
Instance-optimal PAC Algorithms for Contextual
Bandits

Zhaoqi Li
Department of Statistics

University of Washington
zli9@uw.edu

Lillian Ratliff
Department of Electrical and Computer Engineering

University of Washington
ratliffl@uw.edu

Houssam Nassif
Amazon

houssamn@amazon.com

Kevin Jamieson
Allen School of Computer Science & Engineering

University of Washington
jamieson@cs.washington.edu

Lalit Jain
Foster School of Business
University of Washington

lalitj@uw.edu

Abstract

In the stochastic contextual bandit setting, regret-minimizing algorithms have
been extensively researched, but their instance-minimizing best-arm identification
counterparts remain seldom studied. In this work, we focus on the stochastic bandit
problem in the (ε, δ)-PAC setting: given a policy class Π the goal of the learner
is to return a policy π ∈ Π whose expected reward is within ε of the optimal
policy with probability greater than 1 − δ. We characterize the first instance-
dependent PAC sample complexity of contextual bandits through a quantity ρΠ,
and provide matching upper and lower bounds in terms of ρΠ for the agnostic and
linear contextual best-arm identification settings. We show that no algorithm can be
simultaneously minimax-optimal for regret minimization and instance-dependent
PAC for best-arm identification. Our main result is a new instance-optimal and
computationally efficient algorithm that relies on a polynomial number of calls to
an argmax oracle.

1 Introduction

We consider the stochastic contextual bandit problem in the PAC setting. Fix a distribution ν over a
potentially countable1 set of contexts C. The action space is A, and for computational tractability,
we assume |A| is finite. We have a set of policies Π of interest where each policy π ∈ Π is a map
from contexts to an action space π : C → A. The reward function is r : C × A → R. At each
time t = 1, 2, . . . a context ct ∼ ν arrives, the learner chooses an action at ∈ A, and receives
reward rt := rt(ct, at) ∈ R with E[rt|ct, at] = r(ct, at) ∈ R. The value of a policy V (π) is the
expected reward from playing action π(c) in context c: V (π) = Ec∼ν [r(c, π(c))]. Given a collection
of policies Π, the objective is to identify the optimal policy π∗ := arg maxπ∈Π V (π), with high
probability. Formally, for any ε > 0 and δ ∈ (0, 1), we seek to characterize the sample complexity of

1Assuming the set of contexts is countable versus uncountable is for presentation purposes only, since it
allow us the notational convenience of letting νc denote the probability of context c arriving.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

identifying a policy π ∈ Π such that V (π) ≥ V (π∗)− ε, with probability at least 1− δ. That is, we
wish to minimize the total amount of interactions with the environment to learn an ε-optimal policy.

We study both the agnostic setting, where Π is an arbitrary set of policies with no assumed relationship
with the reward function r(c, a); and the realizable setting, where the policy class and the reward
function follow a linear structure, known as the linear contextual bandit problem. In both cases,
we are interested in instance-dependent sample complexity bounds. That is, the upper and lower
bounds we seek do not simply depend on coarse quantities like |Π|, |A|, and 1/ε2, but more fine-
grained relationships between the context distribution ν, geometry of policies Π, and the reward
function r : C × A → R. Our motivation is that instance-dependent bounds describe the difficulty
of a particular problem instance, allowing optimal algorithms to adapt to the true difficulty of the
problem, whether easy or hard. We seek algorithms that take advantage of “easy” instances instead of
optimizing for the worst-case [23].

1.1 Related work

Minimax regret bounds for general policy classes The vast majority of research in contextual
bandits focuses on regret minimization. That is, for a time horizon T , the goal of the player is
to minimize E

[∑T
t=1 r(ct, π∗(ct))− r(ct, at)

]
. The landmark algorithm EXP4 for non-stochastic

multi-armed bandits [5] achieves a regret bound of
√
|A|T log(|Π|). Unfortunately, the running time

of EXP4 is linear in |Π| which is prohibitive for many problems of interest. The algorithms proposed
in [3, 11] achieve the same regret bound with a computational complexity that is only polynomial
in T and log(|Π|). Both approaches can be used to obtain an ε-optimal policy with probability at
least 1 − δ using a sample complexity no more than |A| log(|Π|/δ)

ε2 . None of these works made any
assumption on the connection between the reward function r and the policy class Π (i.e. the agnostic
setting).
Instance-dependent regret bounds for general policy classes The epoch-greedy algorithm
of [26] achieved the first instance-dependent bounds on regret with a coarse guarantee depend-
ing only on the minimum policy gap ∆pol := V (π∗) − maxπ 6=π∗ V (π). In the pursuit of more
fine-grained regret bounds achievable by computationally efficient algorithms, many authors resort
to the realizability assumption [14–16, 34]. The learner knows a hypothesis class H where each
f ∈ H is a map f : C × A → R, and there exists an f∗ ∈ H such that r(c, a) = f∗(c, a) for all
(c, a) ∈ C×A. Under this assumption, [16] proves lower and upper bounds on the instance-dependent
regret. Their bounds are in term of the uniform gap ∆uniform := minc∈C mina∈A r(c, π∗(c))−r(c, a).
In general, for any policy class, they establish matching minimax lower and upper regret bounds of
the form min{

√
|A|T log(|H|), |A| log(|H|)

∆uniform
Cpol
H }, where Cpol

H is the policy disagreement coefficient, a
parameter depending on the geometry ofH and the context distribution ν. That is, these bounds hold
with respect to a worst-case family of instances parameterized by ∆uniform and Cpol

H . Using the stan-
dard online-to-batch conversion, this translates to a sample complexity (i.e. the time required to find
an ε-good policy with constant probability) of roughly |A| log(|H|)

ε ∆uniform
Cpol
H . We show in Corollary 2.16

that this sample complexity is at least as large as our bounds. Further, unlike our bounds below, this
sample complexity is unbounded as ε goes to 0. Recent work refines these kinds of regret bounds
further, and provides minimax regret bounds in terms of the decision-estimation coefficient [17].
Regret bounds for linear contextual bandits A special case of the realizable case assumes a
linear structure forH. Assume there exists a known feature map φ : C × A → Rd and an unknown
θ∗ ∈ Rd such that the true reward function is given as r(c, a) = 〈φ(c, a), θ∗〉. For this setting,
popular optimism-based algorithms like LinUCB [27] and Thompson sampling [31, 33] achieve a
regret bound of min{d

√
T , d2

∆uniform
} [1]. Appealing to the online-to-batch conversion, this translates

to a PAC guarantee of d2

ε ∆uniform
. More precise instance-dependent upper bounds on regret match

instance-dependent lower bounds asymptotically as T →∞ [19, 36]. These works are most similar
to our setting and have qualitatively similar style algorithms. However, both approaches rely on
asymptotics with large problem-dependent terms that may dominate the bounds in finite time. Our
work is focused on upper bounds that nearly match lower bounds for all finite times.

Recently, instance-dependent sample complexity results for reinforcement learning in the tabular and
linear function approximation settings have appeared [4, 39, 40]. As contextual bandits is a special
case of finite-horizon reinforcement learning with a horizon length of 1, their results immediately can

2

be applied here. However, the cost of this generality is that these algorithms have very large lower
order terms (i.e., problem-dependent factors that multiply a 1/ε term) making them far from optimal
in our setting. Moreover, the leading order term of [39] cannot be related to our lower bounds.

PAC sample complexity for contextual bandits As we will describe, all contextual bandits with
an arbitrary policy class can be reduced to PAC learning for linear bandits. Once we made this reduc-
tion, our sample complexity analysis draws inspiration from the nearly instance-optimal algorithm
for linear best-arm identification [13]. The work in [10] provides a simple regret bound assuming a
kernel structure on the reward function, while their bound is minimax and they assume a lower bound
on eigenvalues of the covariance matrix of the context distribution. PAC sample complexity of linear
contextual bandits was also studied in [41], who shows a minimax guarantee sample complexity that
scales with d2

ε2 log(1/δ). Similar to our work, [3] define their action sampling distribution as a convex
combination over policies. Our sampling distribution, as well as the optimal sampling distribution,
cannot be represented this way and is actually derived from the dual of the optimal experimental
design objective.

