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The Connection between Out-of-Distribution Generalization and Privacy of
ML Models

Supplementary Material

A  EVALUATION METRICS

We evaluate the privacy and generalization properties of DG training methods using four different
metrics: membership inference accuracy, attribute inference accuracy, out-of-domain task accuracy,
and the ability to learn stable features.

A.1 MEMBERSHIP INFERENCE (MI) ATTACKS

Several methods have been proposed in the literature to compute MI attack accuracy based on the
threat-model i.e., black-box or white-box and computational power of the attacker. All these meth-
ods identify the boundary that helps to distinguish between members and non-members. As our
goal is to use MI attack accuracy as a measure for privacy and perform a comparison across several
method, we use the loss-based attack to measure privacy.

Loss-based attack |Yeom et al.| (2018) |Yeom et al.| (2018)) proposed MI attack that relies on the
loss of the target model. The attacker observes the loss values of a few samples and identifies a
threshold that distinguishes members from non-members. The intuition is that training data points
will have a lower loss value as compared to test data points. This attack is computationally cheap
and the attacker does not need to train shadow models or an attack classifier. However, the attack
assumes access to the loss values of the target model i.e., it requires white-box access to the model.
Our attack accuracy provides an upper bound as we compute the threshold using a subset of the
training samples and is consistent across all our experiments.

A.2 ATTRIBUTE (PROPERTY) INFERENCE (AI) ATTACKS

We use a classifier-based attribute inference attack as our second metric to evaluate the privacy of
different training techniques that aim for domain generalization. The attack is similar to the MI
attack except that we build a classifier to learn the distinguishing boundary. We query a subset of
data points to the target model and use their prediction probability vector as input feature for the
attack classifier. The ground truth is the value of the sensitive attribute for the given input. The
classifier is trained to predict the attribute value for a given input feature of probability vector. This
attack works in a black-box setting.

A.3 OUT-OF-DOMAIN ACCURACY

To understand the generalization ability of a training technique, we use the accuracy as a measure
when computed on inputs that are generated from domains that are not seen during training. This
is different than standard test accuracy measure where often the validation and test data have the
same distribution. Since our goal is to understand the connection between domain generalization
techniques and privacy, we select out-of-domain accuracy as one of our evaluation metrics.

A.4 MEASURING STABLE FEATURES USING MEAN RANK

Measuring stability of learnt features is a hard task, since the ground-truth stable features are un-
known for a given classification task. For example, in a MNIST task to classify the digit corre-
sponding to an input image, the shape of the digit can be considered as the stable (or causal) feature
whereeas its color or rotation are not stable features. Even if stable features are known, in image
datasets, they are typically high-level features (such as shape) that themselves need to be learnt from
data. Therefore, verifying stable features directly is a non-trivial task. We describe two different
ways to measure stable features — mean rank and linear-Randomized AUC for our MNIST and
synthetic slab dataset results below. However, we do not have a reasonable metric to measure stable
features for ChestXray dataset and leave that to future work.

Mean Rank. We use the mean rank metric proposed by Mahajan et al.[(2021) for measuring stable
features where the base object of an image is known. If we can select pairs of inputs with the same

10



Under review as a conference paper at ICLR 2022

base object, then they should share the same causal features. Such a pair is known as a perfect match.
Note that a base object refers to the same semantic input such as a person or a handwritten digit.
Input images may consist of the same person in different views or the same handwritten digit in
different colors or rotations, but their base object remains the same. Note that there is a many-to-one
relationship between an object and its class label. Each class label consists of many objects, which
in turn consist of many input images that are differentiated by certain non-stable features like view
or rotation or noise.

