA methods [35], see Appendix H.1)
from Fake-MNIST to MNIST.

Only the test set of MNIST is involved in this experiment, which consists of 10000 images for the
10 digits. Fake-MNIST contains 3000 white-on-black character images for each of the 10 digits.
Random pre-rasterization elastic transformation, horizontal shear, rotation and translation were used
to synthesize Fake-MNIST. Figure 3 shows some example images from Fake-MNIST.

15

https://github.com/SunHaozhe/OmniPrint
https://github.com/SunHaozhe/transferlearning

Figure 3: Example images from Fake-MNIST. Random pre-rasterization elastic transformation,
horizontal shear, rotation and translation were used.

Table 2: Unsupervised domain adaptation from Fake-MNIST to MNIST. 95% confidence inter-
vals are computed with 27 random seeds.

DAN DANN DeepCoral DAAN DSAN Average Median

Fake-MNIST→MNIST 94.8 ± 0.1 98.0 ± 0.1 92.4 ± 0.2 93.3 ± 0.2 98.2± 0.1 95.34 94.8

While the synthesis parameters of Fake-MNIST were not optimized, the performance of the 5
unsupervised domain adaptation methods (Table 2) ranges from 92 to 98% accuracy, which is very
honorable (current supervised learning results on MNIST are over 99%).

I Experimental details of few-shot learning experiments with
metadata-based episodes

This section provides the experimental details of Section 4.2 of the main paper.

I.1 Metadata-based episode generation algorithm

The metadata-based episode generation algorithm is illustrated in Algorithm 2.

I.2 Data, hyperparameters and compute resources

The experiments used the same hyperparameters as Appendix B. The same character split was used
(900 characters for meta-train, 149 characters for meta-validation, 360 characters for meta-test). The
experiments were trained for 300 epochs, where each epoch is defined to be 6 batches of episodes,
each batch contains 32 episodes. During meta-training, the model checkpoints were evaluated on
meta-validation episodes every 5 epochs. Only the checkpoint having the highest accuracy on meta-
validation episodes during training is selected to be tested on meta-test episodes. The backbone
neural network is the concatenation of three modules of Convolution-BatchNorm-Relu-Maxpool.
The reported accuracy and 95% confidence intervals were computed with 5 random seeds.

The experiments were run on an internal cluster, the involved GPUs are GeForce RTX 2080 Ti, Tesla
V100-PCIE-32GB and Tesla V100-SXM2-32GB. The total amount of computation time is about 164
hours.

16

Algorithm 2: Metadata-based few-shot learning episode generation.
Input: Number of support images S, number of query images Q
// Assuming that metadata consists of real numbers.

1 for each episode do
2 Randomly sample N classes c1, c2, ..., cN
3 for each class cn do
4 Find all examples Ecn = {e1, e2, ...} of class cn, the metadata mi of each example

ei ∈ Ecn is a real-valued vector.
5 Compute the bounding box Bcn of the metadata vectors mi.
6 Randomly sample a centroid D within Bcn .
7 Select the (S +Q) nearest neighbors M = {mx,my, ...,m(S+Q)} from all the metadata

vectors m1,m2, ...
8 An example ei is selected to be part of the episode if and only if mi ∈M , all the selected

examples form the set Êcn,D

9 Randomly draw S examples from Êcn,D to form the support set, the remaining examples
serve as the query set.

10 end
11 end

J Experimental details of the investigation of the influence of the number of
meta-training episodes

This section provides the experimental details of Section 4.3 of the main paper.

J.1 Data

For this experiment, we generated a larger version of OmniPrint-meta3. It has the same synthesis
parameters as OmniPrint-meta3 but has 200 images per class (OmniPrint-meta3 has 20 images per
class).

