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ABSTRACT

Scene text recognition (STR) pre-training methods have achieved
remarkable progress, primarily relying on synthetic datasets. How-
ever, the domain gap between synthetic and real images poses
a challenge in acquiring feature representations that align well
with images on real scenes, thereby limiting the performance of
these methods. We note that vision-language models like CLIP,
pre-trained on extensive real image-text pairs, effectively align
images and text in a unified embedding space, suggesting the po-
tential to derive the representations of real images from text alone.
Building upon this premise, we introduce a novel method named
Decoder Pre-training with only text for STR (DPTR). DPTR treats
text embeddings produced by the CLIP text encoder as pseudo vi-
sual embeddings and uses them to pre-train the decoder. An Offline
Randomized Perturbation (ORP) strategy is introduced. It enriches
the diversity of text embeddings by incorporating natural image
embeddings extracted from the CLIP image encoder, effectively di-
recting the decoder to acquire the potential representations of real
images. In addition, we introduce a Feature Merge Unit (FMU) that
guides the extracted visual embeddings focusing on the character
foreground within the text image, thereby enabling the pre-trained
decoder to work more efficiently and accurately. Extensive experi-
ments across various STR decoders and language recognition tasks
underscore the broad applicability and remarkable performance
of DPTR, providing a novel insight for STR pre-training. Code is
available at https://github.com/Topdu/OpenOCR.
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1 INTRODUCTION

Recognizing text in natural scenes, known as scene text recognition
(STR), is regarded as a core task of optical character recognition
(OCR). Despite significant strides in recognizing printed text im-
ages through OCR, STR encounters persistent challenges in deci-
phering natural text images due to complexities such as intricate
background, diverse fonts and imaging conditions, etc.

To confront these challenges, many studies have been dedicated
to pre-training STR models, usually employing the encoder-decoder
architecture on synthetic or real text images. STR encoder pre-
training methods, exemplified by CCD [24] and DiG [61], employ
Masked Autoencoders [26] or contrastive learning [12] on unlabeled
real text images, which drive the encoder to learn visual represen-
tations from real images, and enhancing the model’s adaptability in
real scenes. On the other hand, recent studies like MaskOCR [41]
and TrOCR [37] train their models via two stages. For example,
TrOCR is first pre-trained using hundreds of millions of printed
text images, then followed by a fine-tuning on synthetic MJSynth
[29] and SynthText [25] datasets. They get improved recognition re-
sults compared to the widely employed one-stage training pipeline
[21, 46, 50, 64, 68, 69]. Note that both encoder and decoder are
updated in these approaches. However, these approaches do not ad-
dress the domain gap between synthetic and real text images. STR
models trained on synthetic data, when tested on real text images,
exhibit worse accuracy compared to models trained on real images
[5, 17, 30], suggesting that synthetic-trained models still struggle
to capture feature representations that align well with real images.
The lack of large-scale labelled real text images becomes a major
obstacle for building more accurate STR models. Although some
progress has been achieved in English [30], this obstacle still exists
for Chinese and many minority languages, which are even difficult
to collect many unlabeled real images. Hence, it is imperative to
explore novel STR pre-training methods that are less demanding
on large-scale labelled real text images.

Recently, we observe that visual-language models like CLIP [48],
trained on nearly 400 million real image-text pairs, adopt a multi-
task learning approach to simultaneously optimize image and text
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Figure 1: CLIP similarity computed by cross product using
the text embedding’s [EOS] token and the image embedding’s
[CLS] token. The text embeddings are more similar to em-
beddings of real images rather than synthetic images.

representations, aligning them more closely in feature space. As
illustrated in Fig. 1(a), the prompt text exhibits higher similarity to
real images compared to synthetic images. To further substantiate
this hypothesis, we collect 49,425 samples from both SynthText [25]
and real datasets (introduced in Sec. 4.1). Each sample comprises
several synthetic and real text images with the same label. We
compute the similarity between these images and the prompt text
one-by-one following the template “a photo of a ‘label’”. The sum
of similarities from real images serves as the real similarity of this
sample and vice versa. After inspecting all the samples and images,
the similarity (after Softmax) distribution is depicted in Fig. 1(b).
There are 29,584 samples with a real similarity higher than 0.5,
constituting 60% of the total samples. The result indicates that
the CLIP text features are statistically more similar to real image
features rather than synthetic image features. This suggests the
feasibility of deriving potential representations of real images solely
from text embeddings. In other words, performing pre-training at
the decoder side by leveraging the readily available CLIP.

Building upon this premise, we introduce a novel pre-training
method, named Decoder Pre-training with only text for STR (DPTR).
Concretely, we utilize the CLIP text encoder to encode the prompt
text, treating the resulting text embeddings as the pseudo image
embeddings for decoder pre-training. However, as the text encoder
is frozen, a fixed mapping relationship from the text to its em-
beddings is established. The lack of feature diversity may lead to
overfitting of the pre-trained decoder. To mitigate this issue, we
introduce an Offline Random Perturbation (ORP) strategy. This
involves encoding natural images with the CLIP image encoder.
The resulting image features are randomly cropped and added to
the original text embeddings as background noise at a specified
ratio. Subsequently, the decoder enjoys rich and diverse features
for effective pre-training.

With the pre-trained decoder, we then use it to substitute the
existing STR decoder, and conduct fine-tuning with synthetic or
labelled real images. After this fine-tuning, the visualization of atten-
tion maps indicates that the model’s attention is not chiefly directed
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towards the character foreground. This phenomenon indicates that
image embeddings extracted by the STR encoder contain redun-
dant features. To remedy this issue, we introduce a Feature Merge
Unit (FMU) behind the encoder. FMU employs the cross-attention
mechanism to search for character features in image embeddings,
and filters out redundant background features through a learnable
query. This enhancement directs the model’s visual attention to-
wards the character foreground, making it easier for the decoder to
decipher the character sequence.

To validate the effectiveness of DPTR, we pre-trained the de-
coders of three typical STR models, i.e., PARSeq [5], ABINet [21],
and NRTR [50] using DPTR. The models are then applied to Eng-
lish, Chinese and multi-language mixed recognition tasks. All the
models get improved experimental results and PARSeq reaches
state-of-the-art (SOTA) accuracy. In addition, extensive ablation ex-
periments and visualizations also verify the effectiveness of DPTR.
Contributions of this paper can be summarized as follows:

e For the first time, we propose DPTR, a model-agnostic de-
coder pre-training method without using text images. It can
be applied to many STR decoders for accuracy improvement,
providing a brand-new line of insight for STR pre-training.

e We propose ORP to improve the pre-training by adding back-
ground noise to text embeddings. Meanwhile, we develop
FMU that uses a learnable query to search for character fore-
ground features and remove redundant background during
fine-tuning. Both ensure the effectiveness of DPTR.

e By applying to existing STR models, DPTR achieves state-of-
the-art performance on English, Chinese and multi-language
mixed datasets, showcasing its remarkable performance and
great universality in a wide range of STR tasks.