Formally, the mean rank metrics is computed as follows. For the matches (j, k) as per the ground-
truth perfect match strategy €2, compute the mean rank for the data point j w.r.t the learnt match

strategy ' i.e. Soy ()

>oa(jk)=1dzar Bank[k € Sgr (j)]
2203, k)=1idtar |

2

Linear-Randomized AUC. Slab dataset allows to capture the effect of a single feature on the out-
come prediction by constructing S-Randomized metrics (Shah et al.l |2020). The idea is to replace
a subset of features by drawing random samples from its marginal distribution so that we destroy
any relationship between the features in the set S and the outcome y. As defined in the work (Shah
et al., 2020), consider the data point - = (z°, 25°), and replace the features = in the actual dataset
((z%,25"),y) ~ D with new samples Z° ~ Dg, where Dg is the marginal distribution of features
in the subset S. Denote this new dataset as S-Randomized and compute metrics like accuracy and
AUC on it. Since the relationship between the features in set S and the outcome y has been random-
ized, the S-Randomized AUC/Accuracy would be close to 0.50 if the model completely relied on
the features in the set S for prediction.

Hence, we take the set S to be the spurious linear feature and compute the Linear-Randomized AUC
score, which captures the extent to which a model relies on the spurious feature for its prediction.
Therefore, models that capture more stable features would have higher values of Linear-Randmoized
AUC, as the randomization in the prediction mechanism between the linear feature and the label
would affect their performance comparatively less.

B EXPERIMENTAL SETUP

B.1 OOD TRAINING METHODS AND ERM

For all methods and the respective loss equations, we use S to denote the set of source domains, Ny
as the total number of samples for domain d, f as the classification model, L, as the classification
loss, and z, y to represent the data point and its corresponding true class label.

ERM-Baseline: As our baseline, we use the empirical risk minimization approach to
train the model, which minimizes the empirical average of loss over training data points.

ZdNSJNNd La(f(xi),9i)

It treats the data from different domains as i.i.d and simply augments them. This may lead to issues
with OOD generalization |Arjovsky et al.[(2019); Peters et al. (2016)) as we need to learn representa-
tions that are robust to the changes in the domains. Hence, a variety of approaches (described below)
augment the empirical average loss with regularizers to learn domain invariant models.

Random-Match (Mahajan et al.,[2021; Motiian et al., 2017; Dou et al.,2019). Random-Match
matches pairs of same-class data points randomly across domains to regularize the model. The idea
behind matching across domains is to learn a representations that is invariant to the changes in the
source domains, which may lead to better generalization performance. The training loss objective is
given by,

D La(ho (i), i) + A * > Dist(¢(x;), $(wr)) 3)

d~S,i~Ng Q4,k)=1|j~Ng,k~N g
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where ¢ represents some layer of the network f = h o ¢, () represents the match function used
to randomly pair the data points across the different domains. This may not necessarily enforce
learning stable features.

CSD (Piratla et al., |2020). Common-Specific Low-Rank Decomposition (CSD) leads to effec-
tive OOD generalization by separating the domain specific and domain invariant parameters, and
utilizes the domain invariant parameters for reliable prediction on OOD data. It decomposes the
model’s final classification layer parameters w as w = ws + W * 7, where W represents the k-rank
decomposition matrix, w, represents the domain invariant parameters and y represent the k domain
specific parameters. It optimizes empirical average loss with both the domain invariant and domain
specific parameters, along with an orthonormality regularizer that aims to make w; orthogonal to
the decomposition matrix W. Please refer to Algorithm 1 in their paper|Piratla et al.| (2020) for more
details.

IRM (Arjovsky et al.,2019). Invariant Risk Minimization (IRM) aims to learn invariant predic-
tors that simultaneously achieve optimal empirical risk on all the data domains. It minimizes the
empirical average loss, and regularizes the model by the norm of gradient of the loss at each source
domain as follows:

Z La(w o ¢(x:),yi) + A * Z [[Vawlw=1.0 Z La(w o ¢(x:), yi)|? )

d~S,i~Ng d~S i~Ng

where f = w o ¢ and A is a hyper parameter. In practice, ¢ is taken to be the final layer of the
model f, (which makes ¢ and f to be the same ). Hence, minimizing the above loss would lead to
low norm of the domain specific loss function’s gradient and guide the model towards learning an
invariant classifier, which is optimal for all the source domains.