Contributions. In this work, our contributions include:

1. In the agnostic setting, we introduce a quantity ρΠ that characterizes the instance-dependent
sample complexity of PAC learning for contextual bandits (see Equation 1). We show that ρΠ appears
in information theoretic lower bound on the sample complexity of any PAC algorithm as ε → 0
in Theorem 2.2. To ground this, we describe it carefully in the setting of the trivial policy class
(Section 2.2) and linear policy classes (Section 2.3).
2. We construct an instance on which any regret minimax-optimal algorithm necessarily has a sample
complexity that scales quadratically with the optimal sample complexity (Theorem 2.6). This shows
that no algorithm can be both regret minimax-optimal and instance-optimal PAC.
3. Finally, we propose Algorithm 3 whose sample complexity nearly matches the lower bound based
on ρΠ. By appealing to an argmax oracle, this algorithm has a runtime polynomial in ρΠ, 1/ε,
log(1/δ), |A|, and log(|Π|), assuming a unit cost of invoking the oracle.

2 Problem statement and main results

More formally, define Ft = σ(c1, a1, r1, . . . , ct, at, rt) as the natural σ-algebra filtration capturing
all observed random variables up to time t. For simplicity, we assume Gaussian noise in some of
our analysis. At each time t an algorithm defines a sampling rule Ft 7→ A which defines at+1, an
{Ft}t≥1-adapted stopping time τ ∈ N, and a selection rule Ft 7→ Π that is only called once at the
stopping time t = τ .
Definition 2.1. Fix ε ≥ 0 and δ ∈ (0, 1). We say an algorithm is (ε, δ)-PAC for contextual bandits
with policy class Π, if for every instance, at the stopping time τ ∈ N with τ <∞ almost surely, the
algorithm outputs π̂ ∈ Π satisfying P(V (π̂) ≥ maxπ∈Π V (π)− ε) ≥ 1− δ.

The sample complexity of an (ε, δ)-PAC algorithm for contextual bandits is the time at which the
algorithm stops and outputs π̂. As we will discuss, the following quantity governs the sample
complexity :

ρΠ,ε := min
pc∈4A, ∀c∈C

max
π∈Π\π∗

Ec∼ν
[(

1
pc,π(c)

+ 1
pc,π∗(c)

)
1{π∗(c) 6= π(c)}

]
(Ec∼ν [r(c, π∗(c))− r(c, π(c))] ∨ ε)2

. (1)

Here, for any countable set X we have that 4X = {p ∈ R|X | :
∑
x∈X px = 1, px ≥ 0 ∀x ∈ X}

so that pc for every c ∈ C defines a probability distribution over actions A. In addition we use the
notation a ∨ b := max{a, b}. We begin with a necessary condition on the sample complexity for the
particular case of exact policy identification (ε = 0).
Theorem 2.2 (Lower bound). Fix ε = 0 and δ ∈ (0, 1). Moreover, fix a contextual bandit instance
µ = (ν, r) and a collection of policies Π. Then any (0, δ)-PAC algorithm for contextual bandits
satisfies Eµ[τ] ≥ ρΠ,0 log(1/2.4δ).

The proof of the lower bound follows from standard information theoretic arguments [24]. The
lower bound implicitly applies to learners that know the distribution ν precisely. In practice, such
knowledge would never be available however the learner may have a large dataset of offline data.

3

Assumption 1. Prior to starting the game, the learning algorithm is given a large dataset of
contexts D = {ct}Tt=1, where each ct is drawn IID from ν for all t ∈ [T], and T =
O(poly(1/ε, |A|, log(1/δ), log(|Π|))).

The above only assumes access to samples from the context distribution, not rewards or the value
function. Importantly, since C could be uncountable, we do not assume D covers the support of ν.
Assumption 1 is satisfied, for example, in an e-commerce setting where the context is the demographic
information about visitors to the site for which massive troves of historical data may be available.
Other works in PAC learning have made similar assumptions [20]. We would like our algorithm to be
computationally efficient in the sense that it makes a polynomial number of calls to what we refer to
as argmax oracle. Such an assumption is common in the contextual bandits literature [3, 11, 25].
Definition 2.3 (Argmax oracle (AMO)). The oracle AMO(Π, {(ct, st)}nt=1) is an algorithm that
given contexts and cost vectors (c1, s1), · · · , (cn, sn) ∈ C ×R|A|, returns arg max

π∈Π

∑n
t=1 st (π (ct)).

The constrained argmax oracle C-AMO, given an upper bound l on the loss, returns
arg max
π∈Π

∑n
t=1 st (π (ct)) subject to

∑n
t=1 st (π (ct)) ≤ l.

In general we can implement AMO by calling to cost-sensitive classification [6, 11] and C-AMO
through a Lagrangian relaxation and a cost-sensitive classification oracle [2, 8]. Our algorithm uses
an argmax oracle as a subroutine at most polynomially in ε−1, log(1/δ), |A| and log(|Π|). In this
sense, it is computationally efficient. The following sufficiency result holds for general ε ≥ 0.
Theorem 2.4 (Upper bound). Fix ε ≥ 0 and δ ∈ (0, 1). Under Assumption 1, there ex-
ists a computationally efficient (ε, δ)-PAC algorithm for contextual bandits that satisfies τ ≤
ρΠ,ε log(|Π| log2(1/ε)/δ) log(1/∆ε), where ∆ε = max{ε,minπ∈Π\π∗ V (π∗) − V (π)}. Further-
more, this sample complexity never exceeds |A|(log(|Π|)+log(1/δ)) log(1/ε)

ε2 .

The second part of the theorem follows from the first, since ρΠ,ε ≤ 2|A|/ε2 by taking pc,a = 1/|A|
for all (c, a) ∈ C × A.

2.1 Inefficiency of low-regret algorithms

Computationally efficient algorithms are known to exist, such as ILOVETOCONBANDITS [3],
which achieve a minimax-optimal cumulative regret of

√
T |A| log(|Π|/δ). Inspecting the proof

in [3], one can extract a sample complexity of ε−2|A| log(|Π|/δ) from such results (which is also
minimax optimal for PAC). The previous section showed that the sample complexity of our algorithm,
Theorem 2.4, nearly matches the instance-dependent lower bound of Theorem 2.2. In other words,
our algorithm achieves a nearly optimal instance-dependent PAC sample complexity. However, it is
natural to wonder if perhaps with a tighter analysis, the minimax regret optimal algorithm in [3] also
obtains the instance-optimal PAC sample complexity. In this section, we show that this is not the case.
Indeed, we show that any algorithm that is minimax regret optimal must have a sample complexity
that is at least quadratic in the optimal PAC sample complexity of some instance.
Definition 2.5 (Hard instance). Fix m ∈ N, ∆ ∈ (0, 1] and let C = [m] with uniform distribution,
A = {0, 1}. For i = 1, . . . ,m, let πi(j) = 1{i = j} and define r(i, j) = ∆1{j = π1(i)}. Then
V (π1) = ∆ and V (πi) = ∆(1− 2/m) for all i ∈ C \ {1}.

Note that for the hard instance, m = |Π|. If observations are corrupted by N (0, 1) additive noise,
then a straightforward calculation shows that ρΠ,0 = 4/m

(2∆/m)2 = m∆−2 for the hard instance.

Theorem 2.6. Fix δ ∈ (0, 1) and ∆ ∈ (0, 1]. We say an algorithm is an α-minimax regret algorithm
if for some α > 0 and all T ∈ N :

max
µ′

Eµ′
[T∑
t=1

(rt(ct, π∗(ct))−rt(ct, at))
]

= max
µ′

∑
c,a

Eµ′ [Tc,a(T)](r(c, π∗(c))−r(c, a)) ≤
√
α|A|T

where the maximum is taken over all contextual bandit instances µ′ = (ν′, r′) and Tc,a(T) =∑T
t=1 1{ct = c, at = a}. For any α-minimax regret algorithm, it is (0, δ)-PAC if at a stopping

time τ it outputs the optimal policy π∗ w. p. at least 1− δ. Any α-minimax regret algorithm that is
(0, δ)-PAC satisfies Eµ[τ] ≥ m2∆−2 log2(1/2.4δ)/4α for the instance µ = (ν, r) defined in 2.5.