2 RELATED WORK

Scene Text Recognition. Scene text recognition (STR) has been
extensively studied and existing methods [5, 15, 19, 21, 28, 46, 49,
58, 59, 67, 68, 70] can be classified into two categories: language-
free and language-aware methods. Language-free methods predict
characters directly from image features, with examples including
CTC-based [22] methods like CRNN [51], SVTR [18] and Rosetta
[6], ViT-based methods like ViTSTR [3], and methods that consider
scene text recognition as an image classification problem [8, 29].
On the other hand, language-aware methods leverage external
or internal-learned language representations to aid recognition.
Methods in this category include using RNN or Transformer blocks
for training semantic models. Typical examples are SRN [62] using a
groundtruth-based pre-decoding, ABINet [21] refining predictions
with contextual semantics via a cloze mask, NRTR [50] employing
a left-to-right autoregressive decoding, and PARSeq [5] utilizing
different attention masks for more nuanced semantic modeling.
Pre-training for STR. In order to improve the performance
of STR methods, some STR pre-training studies are proposed [12,
24, 41, 61, 63]. They usually include two categories: encoder and
the whole model pre-training. The encoder pre-training uses mas-
sive unlabelled real images to instruct the encoder to learn real
image representations, usually through self-supervised learning
such as Masked Autoencoders (MAE) [26] or contrastive learning
[12]. The trained encoder can be better generalized to different
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Figure 2: The pipeline of DPTR. We pre-train the decoder by encoding the prompt text following the template “a photo of
a ‘label’” using the CLIP text encoder. An Offline Random Perturbation (ORP) is incorporated to prevent model overfitting.
Then the entire model undergoes fine-tuning using labelled text images. A Feature Merge Unit (FMU) is developed to guide the
model’s visual attention towards foreground characters. L., denotes the cross-entropy loss.

downstream tasks. For example, SeqCLR [1] presents a sequence-
to-sequence contrastive learning framework on text images. CCD
[24] introduces glyph pseudo-labels to guide the encoder focusing
on the character foreground. MAERec [30] employs a ViT-based
STR model and demonstrates that the model can exploit unlabelled
images through a masked image modeling task.

In contrast, the whole model pre-training typically involves first
pre-training a part or the whole model and then fine-tuning the
whole model. For example, TrOCR [37] learns visual representa-
tions from pre-training on printed text images and fine-tuning on
synthetic scene text images. Besides, it also includes BERT-style pre-
training. MaskOCR [41] follows a three-stage approach including
encoder pre-training, decoder pre-training, and the whole model
fine-tuning. Some recent studies also evaluate synthetic data-based
pre-training and real data-based fine-tuning [17, 30]. These meth-
ods mainly perform pre-training based on synthetic text images.
The domain gap between synthetic and real text images remains
a dominant factor restricting their performance in real scenarios.
DPTR stands out from previous methods by introducing a decoder
pre-training approach that does not rely on text images.

3 METHOD

3.1 Decoder Pre-training

As illustrated in the left part of Fig. 2, decoder pre-training com-
prises a pre-trained CLIP text encoder and a randomly initialized
decoder. It aims to effectively pre-train the decoder by using prompt
text. To this end, the text encoder extracts features from the prompt
text. We add perturbation to these features using an Offline Ran-
dom Perturbation (ORP) module. Subsequently, the decoder learns

potential representations of real images from the perturbed features
and models them jointly with the prompt text.

Text Encoder. In English task, we adopt the text encoder of CLIP-
B and use the “a photo of a ‘label’” template to generate prompt text.
The prompt text undergoes encoding into a discrete text sequence
using the lower-cased byte pair encoding (BPE) [48] with a coding
dictionary of size 49,152. Subsequently, the text sequence is fed
into the Transformer [35] to obtain the text features. Different from
CLIP, which exclusively considers features from the [EOS] token,
we capture features from all the tokens. Similarly, for Chinese
and multi-language mixed tasks, we employ the text encoder of
Multilingual CLIP-B [9] with the same template but their own
language as the label, e.g., “a photo of a $7% * in Chinese. For an
input text label 7, the text features F; can be:

F =T () € RExP 1)

where 7 (-) denotes the CLIP text encoder, and L; = 78 denotes the
token length outputted by the text encoder. We directly concatenate
the [EOS] token with the original 77 tokens after text projection.
D =512 denotes the feature dimension.

Offline Random Perturbation (ORP). Since the text encoder is
frozen during pre-training, the obtained features are also fixed given
the same prompt text, as the decoder has a fixed mapping between
them. To resolve this problem, we randomly encode 10,000 natural
images from COCO2017 [38] dataset using the CLIP image encoder.
Subsequently, we randomly select the features of one image, and
add them as background noise to the text features. The obtained
image features are saved locally for facilitating the subsequent pre-
training. Through this straightforward implantation, different text
features can be obtained given the same prompt text, thus largely
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enriching the diversity of features and effectively preventing model
overfitting. The perturbed features F, can be written as:

Fp=F;+1-C(I(%)) e Rl*P %)

where x is the randomly selected natural image, 7 (-) denotes the
CLIP image encoder, C(-) denotes the crop strategy that randomly
selects L; tokens from the CLIP image features, and A is a hyperpa-
rameter controlling the weight of background noise.

Decoder. For decoder pre-training, typically, the objective is to
enable the decoder to search for potential real image representa-
tions from perturbed features Fp, integrate them with contextual
information, and facilitate text recognition ultimately. To this end,
we have chosen three language-aware STR models, ABINet [21],
NRTR [50] and PARSeq [5], for text recognition. Their decoders are
different thereby evaluations on them can reveal the universality
of our pre-training. For the input text g, the decoder predictions
Ym can be uniformly expressed as:

ym = Dec(Fp, g, m) e RTFDX(5+D) (3)

where Dec(-) denotes the decoder, m is an attention mask. It is a
permutation-derived autoregressive (AR) mask dor PARSeq, a fixed
left-to-right causal mask for NRTR, and a cloze mask for ABINet.
T denotes the text length, and T + 1 is because the [BOS] token is
added to the text. S is the size of character set, and S + 1 is because
we use [EOS] to mark the end of the sequence.

Loss Function. For the given text label § and the prediction yp,,
the loss function can be uniformly expressed as:

'E = Ldec (yng) (4)

where £ j,.(-) denotes the decoder loss function. It is the arithmetic
mean of the cross-entropy losses obtained from the K-attention
masks for PARSeq, the cross-entropy loss of y,, and ¢ for NRTR,
and the weighted average of the three losses in [21] for ABINet.