MatchDG (Mahajan et al., |[2021). The algorithm enforces the same representation for pairs of
data points from different domains that share the same causal features. It uses contrastive learning
to learn a matching function to obtain pairs that share stable causal features between them. The loss
function for the method is similar to that of Random-Match (Eq[3), with (2 representing the match
function learnt by contrastive loss minimization. Hence, the algorithm consists of two phases; where
it learns the matching function (2 in the first phase, and then minimizes the loss function in Eq 3]
during the second phase to learn the final model. Please refer to the Algorithm 1 in Mahajan et
al.|[Mahajan et al.| (2021) for more details.

Perfect-Match (Mahajan et al., 2021; Hendrycks et al.,[2019). Finally, we use an algorithm that
can be considered to learn true stable features for given data, since it relies on knowledge of true
base object for a subset of images (and thus guaranteed shared causal features between them). This
approach again has a similar formulation to Eq [3] where the match function €2 is satisfied for data
points from different domains that share the same base causal object. Hence, it aims to learn similar
representations for two data points that only differ in terms of the domain specific attributes.

Hybrid (Mahajan et al., 2021). Perfect matches as explained above are often unobserved but
given through Oracle access. However, in real datasets, augmentations can also provide perfect
matches, leading to the Hybrid approach using both the MatchDG and augmented Perfect-Match. It
learns two match functions, one on the different source domains as per MatchDG, and the other on
the augmented domains using Perfect-Match.

Note that Perfect-Match is an ideal training algorithm that assumes knowledge of ground-truth
matches across domains, and therefore cannot be applied in real-world settings. In contrast, the
Hybrid algorithm depends on creating matches of the same base object using self-augmentations
and can be used practically whenever augmentations are easy to create (such as in image datasets).
In the experiments that follow, we use the PerfectMatch algorithm for the simulated Rotated-MNIST
and Fashion-MNIST datasets, where it should be considered as an ideal method. For the real-world
Chest X-rays dataset, we use the practical Hybrid algorithm since we have no knowledge about the
true perfect matches.

12



Under review as a conference paper at ICLR 2022

Dataset \ #Classes  #Domains Source Domains Target Domains  Samples/ Domain
Rotated-MNIST 10 7 15°,30°, 45°, 60°, 75° 0°,90° 2000
Fashion-MNIST 10 7 15°, 30°, 45°, 60°, 75° 0°,90° 2000
ChestXray 7 3 NIH, ChexPert RSNA 800

Table 1: Dataset details

Table 2: Hyperparamter details for all the datasets. We took the optimal hyperparameter for each method
following |Mahajan et al.| (2021). Complete details regarding the grid range used for hyperparameter tuning
can be found in Table 8 in their paper.

Dataset Hyper Parameter \ Optimal Value
Range
Total Epochs 25
Rotated & Fashion MNIST | Learning Rate 0.01
Batch Size 16
Weight Decay 0.0005
Match Penalty 0.1
IRM Penalty 1.0 (RotMNIST); 0.05 (FashionMNIST)
IRM Threshold 5 (RotMNIST), 0 (FashionMNIST)
Total Epochs 40
Chest X-ray Learning Rate 0.001
Batch Size 16
Weight Decay 0.0005
Match Penalty 10.0 (RandMatch), 50.0 (MatchDG, MDGHybrid)
IRM Penalty 10.0
IRM Threshold 5
Total Epochs 100
Slab Dataset Learning Rate 0.1
Batch Size 128
Weight Decay 0.0005
Match Penalty 1.0
IRM Penalty 10.0
IRM Threshold 2

B.2 IMPLEMENTATION DETAILS

Model Training To summarize, we use the model ResNet-18 (no pre-training) for the Rotated-
MNIST and Fashion-MNIST dataset, and we use pre -trained DenseNet-121 for the ChestXRay
dataset. For the matching based methods (Random-Match, MatchDG, Perfect-Match), we use the
final classification layer of the network as ¢ and for the matching loss regularizer (Eq[3|). For all
the methods across datasets, we use Cross Entropy for the classification loss (L), and use SGD to
optimize the loss. Also, we use the data from the source domains for validation and never expose
the model to any data from the target domains while training. The details regarding the domain and
dataset sizes are described in the Table[Il