4

We point out that the minimax regret optimal rate takes α = log(m) = log(|Π|). Thus, taking ∆ = 1
and δ = 0.1, the minimax regret optimal algorithm has a PAC sample complexity of m2/ log(m);
whereas the PAC sample complexity of our algorithm, Theorem 2.4, is just m log(m). That is,
algorithms with optimal minimax regret have a sample complexity that is at least nearly the optimal
PAC sample complexity squared. This demonstrates that no algorithm can simultaneously be minimax
regret optimal and obtain the optimal PAC sample complexity.

2.2 Trivial policy class

As a warm-up to discussing linear policy classes, let us consider the simplest policy class.

Definition 2.7 (Trivial policy class). Assume |C| <∞ and let Π = {π(c) = a : (c, a) ∈ C ×A} so
that |Π| = |A||C|.

The trivial policy class has the flexibility to predict any action a ∈ A individually for each c ∈ C.
This allows us to show that ρΠ,0 ≤ maxc

2
νc

∑
a′ ∆

−2
c,a′ (see Appendix A.3). An immediate corollary

of Theorem 2.4 is obtained by simply noting that |Π| = |A||C|.
Corollary 2.8 (Trivial class, upper). Fix ε > 0 and δ ∈ (0, 1). Let Π be the trivial policy class applied
to some fixed C,A spaces. Then under Assumption 1 there exists a computationally efficient (ε, δ)-PAC
algorithm for contextual bandits that satisfies τ ≤ min{Aε−2,maxc

1
νc

∑
a′ ∆

−2
c,a′}(|C| log(|A|) +

log(1/δ)) log(1/∆ε), where ∆ε = max{ε,minπ∈Π\π∗ V (π∗)− V (π)}. Furthermore, this sample
complexity never exceeds |A|(|C| log(|A|)+log(1/δ))

ε2 log(1/ε).

Ignoring log factors, the minimax sample complexity of the trivial class is just ε−2|A|(|C|+log(1/δ)).
This is actually a somewhat surprising result, because it says limδ→0

E[τ]
log(1/δ) → ε−2|A| which

is independent of |C|. To see why this result is somewhat remarkable, if we played a best-arm
identification algorithm for each of the |C| contexts, then this would lead to a sample complexity of
ε−2|C| · |A| log(1/δ). It is somewhat of a surprise that such a natural strategy is not optimal. For
intuition for why we can avoid the multiplicative |C|, note that to identify an ε-good policy among
just two policies (π, π∗) using uniform exploration requires just ε−2|A| log(1/δ) samples. When we
have more than two policies, a union bound achieves the claimed result.

The minimax sample complexity of Corollary 2.8 (i.e., the second statement) is nearly tight:

Theorem 2.9 (Trivial class, lower). Fix ε > 0 and δ ∈ (0, 1/6). Let Π be the trivial policy
class applied to some fixed C,A spaces. Moreover, fix a contextual bandit instance µ = (ν, r)
and a collection of policies Π. Then any (0, δ)-PAC algorithm for contextual bandits satisfies
Eµ[τ] ≥ maxc

1
νc

∑
a ∆−2

c,a log(1/2.4δ). Furthermore, supµ Eµ[τ] ≥ ε−2|A|(|C|+ log(1/δ)).

2.3 Linear policy class

A particularly compelling model-class of policies is the set of linear policies.

Definition 2.10 (Linear policy class). Fix a feature map φ : C × A → Rd and assume it is known to
the learner. Let Π = {π(c) = arg maxa∈A〈φ(c, a), θ〉,∀θ ∈ Rd}.

We can consider two settings: the agnostic setting and the realizable setting. In the agnostic setting,
there is no assumed relationship between the true reward function r(c, a) and φ : C × A → Rd. In
this case, Theorem 2.4 applies directly by taking a cover of Π.

Corollary 2.11 (Agnostic, upper bound). Fix ε ≥ 0 and δ ∈ (0, 1). Let Π be the linear pol-
icy class in Rd. Under Assumption 1 there exists a computationally efficient (ε, δ)-PAC algo-
rithm for contextual bandits that satisfies τ ≤ ρΠ,ε · (d log(1/ε) + log(1/δ)) log(1/∆ε) where
∆ε = max{ε,minπ∈Π\π∗ V (π∗) − V (π)}. Furthermore, this sample complexity never exceeds
|A|(d log(1/ε)+log(1/δ))

ε2 log(1/ε).

Comparing to the lower bound of Theorem 2.2, the instance dependent upper bound of Corollary 2.11
matches up to a factor of the dimension and negligible log factors. In contrast to the “model-free” feel
of the agnostic case, we can also consider a “model-based” type setting, i.e. the realizable setting.

5

Definition 2.12 (Realizable). We say the linear policy class is realizable if there exists a θ∗ ∈ Rd
such that r(c, a) = 〈φ(c, a), θ∗〉 for all c ∈ C and a ∈ A. Thus, for any π ∈ Π we have V (π) =
Ec∼ν [r(c, π(c))] = Ec∼ν [〈φ(c, π(c)), θ∗〉] = 〈φπ, θ∗〉 with φπ := Ec∼ν [φ(c, π(c))]. Finally, at the
start of the game the learner knows this model.

The setting in Definition 2.12 is commonly referred to as the linear contextual bandit problem
[1]. Clearly, we have that π∗(c) = arg maxa∈A〈φ(c, a), θ∗〉. We begin by defining a quantity
fundamental to our sample complexity results:

ρlin,ε := min
pc∈4A, ∀c∈C

max
π∈Π\π∗

‖φπ − φπ∗‖2Ec∼ν [
∑
a∈A pc,aφ(c,a)φ(c,a)>]−1

〈φπ∗ − φπ, θ∗〉2 ∨ ε2
.

Theorem 2.13 (Realizable, lower bound). Fix ε = 0 and δ ∈ (0, 1). Let Π be the linear policy class
in Rd and assume it is realizable (see Definitions 2.10 and 2.12). Any (0, δ)-PAC algorithm in this
setting satisfies E[τ] ≥ ρlin,0 · log(1/2.4δ).

We now state our nearly matching upper bound. However, in this case we note that the algorithm is
not computationally efficient.
Theorem 2.14 (Realizable, upper bound). Fix ε ≥ 0 and δ ∈ (0, 1). Let Π be the linear policy class
in Rd and assume it is realizable (see Definitions 2.10 and 2.12). Under Assumption 1 there exists an
(ε, δ)-PAC algorithm (see Algorithm 1) for this setting satisfying

τ ≤ ρlin,ε · (min{d log(1/ε), log(|Π|)}+ log(1/δ)) log(1/∆ε)

where ∆ε = max{ε, min
π∈Π\π∗

〈φπ∗−φπ, θ∗〉} = max{ε, min
(c,a)∈C×A:π∗(c)6=a

〈φ(c, π∗(c))−φ(c, a), θ∗〉}.

Furthermore, this sample complexity never exceeds d(d log(1/ε)+log(1/δ)) log(1/ε)
ε2 .

We remark that the algorithm that achieves this upper bound is very different than popular optimism-
based algorithms for linear contextual bandits e.g., UCB or Thompson sampling [1]. Indeed, our
algorithm computes an experimental design and is related to instance-dependent linear bandit al-
gorithms developed for best-arm identification [9, 12, 13, 35] and regret minimization [19, 36]. To
our knowledge, Theorem 2.14 provides the first instance-dependent sample complexity for the PAC
setting of linear contextual bandits. The most relevant work to Theorem 2.14 is the work of [41]
which demonstrated a minimax sample complexity of d2/ε2 log(1/δ). Also, we remark that the lower
and upper bounds in this section require an additive Gaussian noise.
Remark 2.15 (Agnostic vs. Realizable). Contrasting the above results, we note that the sample
complexity of the agnostic case is always bounded by |A|d/ε2. whereas it never exceeds d2/ε2 for
the realizable case. This matches the intuition that when the number of actions is much larger than
the dimension, assuming realizability can significantly reduce the sample complexity.

2.4 Comparison to the Disagreement Coefficient

The work of [16] provides regret bounds in terms of instance-dependent quantities inspired by the
disagreement coefficient, a notion of complexity common in the active learning literature [18]. The
following corollary relates our sample complexity to these notions of disagreement coefficients.