J.2 Hyperparameters and compute resources

The experiments used the same hyperparameters as Appendix B. The same character split was used
(900 characters for meta-train, 149 characters for meta-validation, 360 characters for meta-test).
During meta-training, the model checkpoints were evaluated on meta-validation episodes every
960 episodes and at the end of meta-training. Only the checkpoint having the highest accuracy on
meta-validation episodes during training is selected to be tested on meta-test episodes. The backbone
neural network is the concatenation of three modules of Convolution-BatchNorm-Relu-Maxpool.
The reported accuracy and 95% confidence intervals were computed with 5 random seeds.

The experiments were run on an internal cluster, the involved GPUs are GeForce RTX 2080 Ti, Tesla
V100-PCIE-32GB. The total amount of computation time is about 80 hours.

K Experimental details of the regression task

This section provides the experimental details of Section 4.5 of the main paper.

K.1 Data

We generated two large datasets which are slightly easier than OmniPrint-meta3. Both datasets contain
black-on-white characters (1409 characters with 200 images each). The first dataset has horizontal
shear (horizontal shear parameter ranges from -0.8 to 0.8) but not rotation, the second dataset has
rotation (rotation ranges from -60 degrees to 60 degrees) but not horizontal shear. Perspective
transformations are not used. Some sample images are shown in Figure 4 and Figure 5. Each of
the two generated datasets have 281800 images in total. 20% of the images (56360) were used for

17

Table 3: Regression results. The reported metric is the coefficient of determination R2. 1.69× 102,
1.69× 103, 1.69× 104 and 1.69× 105 are the number of training images. 95% confidence intervals
are computed with 3 random seeds.

Backbone 1.69× 102 1.69× 103 1.69× 104 1.69× 105

Horizontal shear small 0.3 ± 0.2 0.6 ± 0.0 0.8 ± 0.1 0.9 ± 0.0
resnet18 -0.1 ± 0.2 0.6 ± 0.0 0.8 ± 0.0 0.9 ± 0.0

Rotation small -25.3 ± 50.4 -1.8 ± 0.4 -0.8 ± 1.7 0.3 ± 0.2
resnet18 -1002.0 ± 3164.1 -0.9 ± 0.2 0.1 ± 0.1 0.5 ± 0.0

validation, 20% of the images (56360) were used for test. The remaining 169080 images were used
for training.

Figure 4: Shear dataset. Horizontal shear
parameter ranges from -0.8 to 0.8. Rotation
and perspective transformations are not used.

Figure 5: Rotation dataset. Rotation angle
ranges from -60 degrees to 60 degrees. Hori-
zontal shear and perspective transformations
are not used.

K.2 Hyperparameters and compute resources

We tested two neural networks. The first one, referred to as "small", is the concatenation of three
modules of Convolution-BatchNorm-Relu-Maxpool, followed by a fully-connected layer within a
scalar output. It contains 76097 trainable parameters. The second one is Resnet18 [11] pretrained on
ImageNet [24]. We only train the last convolution layer and fully-connected layer of Resnet18 [11],
it thus has 2360833 trainable parameters. The neural networks were optimized with MSE loss for 30
epochs using SGD [23], the initial learning rate was 10−3, which is reduced by a factor of 10 when
the validation loss has stopped decreasing for 5 epochs. The weight decay was 10−4. The momentum
was 0.9. Only the model having the highest accuracy on validation data during training is selected to
be tested on test data. The 95% confidence intervals are computed with 3 random seeds.

The experiments were run on an internal cluster with GeForce RTX 2080 Ti. The total amount of
computation time is about 48 hours.

The detailed results are reported in Table 3.

References
[1] Opentype font variations overview (opentype 1.8.4) - typography | microsoft docs. https://docs.

microsoft.com/en-us/typography/opentype/spec/otvaroverview. (Accessed on 11/28/2020).

[2] Table of general standard chinese characters. http://hanzidb.org/character-list/
general-standard. (Accessed on 12/21/2020).

[3] Truetype fundamentals (opentype 1.8.4) - typography | microsoft docs. https://docs.microsoft.com/
en-us/typography/opentype/spec/ttch01. (Accessed on 11/22/2020).