For the slab dataset, we sample 1k data points per domain and additional 250 data points per source
domain for validation. We construct two source domains, with noise probabilities between the linear
feature and the label as p=0.0 and p=0.1, while there is constant domain-independent noise (p=0.1)
in prediction mechanism between the slab feature and the label. The model architecture consists of
a representation layer (FC: input-dimension * 100; ReLU activation ), followed by a classification
layer ( FC: 100*100; FC: 100*total-classes), where FC: a*b denotes a full connected layer with
input and output dimension as a, b respectively. For the matching based methods (Random-Match,
MatchDG, Perfect-Match), the representation layer is taken as ¢.

SGD is used to optimize the training loss across all the datasets and methods, with the details re-
garding other hyperparameters given in the table
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Membership Inference (MI) Attacks. For implementing MI attacks, we first create the attack-
train and attack-test dataset from the original train and test dataset for the ML model. We first
sample /N number of data points ( N: 2,00 for Rotated-MNIST & Fashion-MNIST, N: 1, 000 for
ChestXRay, N :400 for Slab dataset ) from both the original train and test dataset to create the attack-
train dataset. Similarly, we sample an additional set of /N data points from original train, test dataset
to create the attack-test dataset. For the selection of the threshold 7 required for the Loss-based
attack, we compute the mean loss among all the members in the attack-train dataset. We use this
threshold to evaluate performance on the attack-test dataset.

Attribute Inference (AI) Attacks. We use all the source and target domains, and sample data
points from their training/test set to create the attack-train/attack-test dataset respectively. We then
label data points in the attack-train and attack-test dataset based on the attribute, and then train a
classifier to discriminate among different attributes. We train a 2-layer fully-connected network
( with hidden dimensions 8, 4 respectively ) to distinguish between different attributes for all the
models. We use Adam Optimizer with learning rate 0.001, batch size 64 and 5000 steps / 80 epochs.

DP Training. We train the differentially-private models using Pytorch Opacus library support for
DP-SGD training. We train models with € ranging from 1 to 10. We use max clipping norm of 5.0
and the noise multiplier is inferred from the e value. The other hyperparamters like total number of
epochs, learning rate, etc. are same for the non DP case in Rotated-MNIST & Fashion-MNIST, with
the exception of a higher batch size (10 x the usual batch size) as it typically helps with dp training.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 SLAB DATASET

Figure [7| shows the result for our synthetic slab dataset with an additional metric of train-test gen-
eralization gap. We find that for this dataset, the generalization gap metric can be used to measure
the amount of stable features learnt which in turn correlates with MI attack accuracy for different
training algorithms.
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Figure 7: Results for synthetic slab dataset with generalization gap included.

Table 3: Attribute Attack Accuracy for the dataset Rotated-MNIST with color as an attribute. We consider the
attribute as binary (0: no color; 1: color ), thus the best case Al Attack accuracy would be 50% via random
guess.

Perfect-Match/

Metrics ERM Random-Match IRM CSD MatchDG Hvbri
ybrid

Train

Accuracy 99.7 (0.02) 99.8 (0.05) 99.7 (0.02) 99.9 (0.01) 99.4 (0.10) 97.8 (0.31)

00D 95.2 (0.17) 96.8 (0.06) 95.4(0.21) 96.6(0.48) 95.5(0.28) 95.7 (0.19)

Accuracy .2 (0. .8 (0. 4 (0. .6 (0. .5 (0. .7 (0.