Define the policy disagreement coefficient as

Cpol
Π (ε0) = sup

ε≥ε0

Ec∼ν [1{∃π ∈ Πε : π(c) 6= π∗(c)}]
ε

where Πε := {π ∈ Π : Pν(π(c) 6= π∗(c)) ≤ ε} and the cost-sensitive disagreement coefficient as

Ccsc
Π (ε0) = sup

ε≥ε0

Ec∼ν [1{∃π ∈ Π : π(c) 6= π∗(c),Ec∼ν [r(c, π∗(c))− r(c, π(c))] ≤ ε}]
ε

.

The AdaCB algorithm of [16] achieves a regret of roughly RT =

O
(

minδ

{
δ∆uniformT,

|A| log(|Π|)Cpol
Π (δ)

∆uniform

})
or RT = O (minδ {δT, |A| log(|Π|)Ccsc

Π (δ)}). Ob-
serve that at time T , given the outputs π1, π2, · · · , πT from AdaCB algorithm, one could return a
(randomized) policy π̃ which on observing a context, samples from the empirical distribution over

6

the outputs. By Markov’s inequality we have π̃, V (π∗) − V (π̃) ≤ O(ε) with constant probability
for ε = RT

T . Therefore, an upper bound on the regret translates to a PAC sample complexity of
|A| log(|Π|)
ε∆uniform

Cpol
Π (ε/∆uniform) or |A| log(|Π|)

ε Ccsc
Π (ε).

Finally, Corollary 2.16 shows that this sample complexity bound is at least as large as our upper
bound, see Appendix A.5 for the proof.
Corollary 2.16. Recall that ∆uniform := min

c∈C
min
a∈A

r(c, π∗(c))− r(c, a). For any ε0 > 0 we have that

1. ρΠ,ε0 ≤
2|A|

ε0∆uniform
Cpol

Π (ε0/∆uniform);

2. ρΠ,ε0 ≤
2|A|
ε0

Ccsc
Π (ε0).

Moreover, for all ε0 ≥ 0 we have that ρΠ,ε0 <∞ whenever ∆pol := V (π∗)−maxπ 6=π∗ V (π) > 0.

3 Optimal Algorithms for Contextual Bandits

3.1 Reduction to linear realizability and a simple elimination scheme

The astute reader may have noticed that if we ignore computation, Theorem 2.4 is actually an
immediate corollary of Theorem 2.14 by taking φ(c, a) = vec(ece

>
a) ∈ R|C|·|A| where ei is a

one-hot encoded vector so that r(c, a) = 〈φ(c, a), θ∗〉 with θ∗ ∈ R|C|·|A|. This observation is key
to our sample complexity results. Recalling φπ := Ec∼ν [φ(c, π(c))] (from Definition 2.12), we
have that V (π) = Ec∼ν [r(c, π(c))] = Ec∼ν [〈φ(c, π(c)), θ∗〉] = 〈φπ, θ∗〉. We stress that C can be
uncountable, and thus we would never actually instantiate any of the vectors φ(c, a).

For notational convenience, define the feasible set of (context, action) probability distributions as
Ω =

{
w ∈ ∆C×A : νc =

∑
a∈A wa,c

}
. Note that for each context, pc := {wc,a/νc}a∈A ∈ ∆A

defines a probability distribution over actions. Also define A(w) :=
∑
c,a wc,aφ(c, a)φ(c, a)> for

any w ∈ Ω. Under this notation, recalling the right hand side from Theorems 2.13 and 2.14 we have

min
w∈Ω

max
π∈Π\π∗

‖φπ − φπ∗‖2A(w)−1

〈φπ∗ − φπ, θ∗〉2 ∨ ε2
= min
pc∈4A, ∀c∈C

max
π∈Π\π∗

‖φπ − φπ∗‖2Ec∼ν [
∑
a∈A pc,aφ(c,a)φ(c,a)>]−1

〈φπ∗ − φπ, θ∗〉2 ∨ ε2

To show that the sample complexity of Theorem 2.4 is a corollary of Theorem 2.14, it suffices to
show that equation (1) and the above display are equal. To see this, observe

‖φπ − φπ∗‖2A(w)−1 = ‖Ec∼ν [vec(ece
>
π(c))− vec(ece

>
π∗(c)

)]‖2A(w)−1

=
∑
c,a

ν2
c

wc,a
(1{π(c) = a}+ 1{π∗(c) = a} − 21{π(c) = π′(c)})

= Ec∼ν
[(

1
pc,π(c)

+ 1
pc,π∗(c)

)
1{π∗(c) 6= π(c)}

]
.

Due to this equivalence, the lower bound of Theorem 2.2 is also a corollary of Theorem 2.13. The
lower bound of Theorem 2.13 follows almost immediately from the lower bound argument in [13].

The conclusion of this section is that from a sample complexity analysis alone, all that is left is to
prove Theorem 2.14. In the next section we propose an algorithm that achieves this sample complexity
but assumes precise knowledge of the context distribution ν (this is relaxed in following sections).
While the algorithm is highly impractical for a number of reasons, its analysis provides a great deal
of intuition and motivation for our final algorithm.

3.2 A simple, impractical, elimination-style algorithm

Algorithm 1 provides an initial elimination based method for the PAC-contextual bandit problem.
The algorithm runs in stages. Before the start of each stage ` ∈ N, the algorithm defines a distribution
p

(`)
c ∈ 4A for each c ∈ C. At each successive time t ∈ [n`], it plays random action at ∼ p

(`)
ct

in response to context ct ∼ ν, and receives random reward rt with E[rt|ct, at] = 〈φ(ct, at), θ∗〉.
Observe that

E [φ(ct, at)rt] = E
[
φ(ct, at)φ(ct, at)

>θ∗
]

=
∑
c∈C,a∈A w

(`)
c,aφ(c, a)φ(c, a)>θ∗ = A(w(`))θ∗

7

using the identity w(`)
c,a := νcp

(`)
c,a. Thus, if we set Ot = A(w(`))−1φ(ct, at)rt then E[Ot] = θ∗. A

straightforward calculation also shows that Cov(Ot) = A(w(`))−1 if rt is perturbed with additive
unit variance noise. Thus, an unbiased estimator of ∆(π, π∗) := V (π∗)− V (π) = 〈φπ∗ − φπ, θ∗〉
is simply 〈φπ∗ − φπ, 1

n`

∑
tOt〉 which has variance 1

n`
‖φπ∗ − φπ‖2A(w(`))−1 . Intuitively, 〈φπ∗ −

φπ,
1
n`

∑
tOt〉 = 〈φπ∗ − φπ, θ∗〉 ±

√
1
n`
‖φπ∗ − φπ‖2A(w(`))−1 so we can safely conclude that a

policy π is sub-optimal (i.e., π 6= π∗) if there exists any policy π′ such that 〈φπ′ − φπ, 1
n`

∑
tOt〉 �√

1
n`
‖φπ′ − φπ‖2A(w(`))−1 . This is the intuition behind Contextual RAGE (Algorithm 1), which

inherits its name from the best-arm identification algorithm of [13] that inspired its strategy.

However, while 〈φπ∗ − φπ,
1
n`

∑
tOt〉 is unbiased and has controlled variance, it is potentially

heavy-tailed because w(`)
c,a can be arbitrarily small. Instead of trying to control w(`)

c,a and appealing to
Bernstein’s inequality, in line 7 we use the robust mean estimator of Catoni [28]. We can then show:
Lemma 3.1. π∗ ∈ Π` and maxπ∈Π`〈φπ∗ − φπ, θ∗〉 ≤ 4ε` for all ` > 1 w.p. at least 1− δ.

The lemma states that if Π` is the active set of policies still under consideration, the optimal policy π∗
is never discarded from Π`, and moreover, the quality of all policies remaining in Π` is getting better
and better. We are now ready to state the main sample complexity result, with proof in Appendix B.
Theorem 3.2. Fix any policy class Π = {π : C → A}π, distribution over contexts ν, δ ∈ (0, 1),
ε ≥ 0, and feature map φ : C × A → Rd such that r(c, a) = 〈φ(c, a), θ∗〉 (w.l.o.g. one can
always take φ(c, a) = vec(ece

>
a)). With probability at least 1 − δ, if φπ = Ec∼ν [φ(c, π(c))] and

π∗ = arg maxπ〈φπ, θ∗〉 then Contextual-RAGE returns a policy π̂ ∈ Π such that V (π̂) ≥ V (π∗)− ε
after taking at most

cmin
w∈Ω

max
π∈Π

‖φπ − φπ∗‖2A(w)−1

(〈φπ∗ − φπ, θ∗〉 ∨ ε)2
log(log((∆ ∨ ε)−1)|Π|/δ) log((∆ ∨ ε)−1)

samples, where c is an absolute constant and ∆ = minπ∈Π\π∗ V (π∗)− V (π).