3.2 Model Fine-tuning

With the pre-trained decoder, we then employ a fine-tuning stage
as illustrated in Fig. 2 to improve the performance of existing STR
models. The model comprises a randomly initialized encoder, a
randomly initialized feature merge unit (FMU), and a pre-trained
decoder. The image encoder extracts visual features from the input
image, which are processed by FMU and then fed into the pre-
trained decoder for joint semantic modeling.

Visual Encoder. For an input image X € RW*H and the patch
size (P,y, Py), the image features F; can be represented as:

WH
F; = Enc(X) € Rpwen <P ()

where Enc(-) denotes the encoder, where ABINet employs ResNet
[27] and Transformer units [62], while PARSeq and NRTR utilize
Vision Transformer (ViT) [16].

Feature Merge Unit (FMU). FMU serves as an adapter to trans-
fer the features extracted by the STR encoder to features that are
more compatible with the pre-trained decoder. We first directly
fine-tune the whole model without FMU. When converged, we
visualize attention maps on image features Fj, it is observed that
the encoder does not focus on foreground characters (see Sec. 4.3),
indicating that redundant features are included. To address this
issue, we introduced an FMU behind the image encoder. The FMU
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employs the cross-attention mechanism to select F; features focus-
ing on character foreground through a learnable query g, and the
resulting condensed features F;, can be represented as:

F, = MHA(F;, q) + FFN € Rl«*D (6)

where MHA(+) denotes the Multi-head Attention, FFN is the feed
forward network, and L, is a hyperparameter that controls the num-
ber of tokens outputted by FMU. By employing the cross-attention
mechanism above, FMU adaptively selects features that can en-
hance the recognition accuracy. Note that smaller L,, means a more
condensed representation of visual features.

Decoder. As shown in Fig. 2, we start fine-tuning by using
exactly the pre-trained decoder, which is the same as the existing
STR decoders in architecture. For instance, in case of PARSeq, the
decoder includes the decoding layer, head, text embedding, and
position query. During fine-tuning, the pre-trained decoder updates
parameters according to the fused image features F,, and contextual
features. The prediction y,; can be formulated as:

Ym = Dec(Fy,§,m) € R(T+1)x(5+1) (7)

Note that the decoder employs a cross-attention-based decoding
scheme, where the text features are the query and F, is the key and
value. The text features are extracted following their STR methods.

Loss Function. The loss function for fine-tuning is the same as
that of the pre-training stage and is omitted here.

4 EXPERIMENT
4.1 Datasets

Pre-training dataset. To facilitate a fair comparison with exist-
ing methods, we generate text prompts by extracting labels from
the synthetic datasets MJSynth (MJ) [29] and SynthText (ST) [25].
After de-duplication, we obtain approximately 380,000 English la-
bels for pre-training on English. Similarly, we extract labels from
the Chinese text recognition benchmark (BCTR) [11] and acquire
around 700,000 Chinese labels for pre-training on Chinese. For
multi-language mixed task, we obtain 150,000 labels from the syn-
thetic datasets SynthMLT [7], which encompasses 9 languages in-
cluding Chinese, Japanese, Korean, Bangla, Arabic, Italian, English,
French, and German. The labels are encoded to text embeddings
using the CLIP text encoder.

Fine-tuning dataset. Similar to prior research [5, 63], for Eng-
lish task, we utilize MJ and ST as the synthetic data. The two datasets
have approximately 17 million synthetic text images in total. The
real data employed include COCO-Text (COCO) [56], RCTW [53],
Uber-Text (Uber) [66], ArT [14], LSVT [55], MLT19 [43], ReCTS
[65], TextOCR [54], and Open Images [33] annotations from the
OpenVINO toolkit [34], encompassing around 3 million text im-
ages depicting real scenes. For Chinese task, we adopt BCTR as
the dataset, which aggregates four types of Chinese text recogni-
tion subsets: Scene, Web, Document, and Handwriting. The dataset
contains about 1 million Chinese text images in total. For multi-
language mixed task, we adopt MLT17 [44] and MLT19 [43] as the
datasets. They together contain about 150,000 text images, cover-
ing 10 languages including Arabic, Bengali, Chinese, Devanagari,
English, French, German, Italian, Japanese, and Korean.
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Table 1: Comparison between Base, Synth and DPTR. freeze
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Figure 4: Comparison of CLIP text feature distribution with
different noise ratios. Each is represented by a distinct color.

Table 2: Ablation study on pre-training with different ORP
noise ratios. 0 denotes pre-training without ORP.

A |IIT5K SVT IC13 IC15 SVIP CUTE |Avg

Method  |IIT5K SVT IC13 IC15 SVIP CUTE |Avg
Base 985 97.7 974 891 941 958 |955
Synthfyeeze | 986  97.7 973 892 927 958 |95
Synth 988 972 98.0 903 932 969 |958
DPTRfreeze | 985 981 971 892 946 969 |95.7
DPTR 98.9 979 984 89.7 958 979 |96.4

0 989 979 984 897 958 97.9 | 96.4
0.01| 987 982 985 90.5 947 98.6 | 96.5
0.1 98.9 985 983 905 963 99.0 |96.9
0.5 989 98.0 981 902 947 96.2 | 96.0
1 98.8 983 984 90.1 94.1 96.9 |96.1

Test benchmark. We recruit the following test sets for English
task: IIIT 5k-word (III'T5k) [42], CUTE80 (CUTE) [2], Street View
Text (SVT) [57], SVT-Perspective (SVTP) [45], ICDAR 2013 (IC13)
[32], and ICDAR 2015 (IC15) [31].

For Chinese task, we utilize the test sets of BCTR, which are also
further categorized into four subsets: Scene, Web, Document, and
Handwriting. For multi-language mixed task, we use the validation
set of MLT17 for test only due to the unavailability of MLT19 test
data. This set encompasses 6 subsets covering 9 languages: Chinese,
Japanese, Korean, Bangla, Arabic, and Latin (Italian, English, French,
and German).

4.2 Experimental Settings

The input image is resized to 32 X 128 for both English and multi-
language mixed tasks. For Chinese task, we resize the input image
to 32 x 256. The patch size is set to 4 X 8 for all languages. The
maximum text length is restricted to 25 characters. We pre-train
the model on 2 NVIDIA RTX A6000 GPUs with a batch size of 512,
and then fine-tune it with a batch size of 384. Hyperparameters
include an initial learning rate of 7e-4 without weight decay.

4.3 Ablation Study

We conduct ablations to verify the effectiveness of the proposed
decoder pre-training, ORP and FMU. For brevity, Synth denotes
the method pre-trained with synthetic images.