Al Attack

Accuracy 97.7 (0.41) 83.0 (3.09) 97.9 (0.30) 92.4(1.30) 95.3 (3.80) 69.9 (0.03)

OOD (Permute)

Accuracy 25.3(0.17) 28.9 (1.81) 254 (0.21) 42.9(2.30) 25.5(0.28) 93.4 (0.35)
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Table 4: Attribute Attack Accuracy for different datasets with domains as an attribute.
Perfect-Match/

Dataset Random Guess ERM Random-Match IRM CSD MatchDG

Hybrid
Rotated-MNIST | 14.3% | 27.6(0.84)  204(046)  26.6(0.71) 250(040) 193(0.62)  16.6 (0.55)
Fashion-MNIST | 14.3% | 26.6(059)  21.8(0.77)  23.8(0.86) 26.9(0.93) 21.9(029)  21.5(0.97)
ChestXray | 33.3% | 61.8(1.02)  584(0.58)  63.4(228) 67.8(3.05 57.9(0.58)  57.1(0.21)

C.2 ATTRIBUTE ATTACKS

Domain-Agnostic Attribute: We consider a domain-agnostic attribute — color in the rotated digit
dataset which is not related to the prediction task and whose distribution does not depend on the
domain. We randomly introduce color as an attribute with 70% probability to Rotated-MNIST
dataset. The attacker’s goal is to infer whether a given input is colored or not (binary task) with
only access to the output prediction. This setting can be observed for example, where the user sends
embedding of their input to the server instead of the original input (Song & Shmatikov, [2020).

Figure [6] shows our main results with additional results in Table [3] We observe that Perfect-Match
has the lowest attack accuracy as compared to all other training algorithms, demonstrating that the
ability to learn stable features provides inherent ability to defend against a harder task of attribute
inference when the attribute itself is domain-agnostic. Note that the OOD accuracy does not convey
much information about the privacy risk through an AI attack: all methods obtain OOD accuracy
within a narrow range of 95.9%-97.5%, but the attack accuracy range from 70.2% for Perfect-Match
to 99.3% for IRM.

We hypothesize that the difference in attack accuracy is because of the differing extents to which
the ML models utilize color as a feature. To verify the hypothesis, we construct a new, permuted
test domain where the color of each colored image is permuted randomly to a different value. Thus,
the correlation in the training data between color and the class label is no longer present in the test
domain. Under such a test domain, we observe larger differences in OOD accuracy that correspond
to the Al attack accuracy reported above: Perfect-Match obtains the highest OOD accuracy (94.9%)
as compared to other methods that range between 28% to 42%. The low accuracy of other DG
methods motivates further research to introduce constraints for learning stable features.

Domain as a sensitive attribute: In this attack, we consider domain of the data from which it is
generated as a sensitive attribute that the attacker is trying to learn. Table 4| shows the attack results
across different training methods on all the three datasets. For Rotated-MNIST and Fashion-MNIST,
we train the attack classifier to distinguish among all the 7 angles of rotation and hence the baseline
accuracy with random guess 14.33% while for ChestXray, we aim to distinguish among 3 domains
resulting in a baseline of 33.33%.

Similar to MI attacks, we observe that PerfectMatch/Hybrid approach has the lowest attack ac-
curacy followed by MatchDG. PerfectMatch/Hybrid, having access to perfect matches based on
self-augmentations, has access to the pairs of inputs that share the same causal features, and hence
obtains both highest OOD accuracy (as we saw earlier) and the lowest Al attack accuracy. However,
there is not a one-to-one correspondence between OOD accuracy and Al attack accuracy. CSD ob-
tains one of the highest OOD accuracies on all datasets but its attack accuracy is one of the highest.
We suspect that this discrepancy is due to the different objective of CSD algorithm compared to the
matching algorithms of PerfectMatch/Hybrid and MatchDG: CSD does not aim to obtain the same
representations across domains. Thus, when domains convey sensitive information, it is preferable to
employ matching-based methods that can provide both high OOD accuracy and low attribute infer-
ence attack accuracy. Unlike in membership inference attacks, the standard ERM training algorithm
does not perform well on attribute inference, obtaining one of the highest attack accuracies.

That said, it is somewhat intuitive that DG training approaches that are designed to be domain
invariant are able to defend against attribute inference attacks as compared to ERM. Therefore, we
present another attack with a domain-agnostic attribute to understand whether DG methods can
mitigate such attacks well.
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