3.3 Towards a more efficient algorithm

One major issue with Algorithm 1 is that it explicitly maintains a set of policies Π` from round
to round. Since Π could be exponential in |A|, this is a non-starter for any implementation. As a
motivation for our approach, we consider a non-elimination algorithm, Algorithm 2, as an intermediate
step. It does not maintain Π` and instead just solves the optimization problem (2) over Π. The
design computed in (2) is chosen to ensure that for all π ∈ Π, |∆̂`−1(π, π̂`−1) − ∆(π, π∗)| ≤
2ε`−1 + 1

4∆(π, π∗) with high probability (Lemma C.3). Equivalently, we estimate gaps up to a
constant factor for policies with ∆(π, π∗) > ε`, while our gap estimates are bounded by ε` for those
policies satisfying ∆(π, π∗) ≤ ε`. This ensures that our choice of π̂` is good enough, i.e. satisfies
V (π∗)− V (π̂`) ≤ ε` with high probability. The full proof is in Appendix C.

Unfortunately, Algorithm 2 introduces additional problems. It is not clear whether solving (2) is
computationally efficient. Also, we need to find an estimator ∆̂l that is computationally efficient even
if the policy space Π is infinite. In addition, it requires precise knowledge of ν to even define the
domain of distributions Ω optimized over, and store the solution w ∈ C ×A explicitly. But in general,
such precise knowledge will not be available and is only estimable using past data (Assumption 1).

3.4 An instance-optimal and computationally efficient algorithm.

In this section we provide Algorithm 3, which witnesses the guarantees of Theorem 2.14 for the
general agnostic contextual bandit problem. We now address the caveats of the previous approaches.

Access to Offline Data. By Assumption 1, we have access to a large amount of sampled offline
contexts D, where each ct ∈ D is drawn IID from ν. Having access to D allows us to approximate
Ec∼ν [·] with expectations over the empirical distribution Ec∼νD [·], where νD is the uniform distribu-
tion over historical data D. The number of offline contexts we need only scales logarithmically over
the size of the policy set Π, more specifically, poly(|A|, ε−1, log(|Π|), log(1/δ)). We quantify the
precise number of samples needed in Appendix D.2.

8

Algorithm 1 Elimination Contextual RAGE
Input: Π, φ : C × A → Rd, δ ∈ (0, 1)
1: Initialize Π1 = Π
2: for ` = 1, 2, · · · , dlog2(1/ε)e do
3: ε` := 2−`, δ` := δ/(2`2|Π|)
4: Let n` be the minimum value s.t.:

min
w∈Ω

max
π,π′∈Π`

‖φπ − φπ′‖2A(w)−1 log(1/δ`)

n`
≤ ε2`

with solution w(`).
5: For each t ∈ [n`], get ct ∼ ν, pull at ∼ p

(`)
ct ,

observe reward rt
6: Compute Ot = A(w(`))−1φ(ct, at)rt.
7: For π, π′ ∈ Π`

∆̂`(π, π
′) = Cat({〈φπ − φπ′ , Oi〉}n`i=1)

8: Update

Π`+1 = Π`\{π′ ∈ Πl | max
π∈Π`

: ∆̂`(π, π
′) > ε`}

9: end for
Output: Π`+1

Algorithm 2 Non-elimination Contextual RAGE
Input: Π, φ : C × A → Rd, δ ∈ (0, 1)
1: Initialize: π̂0 ∈ Π arbitrarily
2: for ` = 1, 2, · · · , dlog2(1/ε)e do
3: ε` := 2−`, δ` := δ/(2`2|Π|)
4: Let n` be the minimum value s.t.:

min
w∈Ω

max
π∈Π
−1

4
∆̂l−1(π, π̂l−1)

+

√
2‖φπ−φπ̂l−1

‖2
A(w)−1 log(1/δl)

n`
≤ ε`. (2)

with solution w(`)

5: For each t ∈ [n`], get ct ∼ ν, pull at ∼ p
(`)
ct ,

observe reward rt
6: Compute Ot = A(w(`))−1φ(ct, at)rt.
7: For each π ∈ Π, let

∆̂`(π, π̂`−1) = Cat({〈φπ − φπ̂`−1
, Oi〉}n`i=1).

8: Set π̂` := arg minπ∈Π ∆̂`(π, π̂`−1) (3)
9: end for

Output: π̂l

Computing the design efficiently. As described, the context space C may be infinite so maintaining
a distribution ω ∈ Ω ⊂ ∆C×A is not possible. To overcome this issue, we consider the dual problem
of equation (2). We can remove the square root by noticing that 2

√
xy = minγ>0 γx + y

γ , and
introducing an additional minimization over the variable γπ, π ∈ Π. Then, the dual problem becomes

maxλ∈∆Π
minw∈Ω minγπ≥0

∑
π∈Π λπ

(
−∆̂l−1(π, π̂l−1) + γπ

∥∥φπ − φπ̂l−1

∥∥2

A(w)−1 + log(1/δl)
2γπnl

)
.

(4)
Exchanging the order of the minimums on ω and γ, somewhat surprisingly we have the close-form
expression (Lemma E.6)

minω∈Ω

∑
π∈Π λπγπ‖φπ − φπ̂`−1

‖2A(w)−1 = Ec∼ν

[(∑
a∈A

√
(λ� γ)>t

(c)
a (π̂l−1)

)2
]
,

where for π′ ∈ Π, t(c)a (π′) ∈ {0, 1}|Π| with [t
(c)
a (π′)]π := 1{π(c) = a, π′(c) 6= a} + 1{π(c) 6=

a, π′(c) = a} and [λ� γ]π := λπγπ. Interestingly, this value is achieved at a sampling distribution
ω, which is a non-linear function of λ rather than a convex combination over policies (as in [3]).
Because we have an expectation over contexts, this expectation can be replaced by an empirical
estimate using historical data, thus avoiding any issues with an infinite context space. The final
algorithm utilizing these observations found is in Algorithm 3.

The main challenge is finding a solution to the design (5). First, we can reduce it to a saddle point
problem over (λ, γ) by considering only a dyadic sequence of n ∈ {2k : k ∈ N}. We use an
alternating ascent/descent method, with the caveat that λ lives in a simplex, and γ in a box. Both
spaces are defined over a potentially infinite set of policies Π (in the worst case exponential in |C|).
To handle this, we use the Frank-Wolfe (FW) method on λ. Referring to the iterates of FW as λt, FW
guarantees that the size of the support of λt in each iterate grows by at most 1. Thus, if initialized as a
1-sparse vector, we only need to maintain a sparse λt in each iteration. Each iterate of FW computes

arg max
π∈Π

[∇λh`(λ, γ, n)]π.

To do so, we show that we can appeal to a constrained argmax oracle (AMO) to run the Frank-Wolfe
algorithm, a similar approach to [3]. To optimize over γ we use a gradient descent procedure. We
show that in each iterate, the support of γ is contained in that of λ, and we can quantify the number of
steps of gradient descent needed to find an ε-good solution. Though hl(λ, γ, n) might not be convex
in γ, we nevertheless are able to argue that it has a unique minima and that gradient descent converges
to this minima. We introduce our subroutine and further discuss the above claims in Appendix D.

9

Regularized Estimator. While Algorithms 1 and 2 use a robust mean estimator as in equation (3),
this estimator is impractical with a very large number of policies Π. Instead, we use a regularized IPS
estimator that can be computed using historical data and an argmax oracle.