The effectiveness of decoder pre-training. We conduct a com-
parative experiment with Base, Synth, and DPTR sharing the same
model structure and experimental setup. The primary distinction of
the three methods lies in: Base trains directly on the real datasets
without pre-training, Synth undergoes pre-training with synthetic
images before fine-tuning on real images, and DPTR pre-trains with

text only before fine-tuning on real images. Experimental results
presented in Tab. 1 show that DPTR improves average accuracy by
0.9% compared to Base and by 0.6% over Synth. Furthermore, when
the pre-trained decoder is frozen during fine-tuning, the model
experiences only a marginal accuracy decrease of 0.7%, indicating
the effectiveness of the text pre-trained decoder.

As shown in Fig. 3, we compare the pre-trained decoder atten-
tion maps between Synth and DPTR. The results reveal that Synth
exhibits more pronounced attention drift, suggesting a higher sus-
ceptibility to interference from intricate backgrounds in real images.
In contrast, attention of DPTR is mostly located on the correspond-
ing characters, indicating a more accurate alignment between image
embeddings and text embeddings. We also visualize the character
distribution of Synth and DPTR, as shown in Fig. 5, where each
circle is a character and its color represents the character category.
The symbol ‘+* denotes ‘n’ in the image labelled ‘nVIDIA’, while
‘X’ represents ‘t’ in the image labelled ‘tO’. Due to overlapping
with the background, Synth incorrectly predicts 'n’ as ‘2°. Simi-
larly, character ‘t’ is obscured such that Synth misses it. Meanwhile,
it incorrectly identifies ‘O’ as ‘0’. In contrast, for DPTR the two
misidentified characters fall into the correct character categories.
Since Synth and DPTR only differ in the pre-training step, the re-
sults in Tab. 1, Fig. 3 and Fig. 5 clearly indicate the effectiveness of
the proposed decoder pre-training.

The effectiveness of ORP. To investigate the impact of adding
random perturbation to decoder pre-training, we ablate the noise
ratio that balances the weight of text features and randomly selected
visual features. The results are presented in Tab. 2. The model’s
accuracy first experiences an increase when the noise ratio is small,
and a decrease when the noise ratio further goes up. This phenom-
enon is attributed to that excessive noise alters the text features
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Figure 6: Attention maps of different feature fusing methods.

Table 3: Comparison of different feature fusing methods.

Method | IIIT5K SVT IC13 IC15 SVTP CUTE |Avg

Cut 98.1 969 97.7 893 918 95,5 |94.9
Pool 98.0 969 97.2 889 932 95.8 ]95.0
FMU 99.5 99.2 985 918 971 98.6 |97.5

too much, leading the decoder to acquire incorrect representations.
In contrast, introducing a small ratio of noise effectively prevents
model overfitting, meanwhile without significantly altering the
distribution of text features. As depicted in Fig. 4, the distributions
of text features are significantly altered when setting A = 0.5 or
A =1, which display quite different shapes compared to the raw
distribution (4 = 0). Conversely, for A = 0.01, the added noise is
minor, resulting in little deviation from the raw distribution. For
A = 0.1, although the distribution changes a lot from the raw, it still
holds a certain geometric shape. This analysis vividly illustrates that
introducing a small noise ratio through ORP enriches the diversity
of pre-training features, thereby improving the performance.

The effectiveness of FMU. It is not surprising that the features
from the CLIP text encoder are different from those extracted by the
image encoder employed in fine-tuning. FMU serves as an adapter
to bridge this gap. To gain insights into the role of FMU, we first omit
the FMU module and fine-tune the model. Visualizations of the last
self-attention layer of the image encoder are shown in Fig. 6(a), it
is apparent that the attention is not solely focused on the character
foreground. Instead, a portion of attention is directed towards the
background. This observation suggests that not all the extracted
features are useful and positively contribute to the recognition.
Some of them are redundant and may hinder the recognition.
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Figure 7: Accuracy-parameter/computational cost/inference
speed plots of PARSeq, ABINet and NRTR. +DPTR means
combined with our DPTR.

Table 4: Ablation study on the size of outputted features in
FMU during fine-tuning. w/o denotes without FMU.

L, |IT5K SVT IC13 IC15 SVIP CUTE | Avg

w/o| 989 985 983 905 963 99.0 |96.9
20 99.2 989 981 908 958 97.9 |96.8
26 99.5 992 985 918 97.1 98.6 |97.5
30 993 98.6 982 909 964 98.3 |97.0
40 99.1 983 984 909 958 98.6 | 96.9

With this observation, we propose FMU to mitigate the feature
redundancy and address the issue of attention not focusing. As
depicted in Fig. 6(d), when FMU is equipped, hotspots of the atten-
tion maps are mostly concentrated on character foreground, which
vividly indicates that FMU successfully extracts useful image fea-
tures and discards redundant ones, explaining why accuracy gains
are obtained. In addition to using the proposed FMU to distinct
features, there also are other ways to fuse these features. We ablate
two typical of them. The first is Cut that directly truncates the first
L, tokens from the image encoder. While the second is Pool that
denotes pooling all the tokens into L, tokens using AdaptiveAvg-
Pool1d. Their comparing results (L,=26) are given in Tab. 3. Cut
exhibits the worst performance and Pool also reports an accuracy
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Table 5: Accuracy comparison with existing methods across six English benchmarks. Avg represents the arithmetic average of

IIIT5K, SVT, IC13 (857), IC15 (1811), SVTP, and CUTE.

Method IIT5K SVT 1IC13 IC15 SVTP CUTE Av IIT5K SVT IC13 IC15 SVTP CUTE Avg
3000 647 857 1015 1811 2077 645 288 3000 647 857 1015 1811 2077 645 288
Training data‘ Synthetic Datasets ‘ Real Datasets

TRBA[4]| 963 92.8 96.3 95.0 84.3 80.6 86.9 91.3 91.3| 98.6 97.0 97.6 97.6 89.8 83.7 93.7 97.7 95.7
ViTSTR-S[3]| 94.0 91.7 95.1 94.2 827 78.7 83.9 882 893| 98.1 958 97.6 97.7 88.4 87.1 914 96.1 94.6
SVTR-B[18]| 96.0 91.5 971 - 852 - 89.9 91.7 919| 977 958 952 957 894 885 91.8 96.2 943