[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[5] Daniele Ciriello. orobix/prototypical-networks-for-few-shot-learning-pytorch: Implementation of prototyp-
ical networks for few shot learning (https://arxiv.org/abs/1703.05175) in pytorch. https://github.com/
orobix/Prototypical-Networks-for-Few-shot-Learning-PyTorch. (Accessed on 06/04/2021).

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks. arXiv:1703.03400 [cs], July 2017.

18

https://docs.microsoft.com/en-us/typography/opentype/spec/otvaroverview
https://docs.microsoft.com/en-us/typography/opentype/spec/otvaroverview
http://hanzidb.org/character-list/general-standard
http://hanzidb.org/character-list/general-standard
https://docs.microsoft.com/en-us/typography/opentype/spec/ttch01
https://docs.microsoft.com/en-us/typography/opentype/spec/ttch01
https://github.com/orobix/Prototypical-Networks-for-Few-shot-Learning-PyTorch
https://github.com/orobix/Prototypical-Networks-for-Few-shot-Learning-PyTorch

[7] Yaroslav Ganin and Victor Lempitsky. Unsupervised Domain Adaptation by Backpropagation.
arXiv:1409.7495 [cs, stat], February 2015.

[8] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. higher/maml-omniglot.py at master · face-
bookresearch/higher. https://github.com/facebookresearch/higher/blob/master/examples/
maml-omniglot.py. (Accessed on 06/04/2021).

[9] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska
Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized Inner Loop Meta-Learning.
arXiv:1910.01727 [cs, stat], October 2019.

[10] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic data for text localisation in natural
images. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
arXiv:1512.03385 [cs], December 2015.

[12] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-Learning in Neural
Networks: A Survey. arXiv:2004.05439 [cs, stat], November 2020.

[13] Morris A. Jette, Andy B. Yoo, and Mark Grondona. Slurm: Simple linux utility for resource management.
In In Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003, pages 44–60. Springer-Verlag, 2002.

[14] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving, Christoph Reinders, Sarthak
Yadav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Zheng Rui, Jirka Borovec, Christian Vallentin, Semen
Zhydenko, Kilian Pfeiffer, Ben Cook, Ismael Fernández, François-Michel De Rainville, Chi-Hung Weng,
Abner Ayala-Acevedo, Raphael Meudec, Matias Laporte, et al. imgaug. https://github.com/aleju/
imgaug, 2020. Online; accessed 01-Feb-2020.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs],
January 2017.

[16] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338, December 2015.

[17] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[18] Liangqu Long. Maml-pytorch implementation. https://github.com/dragen1860/MAML-Pytorch,
2018.

[19] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning Transferable Features with
Deep Adaptation Networks. arXiv:1502.02791 [cs], May 2015.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[21] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. ACM Trans. Graph.,
22(3):313–318, July 2003.

[22] Nicolas P. Rougier. rougier/freetype-py: Python binding for the freetype library. https://github.com/
rougier/freetype-py. (Accessed on 06/04/2021).

[23] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv e-prints, page
arXiv:1609.04747, September 2016.

[24] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. arXiv e-prints, page arXiv:1409.0575, September 2014.

[25] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to
visual document analysis. In Seventh International Conference on Document Analysis and Recognition,
2003. Proceedings., pages 958–963, August 2003.

19

https://github.com/facebookresearch/higher/blob/master/examples/maml-omniglot.py
https://github.com/facebookresearch/higher/blob/master/examples/maml-omniglot.py
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://github.com/dragen1860/MAML-Pytorch
https://github.com/rougier/freetype-py
https://github.com/rougier/freetype-py

[26] Patrice Y. Simard, Yann A. LeCun, John S. Denker, and Bernard Victorri. Transformation Invariance in
Pattern Recognition — Tangent Distance and Tangent Propagation. In Genevieve B. Orr and Klaus-Robert
Müller, editors, Neural Networks: Tricks of the Trade, pages 239–274. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998.

[27] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical Networks for Few-shot Learning.
arXiv:1703.05175 [cs, stat], June 2017.