Algorithm 3 Contextual Oracle-efficient Dualized Algorithm (CODA)
Input: policies Π = {π : C → A}π , feature map φ : C × A → Rd, δ ∈ (0, 1), historical data D = {νs}s
1: initiate π̂0 ∈ Π arbitrarily, λ0 = eπ̂0 , ∆̂0(π), γ0, γmin, γmax appropriately
2: for l = 1, 2, · · · do
3: εl = 2−l, δl = δ/(l2|Π|2)
4: Define

hl(λ, γ, n) =
∑
π∈Π λπ

(
−∆̂

γl−1

l−1 (π, π̂l−1) + log(1/δl)
γπn

)
+ Ec∼νD

[(∑
a∈A

√
(λ� γ)>t

(c)
a (π̂l−1)

)2]
.

5: Let λl, γl, nl = FW-GD(Π, |A|, π̂l−1, εl). These are the solutions to

n` := min{n ∈ N : max
λ∈∆Π

min
γ∈[γmin,γmax]|Π|

hl(λ, γ, n) ≤ ε`} (5)

6: For i ∈ [n`] get ci ∼ ν, pull ai ∼ p(`)
ci where p(`)

cs,as ∝
√

(λl � γl)>t(cs)
as (π̂l−1), observe rewards rs

7: For each π ∈ Π, define the IPS estimator

∆̂
γl
l (π, π̂l−1) =

nl∑
s=1

rs

p
(`)
cs,as + [γl]π

(1{π̂l−1(cs) = as} − 1{π(cs) = as})

8: set

π̂l = arg minπ∈Π ∆̂
γl
l (π, π̂l−1) + Ec∼νD

[(
[γl]π

p
(`)
c,a

+ [γl]π

p
(`)

c,a′

)
1{π̂l−1(c) 6= π(c)}

]
+ log(1/δl)

[γl]πnl
(6)

9: end for
Output: π̂l

Algorithm 3 puts all the pieces together and Theorem 3.3 shows our main result. Note that for
exposition purposes, we have omitted some additional regularization terms in the optimization prob-
lems that have no effect on the sample complexity, but ensure finite-time convergence. Appendix E
shows the full algorithm and the proof. In what follows, poly1(|A|, ε−1, log(1/δ)) · log(|Π|) and
poly2(|A|, ε−1, log(1/δ), log(|Π|)) are polynomials in their arguments.
Theorem 3.3. Fix set of policies Π, context distribution ν and reward function r(c, a) ∈ [0, 1]. With
probability at least 1−δ, provided a historyD whose size exceeds poly1(|A|, ε−1, log(1/δ))·log(|Π|),
Algorithm 3 returns a policy π̂ satisfying V (π∗)− V (π̂) ≤ ε in a number of samples not exceeding
O(ρ∗,ε log(|Π| log2(1/∆ε)/δ) log2(1/∆ε) where ∆ε := max{ε,minπ∈Π V (π∗)− V (π)}.
In addition, Algorithm 3 is computationally efficient and requires at most
poly2(|A|, ε−1, log(1/δ), log(|Π|)) calls to a constrained argmax oracle.

Conclusion. This work provides the first instance-dependent lower bounds for the (ε, δ)-PAC
contextual bandit problem. One limitation of this work is that our analysis of Algorithm 3 does not
immediately extend to the realizable linear setting. That is, a computationally efficient algorithm
that achieves the same bound is not known to exist. In the general agnostic settings discussed in
this work, we proposed a computationally efficient algorithm. A second limitation is the assumption
that we have access to a large pool of offline data. Because it seems necessary to plan with some
information about the context distribution, it is not clear how one would completely remove such
an assumption and achieve the same sample complexity bounds. As with any recommender system,
there is the potential for unintended consequences from optimizing just a single metric. Moreover,
other potential pitfalls can arise, such as negative feedback loops, if our assumptions fail to hold in
real-world environments. Such consequences can be mitigated by tracking a diverse set of metrics.

Acknowledgement and Disclosure of Funding This work was supported, in part, by NSF award
1907907.

10

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24, 2011.

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A
reductions approach to fair classification. In International Conference on Machine Learning,
pages 60–69. PMLR, 2018.

[3] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.
Taming the monster: A fast and simple algorithm for contextual bandits. In International
Conference on Machine Learning, pages 1638–1646. PMLR, 2014.

[4] Aymen Al Marjani and Alexandre Proutiere. Adaptive sampling for best policy identification in
markov decision processes. In International Conference on Machine Learning, pages 7459–
7468. PMLR, 2021.

[5] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[6] Alina Beygelzimer, Varsha Dani, Tom Hayes, John Langford, and Bianca Zadrozny. Error
limiting reductions between classification tasks. In Proceedings of the 22nd international
conference on Machine learning, pages 49–56, 2005.

[7] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

[8] Andrew Cotter, Maya Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Wang,
Blake Woodworth, and Seungil You. Training well-generalizing classifiers for fairness metrics
and other data-dependent constraints. In International Conference on Machine Learning, pages
1397–1405. PMLR, 2019.

[9] Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko. Gamification of pure
exploration for linear bandits. In International Conference on Machine Learning, pages 2432–
2442. PMLR, 2020.

[10] Aniket Anand Deshmukh, Srinagesh Sharma, James W Cutler, Mark Moldwin, and Clayton
Scott. Simple regret minimization for contextual bandits. arXiv preprint arXiv:1810.07371,
2018.

[11] Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin,
and Tong Zhang. Efficient optimal learning for contextual bandits. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pages 169–178, 2011.

[12] Tanner Fiez, Sergio Gamez, Arick Chen, Houssam Nassif, and Lalit Jain. Adaptive experimental
design and counterfactual inference. In Workshops of Conference on Recommender Systems
(RecSys), 2022.

[13] Tanner Fiez, Lalit Jain, Kevin Jamieson, and Lillian Ratliff. Sequential experimental design for
transductive linear bandits. In Advances in Neural Information Processing Systems, 2019.

[14] Dylan Foster, Alekh Agarwal, Miroslav Dudik, Haipeng Luo, and Robert Schapire. Practical
contextual bandits with regression oracles. In International Conference on Machine Learning,
pages 1539–1548. PMLR, 2018.

[15] Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits
with regression oracles. In International Conference on Machine Learning, pages 3199–3210.
PMLR, 2020.

[16] Dylan Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent
complexity of contextual bandits and reinforcement learning: A disagreement-based perspective.
In Conference on Learning Theory, pages 2059–2059. PMLR, 2021.

[17] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity
of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

11

[18] Steve Hanneke et al. Theory of disagreement-based active learning. Foundations and Trends®
in Machine Learning, 7(2-3):131–309, 2014.

[19] Botao Hao, Tor Lattimore, and Csaba Szepesvari. Adaptive exploration in linear contextual
bandit. In International Conference on Artificial Intelligence and Statistics, pages 3536–3545.
PMLR, 2020.

[20] Tzu-Kuo Huang, Alekh Agarwal, Daniel J Hsu, John Langford, and Robert E Schapire. Efficient
and parsimonious agnostic active learning. Advances in Neural Information Processing Systems,
28, 2015.

[21] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pages 427–435. PMLR, 2013.

[22] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the
ACM (JACM), 68(2):1–29, 2021.

[23] Kwang-Sung Jun, Lalit Jain, Blake Mason, and Houssam Nassif. Improved confidence bounds
for the linear logistic model and applications to bandits. In International Conference on Machine
Learning (ICML), pages 5148–5157, 2021.

[24] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm
identification in multi-armed bandit models. The Journal of Machine Learning Research,
17(1):1–42, 2016.

[25] Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford.
Active learning for cost-sensitive classification. In International Conference on Machine
Learning, pages 1915–1924. PMLR, 2017.

[26] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. Advances in neural information processing systems, 20, 2007.

[27] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[28] Gábor Lugosi and Shahar Mendelson. Mean estimation and regression under heavy-tailed
distributions: A survey. Foundations of Computational Mathematics, 19(5):1145–1190, 2019.

[29] Shie Mannor and John N Tsitsiklis. Lower bounds on the sample complexity of exploration in
the multi-armed bandit problem. In Learning Theory and Kernel Machines, pages 418–432.
Springer, 2003.

[30] John Milnor and David W Weaver. Topology from the differentiable viewpoint, volume 21.
Princeton university press, 1997.