MaskOCR-B[41]| 95.8 94.7 98.1 - 873 - 89.9 89.2 925 - - - - - - - - -

TrOCR-B[37]| 90.7 91.0 97.3 96.3 81.1 75.0 90.7 86.8 89.6 - - - - - - - - -

CCD-B [24]| 97.2 944 - 97.0 87.6 - 91.8 933 - 980 978 - 983 916 - 96.1 983 -
LPV-B[64]| 97.3 94.6 97.6 96.8 87.5 85.2 909 94.8 93.8| 97.6 98.8 97.8 97.9 89.1 88.1 940 97.2 958
MGP-STR[15]| 96.2 949 97.6 96.6 87.9 83.8 90.2 89.2 92.7| 98.4 983 98.6 98.4 91.1 89.8 96.6 97.9 96.8
CDistNet[69]| 96.4 935 97.4 95.6 86.0 82.5 887 934 926/| 979 954 96.6 96.5 89.1 88.0 92.7 97.2 948
ABINet++[20]| 96.2 935 97.4 957 86.0 85.1 89.3 89.2 91.9| 97.1 96.1 98.1 97.1 89.2 86.0 922 944 94.0

SIGA[23]| 96.6 95.1 97.8 96.8 86.6 83.0 90.5 93.1 933 - - - - - - - - -
LISTER[13]| 96.8 93.5 97.7 97.3 87.2 83.5 89.5 89.6 924| 984 985 98.6 98.6 89.7 87.5 940 948 95.7

OTE-B [60]| 96.4 955 97.9 - 86.8 - 91.9 903 93.1 - - - - - - - - -
NRTR [50]| 95.6 929 96.6 95.0 84.1 80.5 86.4 88.5 90.7| 99.0 97.2 98.0 98.0 90.3 89.3 946 97.6 96.1
ABINet [21]| 95.3 934 97.1 950 83.1 79.1 87.1 89.7 91.0| 98.6 97.8 98.0 97.8 90.2 88.5 93.9 97.7 96.0
PARSeq [5]| 97.0 93.6 97.0 96.2 86.5 829 889 922 925| 99.1 97.9 983 984 90.7 89.6 957 983 96.7
NRTR+DPTR| 95.2 93.7 97.2 958 854 813 884 91.6 91.9| 99.2 97.8 981 98.1 91.8 90.6 957 98.6 96.9
ABINet+DPTR| 959 94.6 96.7 953 85.4 80.9 879 90.6 91.9| 98.7 985 97.9 97.6 913 89.2 949 983 96.6
PARSeq+DPTR| 97.6 96.0 97.9 97.0 87.2 83.7 91.9 94.1 94.1| 99.5 99.2 985 984 91.8 90.8 97.1 98.6 97.5

decrease of 2.5% compared to DPTR. We attribute these discrepan-
cies to the loss of vital visual information by using Cut and Pool.
To confirm this, We visualize the attention maps for both methods
in Fig. 6(b) and (c). It is evident that both methods exhibit attention
deficits, which leads to degraded performance. In contrast, the pro-
posed FMU keeps sufficient attention on the character foreground,
thereby yielding the best performance. The result demonstrates
that the cross-attention-based feature fusion can retain the vast
majority of useful features extracted from the image encoder.
Furthermore, we conduct a comparative experiment on the size
of the outputted feature in FMU. Larger size means more features
are retained and vice versa. As depicted in Tab. 4, the model achieves
the best performance when L,, = 26. This result can be attributed to
that we set the maximum character length for the text to 25. With
the addition of [BOS], the decoder can generate up to 26 tokens.
Consequently, by setting L, = 26 in FMU, an implicit mapping
between FMU tokens and characters can be established directly. In
contrast, setting L, less or greater than 26 may result in compli-
cated token-character mapping, leading to the features being less
effectively utilized. According to our experimental setting, the im-
age encoder will output 128 tokens for English and multi-language
mixed tasks, and 256 tokens for Chinese. Setting L,, = 26 means
only a small portion of tokens are preserved. On one hand, it im-
plies the image features are indeed redundant. On the other hand,
it also means that the decoder can be computed more efficiently.
As depicted in Fig. 7, while adding FMU marginally increases the
model parameters, the recognition accuracy is improved for all the
three STR models. Meanwhile, adding DPTR the computational

cost becomes lower, and the inference speed is faster especially for
those autoregressive-based models. The results above convincingly
verify that FMU can lead to more accurate and efficient STR.

4.4 Comparisons with State-of-the-Arts

We conduct extensive comparisons with existing STR models on
English, Chinese, and multilingual tasks. + DPTR denotes that the
method is combined with our DPTR.

English Benchmarks. In Tab. 5, we give the results of three STR
models (i.e., NRTR, ABINet, and PARSeq) combined with DPTR and
sixteen existing models. Taking PARSeq+ DPTR as an example, the
accuracy on synthetic datasets increased by 0.3% compared to LPV-
B, the best previous model, and on real datasets the improvement
against MGP-STR, also the best previous model, is 0.7%. Meanwhile,
the models trained on synthetic and real data increase the accuracy
by 1.6% and 0.8%, respectively, compared to the raw PARSeq. Similar
improvements are also observed when NRTR + DPTR v.s. NRTR,
and ABINet + DPTR v.s. ABINet. These results show the merits of
incorporating DPTR.

When inspecting the pre-training related models, PARSeq +
DPTR trained on synthetic data gains accuracy improvements of
1.6% and 4.5% compared to MaskOCR-B and TrOCR-B, respectively.
The most substantial improvements are observed on SVT and CUTE,
where accuracy increases are 1.3% and 5.0% on SVT, and 4.9% and
7.3% on CUTE. These results suggest that DPTR excels in handling
street text and curved text images, which are typical difficulties
for most existing models. These remarkable improvements clearly
indicate the superiority of DPTR as a STR pre-training technique.
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Table 6: Comparison on challenging English datasets.

ArT COCO Uber | ArT COCO Uber

Method| .. 1o 9825 80.551(35.149 9,825 80.551

Training data‘ Synthetic Datasets Real Datasets

CRNN[51]| 573 493 33.1 | 66.8 622 510

ViTSTR-S[3]| 66.1 564 37.6 | 81.1 741 782
TRBA[4]| 68.2 614 380 | 825 775 81.2
LISTER-B[13]| 70.1 658 49.0 | 79.6 751 756
OTE [60]| 69.1 645 478 | - - -
NRTR[50]| 67.0 607 39.6 | 837 785 848
ABINet[21]| 65.4 57.1 349 | 81.2 764 715
PARSeq[5]| 70.7 640 420 | 845 798 845

NRTR+DPTR| 68.0 640 409 | 841 799 847
ABINet+DPTR| 69.0 66.6 425 | 813 762 745
PARseq+DPTR| 724 69.0 433 | 85.0 813 87.7

To further validate the performance of DPTR, we conduct evalu-
ations on Art, COCO, and Uber datasets, which are typically more
challenging compared to previous benchmarks. As depicted in Tab.
6, compared to PAPSeq, PARSeq + DPTR trained on synthetic data
achieves accuracy improvements of 1.7%, 5.0%, and 1.3%, and when
trained on real datasets, the improvements are 0.5%, 1.5%, and 3.2%,
respectively. It achieves the best accuracy among five of the six
comparisons. Similarly, NRTR + DPTR and ABINet + DPTR both
report improvements compared to their raw counterparts.