[28] Baochen Sun and Kate Saenko. Deep CORAL: Correlation Alignment for Deep Domain Adaptation.
arXiv:1607.01719 [cs], July 2016.

[29] Gregory Taylor. gtaylor/python-colormath: A python module that abstracts common color math operations.
for example, converting from cie l*a*b to xyz, or from rgb to cmyk. https://github.com/gtaylor/
python-colormath. (Accessed on 06/06/2021).

[30] David Turner, Robert Wilhelm, Werner Lemberg, Alexei Podtelezhnikov, Toshiya Suzuki, Oran Agra,
Graham Asher, David Bevan, Bradley Grainger, Infinality, Tom Kacvinsky, Pavel Kaňkovský, Antoine
Leca, Just van Rossum, and Chia-I Wu. Freetype glyph conventions / vi. https://www.freetype.org/
freetype2/docs/glyphs/glyphs-6.html. (Accessed on 04/20/2021).

[31] David Turner, Robert Wilhelm, Werner Lemberg, Alexei Podtelezhnikov, Toshiya Suzuki, Oran Agra,
Graham Asher, David Bevan, Bradley Grainger, Infinality, Tom Kacvinsky, Pavel Kaňkovský, Antoine Leca,
Just van Rossum, and Chia-I Wu. The freetype project. https://www.freetype.org/index.html.
(Accessed on 11/25/2020).

[32] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep Domain Confusion:
Maximizing for Domain Invariance. arXiv:1412.3474 [cs], December 2014.

[33] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
Networks for One Shot Learning. arXiv:1606.04080 [cs, stat], December 2017.

[34] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D. Warner,
Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-image: image processing in Python. PeerJ, 2:e453,
June 2014. Publisher: PeerJ Inc.

[35] Jindong Wang and Wenxin Hou. Deepda: Deep domain adaptation toolkit. https://github.com/
jindongwang/transferlearning/tree/master/code/DeepDA.

[36] Kevin Wu. kevinwuhoo/randomcolor-py: A port of david merfield’s randomcolor to python. https:
//github.com/kevinwuhoo/randomcolor-py. (Accessed on 06/06/2021).

[37] Chaohui Yu, Jindong Wang, Yiqiang Chen, and Meiyu Huang. Transfer Learning with Dynamic Adversarial
Adaptation Network. arXiv:1909.08184 [cs, stat], September 2019.

[38] Yongchun Zhu, Fuzhen Zhuang, Jindong Wang, Guolin Ke, Jingwu Chen, Jiang Bian, Hui Xiong, and
Qing He. Deep Subdomain Adaptation Network for Image Classification. IEEE Transactions on Neural
Networks and Learning Systems, 32(4):1713–1722, April 2021.

20

https://github.com/gtaylor/python-colormath
https://github.com/gtaylor/python-colormath
https://www.freetype.org/freetype2/docs/glyphs/glyphs-6.html
https://www.freetype.org/freetype2/docs/glyphs/glyphs-6.html
https://www.freetype.org/index.html
https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA
https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA
https://github.com/kevinwuhoo/randomcolor-py
https://github.com/kevinwuhoo/randomcolor-py

	Datasheet for dataset for OmniPrint-meta[X] datasets
	Experimental details of the few-shot learning use case
	Data split
	Evaluation and reproducibility
	Baseline implementation and compute resources
	Hyperparameters
	Data synthesis

	Fonts
	Pre-rasterization transformations
	Post-rasterization transformations
	Alphabets
	Accessibility
	Experimental details of domain adaptation
	Unsupervised domain adaptation methods
	Hyperparameters and compute resources
	Unsupervised domain adaptation from Fake-MNIST to MNIST

	Experimental details of few-shot learning experiments with metadata-based episodes
	Metadata-based episode generation algorithm
	Data, hyperparameters and compute resources

	Experimental details of the investigation of the influence of the number of meta-training episodes
	Data
	Hyperparameters and compute resources

	Experimental details of the regression task
	Data
	Hyperparameters and compute resources