[31] Sareh Nabi, Houssam Nassif, Joseph Hong, Hamed Mamani, and Guido Imbens. Bayesian
meta-prior learning using Empirical Bayes. Management Science, 68(3):1737–1755, 2022.

[32] Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and Martin Jaggi. Linearly convergent
frank-wolfe with backtracking line-search. In Proceedings of the 23rdInternational Conference
on Artificial Intelligence and Statistics, 2020.

[33] Daniel Russo. Simple bayesian algorithms for best arm identification. In Conference on
Learning Theory, pages 1417–1418, 2016.

[34] David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal
algorithm for contextual bandits under realizability. Mathematics of Operations Research, 2021.

[35] Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits.
Advances in Neural Information Processing Systems, 27, 2014.

12

[36] Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli, and Alessandro Lazaric. An asymptotically
optimal primal-dual incremental algorithm for contextual linear bandits. Advances in Neural
Information Processing Systems, 33:1417–1427, 2020.

[37] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

[38] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[39] Andrew Wagenmaker and Kevin Jamieson. Instance-dependent near-optimal policy identifica-
tion in linear mdps via online experiment design. arXiv preprint arXiv:2207.02575, 2022.

[40] Andrew J Wagenmaker, Max Simchowitz, and Kevin Jamieson. Beyond no regret: Instance-
dependent pac reinforcement learning. In Conference on Learning Theory, pages 358–418.
PMLR, 2022.

[41] Andrea Zanette, Kefan Dong, Jonathan Lee, and Emma Brunskill. Design of experiments for
stochastic contextual linear bandits. Advances in Neural Information Processing Systems, 34,
2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please see our conclusion.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

our conclusion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]

13

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

Contents

1 Introduction 1

1.1 Related work . 2

2 Problem statement and main results 3

2.1 Inefficiency of low-regret algorithms . 4

2.2 Trivial policy class . 5

2.3 Linear policy class . 5

2.4 Comparison to the Disagreement Coefficient . 6

3 Optimal Algorithms for Contextual Bandits 7

3.1 Reduction to linear realizability and a simple elimination scheme 7

3.2 A simple, impractical, elimination-style algorithm 7

3.3 Towards a more efficient algorithm . 8

3.4 An instance-optimal and computationally efficient algorithm. 8

A Lower Bound Results 16

A.1 Proof of Theorem 2.2 . 16

A.2 Proof of Theorem 2.6 . 16

A.3 Trivial Class: Proof of Theorem 2.9 . 17

A.4 Proofs of Linear Policy Class . 18

A.5 Proof for Corollary 2.16 . 20

B Contextual Rage Proofs Section 3.2 21

C Proof for sample complexity of Algorithm 2 22

D The FW-GD subroutine 26

D.1 Proof of computational efficiency . 26

D.2 Quantify the offline data . 29

E Proof of Theorem 3.3 32

F Intuition for convergence of duality gap 39

G Convergence analysis of FW-GD 40

G.1 Statement of the convergence results . 40

G.2 Technical proofs . 43

G.3 Convergence of gradient descent . 46

G.4 Guarantees for strong concavity and local strong convexity 48

G.5 Proof of strong duality . 53

H Useful lemmas 55

15

Appendix

In the appendix we present algorithms and proofs not included in the main text. Broadly speaking,

• Section A presents proofs for lower bounds;
• Section B-C presents proofs for the proposed computationally inefficient algorithms 1 and 2;
• Section D presents results to justify the computational efficiency of Algorithm 3;
• Section E presents arguments for Algorithm 3 hitting the sample complexity lower bound;
• Section F-H provides technical proofs to argue about convergence of our subroutines.

The table below summarises the notations we used in the proof.

t
(c)
a (π′) {1{π(c) = a, π′(c) 6= a}+ 1{π(c) 6= a, π′(c) = a}}π∈Π ∈ RΠ

S` {π ∈ Π : 〈φπ∗ − φπ, θ∗〉 = V (π∗)− V (π) = ∆(π, π∗) ≤ ε`}
w(λ, γ) [w(λ, γ)]a,c = νc · pc,a = νc ·

√
(λ�γ)>(t

(c)
a +η)∑

a′∈A

√
(λ�γ)>(t

(c)

a′ +η)

∆̂γ
l (π, π′)

∑nl
s=1

rs
p

(`)
cs,as+γπ

(1{π′(cs) = as} − 1{π(cs) = as})

hl(λ, γ, n)
∑
π∈Π λπ ·

(
−∆̂γl−1

l−1 (π, π̂l−1) + log(1/δl)
γπn

)
+γπEc∼νD

[(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2
]

Pl(w, γ) maxπ∈Π

(
−∆̂γl−1

l−1 (π, π̂l−1) + γ
∥∥φπ − φπ̂l−1

∥∥2

A(w)−1 + log(1/δ)
γnl

)
Table 1: Glossary

A Lower Bound Results

A.1 Proof of Theorem 2.2

We quickly point out that the proof of Theorem 2.2 is identical to the proof of the linear policy class
case proof of Theorem 2.13. Please see that argument below.

A.2 Proof of Theorem 2.6

Proof of Theorem 2.6 . To relate the random stopping time to the regret bound, note that∑
c,a

Eµ[Tc,a(τ)](r(c, π∗(c))− r(c, a)) ≤ Eµ
[√

α |A| τ
]
≤
√
α|A|Eµ[τ]

where the last inequality follows by Jensen’s inequality. Since π1 := π∗ for our particular instance, if
c̄ = arg minc∈[m] Eµ[Tc,πc(c)(τ)] then∑

c,a

Eµ[Tc,a(τ)](r(c, π1(c))− r(c, a)) =
∑
c,a

Eµ[Tc,a(τ)]∆1{a 6= π1(c)}

≥
∑
c

max
a

Eµ[Tc,a(τ)]∆1{a 6= π1(c)}

≥ mmin
c

max
a

Eµ[Tc,a(τ)]∆1{a 6= π1(c)}

= mEµ[Tc̄,πc̄(c̄)(τ)]∆.

Combining the two equations above, and rearranging, we observe that

Eµ[Tc̄,πc̄(c̄)(τ)] ≤ 1

m∆

√
α|A|Eµ[τ].

Define an instance µ′ = (ν, r′) such that r′(c, a) = r(c, a) for all (c, a) ∈ [m]× {0, 1} \ (c̄, 1), and
set r′(c̄, 1) = r′(c̄, πc̄(c̄)) = 2∆ under µ′ (instead of r(c̄, πc̄(c̄)) = 0 under µ). Note that under µ′,

16

we now have that πc̄ is the unique optimal policy. If the algorithm is (0, δ)-PAC then by [24, Lemma
1] we have that

log(1/2.4δ) ≤
∑
c,a

KL(N (r(c, a), 1)|N (r′(c, a), 1)) · Eµ[Tc,a(τ)]

= KL(N (0, 1)|N (2∆, 1)) · Eµ[Tc̄,πc̄(c̄)(τ)] = 2∆2 · Eµ[Tc̄,πc̄(c̄)(τ)]

≤ 2∆2 · 1

m∆

√
α|A|Eµ[τ] =

√
4αEµ[τ]

m2∆−2
.

The result follows by rearranging.

A.3 Trivial Class: Proof of Theorem 2.9

Firstly note that

ρΠ,0(Π, v) = min
pc∈4A, ∀c∈C

max
π∈Π\π∗

Ec∼ν
[(

1
pc,π(c)

+ 1
pc,π∗(c)

)
1{π∗(c) 6= π(c)}

]
(Ec∼ν [r(c, π∗(c))− r(c, π(c))])2

= min
pc∈4A, ∀c∈C

max
π∈Π\π∗

∑
c∈C νc

(
1

pc,π(c)
+ 1

pc,π∗(c)

)
1{π∗(c) 6= π(c)}

(
∑
c∈C νc∆c,π(c)1{π∗(c) 6= π(c)})2

= min
pc∈4A, ∀c∈C

max
α∈{0,1}|C|×|A|\0:∑

a αc,a∈{0,1}

∑
c,a αc,aνc

(
1

pc,π(c)
+ 1

pc,π∗(c)

)
1{π∗(c) 6= a}

(
∑
c,a αc,aνc∆c,π(c)1{π∗(c) 6= π(c)})2

= min
pc∈4A, ∀c∈C

max
c,a:π∗(c) 6=a

νc

(
1
pc,a

+ 1
pc,π∗(c)

)
(νc∆c,a)2

≤ max
c

2

νc

∑
a′

∆−2
c,a′

where the last equality follows from repeated application of the inequality a1+a2

(b1+b2)2 ≤ a1

b21
∨ a2

b22
.