Chinese Benchmarks. We also train a DPTR for Chinese through
Multilingual CLIP and evaluate it on BCTR. As depicted in Tab. 7,
compared with MaskOCR-L, the previous SOTA method PARSeq +
DPTR reports an average accuracy of 80.7%. It is also the new state
of the art. PARSeq + DPTR gains accuracy improvements of 3.8%
and 2.8% on Scene and Web, respectively. However, it is worse than
MaskOCR-L on Doc and Hand. This is because Doc is synthesized
using a text rendering tool, and the Handwriting style in Hand
is more similar to synthetic text images. Both are less similar to
real scene text. The observation indicates that PARSeq + DPTR
still exhibits advantages in Chinese STR. Meanwhile, similar ac-
curacy variants are also observed when NRTR + DPTR v.s. NRTR,
and ABINet + DPTR v.s. ABINet. These results demonstrate the
effectiveness of DPTR in Chinese recognition.

Multi-language Mixed Dataset. Similarly, a multi-language
mixed DPTR is trained using Multilingual CLIP and tested on
MLT17. The results are given in Tab. 8 (each language is abbre-
viated using its first three characters). Compared with the raw
implementation of NRTR, ABINet, and PARSeq, NRTR + DPTR,
ABINet+DPTR, and PARSeq+DPTR gain accuracy improvements
of 1.9%, 1.1%, and 1.6%, respectively. Note that NRTR + DPTR and
PARSeq + DPTR report improvements on all the evaluated lan-
guages, while ABINet + DPTR reports slightly lower accuracy on
Ara and Kor. This is because ABINet relies on external language
models, which are not readily available for minority languages thus
the side affection may be more apparent. Nevertheless, the exper-
iment validates that DPTR can still take effect for a recognition

Shuai Zhao, Yongkun Du, Zhineng Chen, and Yu-Gang Jiang

Table 7: Comparison on four standard Chinese datasets.

Method ‘ Doc Hand Scene Web ‘ Avg

SAR[36](93.8 314 625 543 |60.5
11958 39.7 51.8 49.9|59.3
11931 389 545 523|597
11937 321 49.6 463|554
1196.7 180 60.1 523 |56.8
11971 530 713 648 |71.6
]| 844 269 628 52.1]56.6
MaskOCR-B[41] | 99.3 63.7 739 748 |77.9
]
]
]
]
]
]

994 67.9 762 76.8 |80.1
98.2 52.2 71.7  73.8 | 74.0
98.3 60.3 713  69.2 | 74.8
97.5 557 685 688 |72.6
98.2 53.1 66.6 63.2 703
96.9 559 743 746|754

NRTR+DPTR | 97.5 56.4 752 75.8 | 76.2
ABINet+DPTR | 95.8 51.0 70.7 72.8 | 72.6
PARSeq+DPTR | 989 64.4 80.0 79.6|80.7

Table 8: Comparison on MLT17.

Method‘Ara Ban Chi Jap Kor Lat ‘Avg

NRTR[50]| 96.1 94.2 90.4 90.5 95.1 95.993.7
ABINet[21]]| 95.5 93.2 86.2 89.1 959 94.492.4
PARSeq[5]]96.2 93.3 91.1 91.0 95.0 96.0|93.8

NRTR+DPTR|97.5 95.8 91.9 93.5 96.8 97.8|95.6
ABINet+DPTR | 94.8 93.7 90.2 91.1 95.1 96.0|93.5
PARSeq+DPTR|97.5 95.9 915 93.7 96.0 97.6|95.4

task involving 10 languages without the need for language-specific
preprocessing, demonstrating its great cross-language applicability.

5 CONCLUSION

In this study, we have presented DPTR, a novel decoder pre-training
approach for STR. We have observed that embeddings extracted
from the CLIP text encoder are more similar to embeddings of real
text images rather than commonly employed synthetic text images.
Therefore, DPTR is featured by leveraging CLIP text embeddings
to pre-train the decoder, offering a new paradigm for STR pre-
training. We have developed ORP, a dedicated data augmentation
to generate rich and diverse embeddings and make our decoder
pre-training effective, and FMU to condense the embeddings of
real text images and make them better aligned with the pre-trained
decoder. Extensive experiments across various decoders and lan-
guages demonstrate the effectiveness of DPTR. Our exploration
above basically validates that CLIP can be utilized to enhance the
training of STR models. In future, we plan to investigate the more
thorough utilization of large pre-trained models like CLIP, and acti-
vate the rich knowledge contained by them to further improve the
accuracy of STR as well as other OCR-related tasks.



Decoder Pre-Training with only Text for Scene Text Recognition

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of
China (No. 32341012, 62172103). The computations in this research
were performed using the CFFF platform of Fudan University.

REFERENCES

[1] A. Aberdam, R. Litman, S. Tsiper, O. Anschel, R. Slossberg, S. Mazor, R. Man-
matha, and P. Perona. 2021. Sequence-to-Sequence Contrastive Learning for Text
Recognition. In CVPR. 15302-15312.

[2] R. Anhar, S. Palaiahnakote, C. S. Chan, and C. L. Tan. 2014. A robust arbitrary
text detection system for natural scene images. Expert Systems with Applications
41, 18 (2014), 8027-8048.

[3] R.Atienza. 2021. Vision Transformer for Fast and Efficient Scene Text Recognition.
In ICDAR. 319-334.

[4] J. Baek, Y. Matsui, and K. Aizawa. 2021. What if we only use real datasets for
scene text recognition? toward scene text recognition with fewer labels. In CVPR.
3113-3122.

[5] D.Bautista and R.1 Atienza. 2022. Scene Text Recognition with Permuted Autore-
gressive Sequence Models. In ECCV. 178-196.

[6] F.Borisyuk, A. Gordo, and V. Sivakumar. 2018. Rosetta: Large Scale System for
Text Detection and Recognition in Images. In ACM SIGKDD. 71-79.

[7] M. Busta, Y. Patel, and J. Matas. 2019. E2e-mlt-an unconstrained end-to-end
method for multi-language scene text. In ACCV Workshops. 127-143.

[8] H. Cai,]. Sun, and Y. Xiong. 2021. Revisiting Classification Perspective on Scene
Text Recognition. arXiv:2102.10884 (2021).

[9] F. Carlsson, P. Eisen, F. Rekathati, and M. Sahlgren. 2022. Cross-lingual and
multilingual clip. In LREC. 6848-6854.

[10] J. Chen, B. Li, and X. Xue. 2021. Scene Text Telescope: Text-Focused Scene Image
Super-Resolution. In CVPR. 12021-12030.

[11] J. Chen, H. Yu, J. Ma, M. Guan, X. Xu, X. Wang, S. Qu, B. Li, and X. Xue. 2021.
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical
Study. arXiv:2112.15093 (2021).

[12] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. 2020. A simple framework for
contrastive learning of visual representations. In ICML. 1597-1607.

[13] C.Cheng, P. Wang, C. Da, Q. Zheng, and C. Yao. 2023. LISTER: Neighbor decoding
for length-insensitive scene text recognition. In ICCV. 19541-19551.

[14] C. Chng, E. Ding, J. Liu, D. Karatzas, C. Chan, L. Jin, Y. Liu, Y. Sun, C. Ng, C. Luo,
Z.Ni, C. Fang, S. Zhang, and J. Han. 2019. ICDAR2019 Robust Reading Challenge
on Arbitrary-Shaped Text - RRC-ArT. In ICDAR. 1571-1576.

[15] C.Da, P. Wang, and C. Yao. 2023. Multi-Granularity Prediction with Learnable
Fusion for Scene Text Recognition. arXiv:2307.13244 (2023).

[16] A.Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby.

2021. An Image is Worth 16x16 Words: Transformers for Image Recognition at

Scale. In ICLR. 1-21.

Y. Du, Z. Chen, C. Jia, X. Yin, C. Li, Y. Du, and Y. Jiang. 2023. Context Perception

Parallel Decoder for Scene Text Recognition. arXiv:2307.12270 (2023).

[18] Y. Du, Z. Chen, C. Jia, X. Yin, T. Zheng, C. Li, Y. Dy, and Y. Jiang. 2022. SVTR:
Scene Text Recognition with a Single Visual Model. In I[JCAL 884-890.

[19] Y.Du, Z. Chen, Y. Su, C. Jia, and Y. Jiang. 2024. Instruction-Guided Scene Text
Recognition. arXiv:2401.17851 (2024).

[20] S.Fang, Z. Mao, H. Xie, Y. Wang, C. Yan, and Y. Zhang. 2023. ABINet++: Au-
tonomous, Bidirectional and Iterative Language Modeling for Scene Text Spotting.
IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 6 (2023), 7123—
7141.

[21] S. Fang, H. Xie, Y. Wang, Z. Mao, and Y. Zhang. 2021. Read Like Humans:
Autonomous, Bidirectional and Iterative Language Modeling for Scene Text
Recognition. In CVPR. 7098-7107.

[22] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber. 2006. Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks. In ICML. 369-376.

[23] T.Guan, C.Gu,]. Tu, X. Yang, Q. Feng, Y. Zhao, and W. Shen. 2023. Self-supervised
implicit glyph attention for text recognition. In CVPR. 15285-15294.

[24] T. Guan, W. Shen, X. Yang, Q. Feng, Z. Jiang, and X. Yang. 2023. Self-supervised
character-to-character distillation for text recognition. In ICCV. 19473-19484.

[25] A.Gupta, A. Vedaldi, and A. Zisserman. 2016. Synthetic Data for Text Localisation
in Natural Images. In CVPR. 2315-2324.

[26] K.He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick. 2022. Masked autoencoders
are scalable vision learners. In CVPR. 16000-16009.

[27] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image

recognition. In CVPR. 770-778.

Y. He, C. Chen, J. Zhang, J. Liu, F. He, C. Wang, and B. Du. 2022. Visual Semantics

Allow for Textual Reasoning Better in Scene Text Recognition. In AAAIL 888-896.

M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. 2016. Reading text in

the wild with convolutional neural networks. International Journal of Computer

(17

[28

[29

[30

[31]

(32]

[33

[34

(35]
[36]

(37]

~
&

N
)

~
)

(54

(5]

o
2

(57

(58]

ACM MM, 2024, Melbourne, Australia

Vision 116, 1 (2016), 1-20.

Q. Jiang, J. Wang, D. Peng, C. Liu, and L. Jin. 2023. Revisiting scene text recogni-
tion: A data perspective. In ICCV. 20543-20554.

D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bagdanov, M. Iwamura,
J. Matas, L. Neumann, V. R. Chandrasekhar, S. Lu, F. Shafait, S. Uchida, and E.
Valveny. 2015. ICDAR 2015 competition on Robust Reading. In ICDAR. 1156-1160.
D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i. Bigorda, S. R. Mestre, J.
Mas, D. F. Mota, J. A. Almaz4n, and L. P. de las Heras. 2013. ICDAR 2013 Robust
Reading Competition. In ICDAR. 1484-1493.

L. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H.
Rom, J. Uijlings, S. Popov, A. Veit, et al. 2017. Openimages: A public dataset for
large-scale multi-label and multi-class image classification. Dataset available
from https://github. com/openimages 2, 3 (2017), 18.

L. Krylov, S.K. Nosov, and V. Sovrasov. 2021. Open images v5 text annotation and
yet another mask text spotter. In ACML. PMLR, 379-389.

C. Lee and S. Osindero. 2016. Recursive recurrent nets with attention modeling
for ocr in the wild. In CVPR. 2231-2239.

H. Li, P. Wang, C. Shen, and G. Zhang. 2019. Show, attend and read: A simple
and strong baseline for irregular text recognition. In AAAIL 8610-8617.

M. Li, T. Lv, J. Chen, L. Cui, Y. Lu, D. Florencio, C. Zhang, Z. Li, and F. Wei. 2023.
Trocr: Transformer-based optical character recognition with pre-trained models.
In AAAI 13094-13102.

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C.
Zitnick. 2014. Microsoft coco: Common objects in context. In ECCV. 740-755.
N. Lu, W. Yu, X. Qi, Y. Chen, P. Gong, R. Xiao, and X. Bai. 2021. MASTER: Multi-
aspect non-local network for scene text recognition. Pattern Recognition 117
(2021), 107980.

C. Luo, L. Jin, and Z. Sun. 2019. MORAN: A Multi-Object Rectified Attention
Network for Scene Text Recognition. Pattern Recognition (2019), 109-118.

P. Lyu, C. Zhang, S. Liu, M. Qiao, Y. Xu, L. Wu, K. Yao, J. Han, E. Ding, and J.
Wang. 2022. Maskocr: text recognition with masked encoder-decoder pretraining.
arXiv:2206.00311 (2022).

A. Mishra, A. Karteek, and C. V. Jawahar. 2012. Scene Text Recognition using
Higher Order Language Priors. In BMVC. 1-11.

N. Nayef, Y. Patel, M. Busta, P. Chowdhury, D. Karatzas, W. Khlif, J. Matas, U. Pal,
J. Burie, C. Liu, et al. 2019. ICDAR2019 robust reading challenge on multi-lingual
scene text detection and recognition-RRC-MLT-2019. In ICDAR. 1582-1587.

N. Nayef, F. Yin, I Bizid, H. Choi, Y. Feng, D. Karatzas, Z. Luo, U. Pal, C. Rigaud,
J. Chazalon, et al. 2017. ICDAR2017 robust reading challenge on multi-lingual
scene text detection and script identification-rrc-mlt. In ICDAR. 1454-1459.

T. Q. Phan, P. Shivakumara, S. Tian, and C. L. Tan. 2013. Recognizing Text with
Perspective Distortion in Natural Scenes. In CVPR. 569-576.

Z.Qiao, Y. Zhou, J. Wei, W. Wang, Y. Zhang, N. Jiang, H. Wang, and W. Wang. 2021.
Pimnet: a parallel, iterative and mimicking network for scene text recognition.
In ACM MM. 2046-2055.

Z.Qiao, Y. Zhou, D. Yang, Y. Zhou, and W. Wang. 2020. SEED: Semantics Enhanced
Encoder-Decoder Framework for Scene Text Recognition. In CVPR. 13525-13534.
A.Radford, J. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. 2021. Learning Transferable
Visual Models From Natural Language Supervision. In ICML. PMLR, 8748-8763.
M. Rang, Z. B, C. Liu, Y. Wang, and K. Han. 2024. An Empirical Study of Scaling
Law for Scene Text Recognition. In CVPR. 15619-15629.

F. Sheng, Z. Chen, and B. Xu. 2019. NRTR: A No-Recurrence Sequence-to-
Sequence Model for Scene Text Recognition. In ICDAR. 781-786.

B. Shi, X. Bai, and C. Yao. 2017. An End-to-End Trainable Neural Network for
Image-Based Sequence Recognition and Its Application to Scene Text Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2017), 2298-2304.
B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai. 2019. ASTER: An Attentional
Scene Text Recognizer with Flexible Rectification. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2019), 2035-2048.

B. Shi, C. Yao, M. Liao, M. Yang, P. Xu, L. Cui, S. Belongie, S. Lu, and X. Bai. 2017.
ICDAR2017 Competition on Reading Chinese Text in the Wild (RCTW-17). In
ICDAR. 1429-1434.

A. Singh, G. Pang, M. Toh, J. Huang, W.h Galuba, and T. Hassner. 2021. Textocr:
Towards large-scale end-to-end reasoning for arbitrary-shaped scene text. In
CVPR. 8802-8812.

Y. Sun, D. Karatzas, C. Chan, L. Jin, Z. Ni, C. Chng, Y. Liu, C. Luo, C. Ng, J. Han,
E. Ding, and J. Liu. 2019. ICDAR 2019 Competition on Large-Scale Street View
Text with Partial Labeling - RRC-LSVT. In ICDAR. 1557-1562.

A. Veit, T. Matera, L.s Neumann, J. Matas, and S. Belongie. 2016. COCO-Text:
Dataset and Benchmark for Text Detection and Recognition in Natural Images.
arXiv (2016).

K. Wang, B. Babenko, and S. Belongie. 2011. End-to-end scene text recognition.
In ICCV. 1457-1464.

Y. Wang, H. Xie, S. Fang, J. Wang, S. Zhu, and Y. Zhang. 2021. From Two to One:
A New Scene Text Recognizer With Visual Language Modeling Network. In ICCV.
14194-14203.



ACM MM, 2024, Melbourne, Australia

[59]

[60]

[61]

[62]

[63]

[64

[65]

Y. Wang, H. Xie, S. Fang, M. Xing, J. Wang, S. Zhu, and Y. Zhang. 2022. Petr:
Rethinking the capability of transformer-based language model in scene text
recognition. IEEE Trans. on Image Processing 31 (2022), 5585-5598.

J. Xu, Y. Wang, H. Xie, and Y. Zhang. 2024. OTE: Exploring Accurate Scene Text
Recognition Using One Token. In CVPR. 28327-28336.

M. Yang, M. Liao, P. Lu, J. Wang, S. Zhu, H. Luo, Q. Tian, and X. Bai. 2022. Reading
and writing: Discriminative and generative modeling for self-supervised text
recognition. In ACM MM. 4214-4223.

D. Yu, X. Li, C. Zhang, T. Liu, J. Han, J. Liu, and E. Ding. 2020. Towards Accurate
Scene Text Recognition With Semantic Reasoning Networks. In CVPR. 12110—
12119.

H. Yu, X. Wang, B. Li, and X. Xue. 2023. Chinese Text Recognition with A Pre-
Trained CLIP-Like Model Through Image-IDS Aligning. In ICCV. 11943-11952.
B. Zhang, H. Xie, Y. Wang, J. Xu, and Y. Zhang. 2023. Linguistic More: Taking
a Further Step toward Efficient and Accurate Scene Text Recognition. In IJCAL
1704-1712.

R. Zhang, M. Yang, B. Xiang, B. Shi, K. Dimosthenis, S. Lu, C. Jawahar, Zhou Y.,
Q. Jiang, S. Qi, N. Li, Z. Kai, L. Wang, D. Wang, and M. Liao. 2019. ICDAR 2019

[66

[67

(68

[70

Shuai Zhao, Yongkun Du, Zhineng Chen, and Yu-Gang Jiang

Robust Reading Challenge on Reading Chinese Text on Signboard. In ICDAR.
1577-1581.

Y. Zhang, L. Gueguen, I. Zharkov, P. Zhang, K. Seifert, and B. Kadlec. 2017. Uber-
text: A large-scale dataset for optical character recognition from street-level
imagery. In SUNw: Scene Understanding Workshop-CVPR. 5.

Z.Zhao, J. Tang, C. Lin, B. Wu, C. Huang, H. Liu, X. Tan, Z. Zhang, and Y. Xie. 2024.
Multi-modal In-Context Learning Makes an Ego-evolving Scene Text Recognizer.
In CVPR. 15567-15576.

T. Zheng, Z. Chen, J. Bai, H. Xie, and Y. Jiang. 2023. TPS++: Attention-Enhanced
Thin-Plate Spline for Scene Text Recognition. In IJCAIL 1777-1785.

T. Zheng, Z. Chen, S. Fang, H. Xie, and Y. Jiang. 2024. Cdistnet: Perceiving multi-
domain character distance for robust text recognition. International Journal of
Computer Vision 132, 2 (2024), 300-318.

T. Zheng, Z. Chen, B. Huang, W. Zhang, and Y. Jiang. 2023. MRN: Multiplexed
routing network for incremental multilingual text recognition. In ICCV. 18644-
18653.



	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Decoder Pre-training
	3.2 Model Fine-tuning

	4 Experiment
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Ablation Study
	4.4 Comparisons with State-of-the-Arts

	5 Conclusion
	Acknowledgments
	References