Proof of Theorem 2.9. The proof of the instance-dependent lower bound for ε = 0 follows directly
from Theorem 2.2. The second minimax statement is, to our best knowledge, novel.

First, note that supµ Eµ[τ] ≥ ε−2|A| log(1/δ) by a reduction to multi-armed bandits by just setting
ν1 = 1 and νc = 0 for all c 6= 1 [24, 29]. If U denotes the set of instances that achieves this
supremum, and V is another set of instances, we note that supµ Eµ[τ] = supP Eµ∼PEµ[τ] ≥
1
2 supµ∈U Eµ[τ] + 1

2 supµ∈V Eµ[τ] for some other set of instances V . Thus, it remains to show that
supµ Eµ[τ] ≥ ε−2|A| · |C|.

Consider the following construction of |Π| = |A||C| instances. For each context c ∈ C let νc = 1/|C|,
and for each π ∈ Π let rπ(c, a) = αε1{π(c) = a} for some α > 0 to be determined later. Clearly,
policy π is the unique optimal policy under the reward function rπ(s, a). Assume that observations
are perturbed by Gaussian N (0, 1) noise.

17

Fix p ∈ (1/2, 1) to be determined later. Let S := {c ∈ C : Pµπ (π(c) = π̂(c)) > p} and suppose
|S| ≤ |C|/8. Then

Pµπ (V (π)− V (π̂) ≤ ε) = Pµπ (
1

|C|
∑
c∈C

αε1{π̂(c) 6= π(c)} ≤ ε)

= Pµπ (
∑
c∈C

1{π̂(c) 6= π(c)} ≤ |C|/α)

= Pµπ (
∑
c∈C

1{π̂(c) = π(c)} ≥ |C|(1− 1/α))

≤ Pµπ (
∑
c∈C\S

1{π̂(c) = π(c)} ≥ |C|(1− 1/α− 1/8))

≤
∑
c∈C\S Pµπ (π̂(c) = π(c))

|C|(1− 1/α− 1/8)
≤ p

1− 1/α− 1/8
≤ 5/6

with p = 5/8 and α = 8. This implies that for δ ∈ (0, 1/8), any (ε, δ)-PAC algorithm must satisfy
minπ |{c ∈ C : Pµπ (π(c) = π̂(c)) > p}| ≥ |C|/8.

Assume the algorithm is permutation invariant (note that any reasonable algorithm satisfies this,
including UCB, Thompson Sampling, elimination, etc.). Let µ(i)

π = (ν, r0) where r(i)
π (c, i) =

r
(i)
π (c, π(c)) = αε, and r(i)

π (c, j) = 0 for j 6∈ {i, π(c)}. Note that Pµπ (π(c) = π̂(c)) ≥ p = 5/6 and
also by the symmetric algorithm assumption that P

µ
(i)
π

(π(c) = π̂(c)) ≤ 1/2 because there are two

identical best-arms. Note that
∑
j∈A Eµπ [Tc,j]KL(µπ(j), µ

(i)
π (j)) = Eµπ [Tc,i]α

2ε2/2 for i 6= π(c).
Putting these two pieces together and applying Lemma 1 of [24], we have:

Eµπ [Tc,i]α
2ε2/2 =

∑
j∈A

Eµπ [Tc,j]KL(µπ(j), µ(i)
π (j))

≥ d(Pµπ (π(c) = π̂(c)),P
µ

(i)
π

(π(c) = π̂(c)))

≥ d(5/6, 1/2) =
1

6
log(55/36) ≥ 1/10.

Thus, Eµπ [
∑
i 6=π∗(c) Tc,i] ≥

1
5α
−2ε−2(|A| − 1) and this must occur on at least |C|/8 contexts. Pick

one context c of these arbitrarily. Then

1

5
α−2ε−2(|A| − 1) ≤ Eµπ [

∑
i 6=π∗(c)

Tc,i] = Eµπ [

τ∑
t=1

1{ct = c}] = Eµπ [τ]νc = Eµπ [τ]/|C|.

Consequently, E[τ] ≥ 1
5α
−2ε−2(|A| − 1)|C|.

A.4 Proofs of Linear Policy Class

Recall a quantity fundamental to our sample complexity results:

ρlin,ε := min
pc∈4A, ∀c∈C

max
π∈Π\π∗

‖φπ − φπ∗‖2Ec∼ν [
∑
a∈A pc,aφ(c,a)φ(c,a)>]−1

〈φπ∗ − φπ, θ∗〉2 ∨ ε2
. (7)

Proof of Corollary 2.11. Consider an ε-cover of Π and denote it as Π′. Since we are only interested
in finding an ε-good policy, it is sufficient to find an ε-good policy of Π′. Therefore, we can replace
Π with Π′ in the statement of Theorem 2.4. By inspecting the difference between the statement
of the corollary and Theorem 2.4, it is left to show that we can replace log(|Π′|) with d log(1/ε).
In what follows, we will construct an ε-cover of Π. Let Θ ⊂ Rd denote the space of θ. Since the
reward function r(c, a) ∈ [0, 1] is bounded for any c ∈ C and a ∈ A, without loss of generality,
we assume ‖θ‖2 ≤ 1 so Θ ⊂ Bd where Bd is the unit ball of dimension d. Let Θ′ be an ε-net of
Θ. For any θ′ ∈ Θ′, define the policy πθ′ such that πθ′ := arg maxa∈A〈φ(c, a), θ′〉. Then, define
Π′ = {πθ′ : θ′ ∈ Θ′}. First, Π′ is an ε-cover of Π since Θ′ is an ε-cover of Θ. Also, |Π′| = |Θ′|
by construction. By classical argument on covering numbers [38], we have that |Θ′| ≤ (3/ε)d so
log(|Θ′|) ≤ d log(3/ε) = O(d log(1/ε)).

18

We quickly point out that the proof of Theorem 2.2 is identical to the proof of the linear policy class
case proof of Theorem 2.13.

Proof of Theorem 2.13. For any θ ∈ Rd let Pθ(·) and Eθ[·] denote the probability and expec-
tation laws under θ and ν such that ct ∼ ν and playing action at ∈ A results in reward
rt ∼ N (〈φ(ct, at), θ〉, 1). If an algorithm is (0, δ)-PAC then supθ∈Rd Pθ(V (π̂(c)) < V (π∗(c))) ≤ δ.
Now, of course, under θ we have that

V (π̂(c)) < V (π∗(c)) ⇐⇒ Ec∼ν [〈θ, φ(c, π̂(c))− φ(c, π∗(c))〉] < 0

⇐⇒ 〈θ, φπ̂ − φπ∗〉 < 0

⇐⇒ ∃c : νc〈θ, φ(c, π̂(c))− φ(c, π∗(c))〉 < 0.

Fix θ∗ ∈ Rd and recall that under θ we have that π∗(c) = arg maxa∈A〈φ(c, a), θ〉. Fix any θ ∈ Rd
and maxc,a νc〈θ, φ(c, a)− φ(c, π∗(c))〉 > 0. Then by [24, Lemma 1] we have that

d(Pθ∗(π̂ = π∗),Pθ(π̂ = π∗))

≤
∑
c′,a′

Eθ∗ [Tc′,a′(τ)]KL(N (〈θ∗, φ(c′, a′)〉, 1)|N (〈θ, φ(c′, a′)〉, 1))

=
∑
c′,a′

Eθ∗ [Tc′,a′(τ)]‖θ∗ − θ‖2φ(c′,a′)φ(c′,a′)>/2

= Eθ∗ [τ]
∑
c′,a′

Eθ∗ [Tc′,a′(τ)]

Eθ∗ [τ]
‖θ∗ − θ‖2φ(c′,a′)φ(c′,a′)>/2

≤ max
pc∈4A,∀c∈C

Eθ∗ [τ]
∑
c′,a′

νc′pc′,a′‖θ∗ − θ‖2φ(c′,a′)φ(c′,a′)>/2

= max
pc∈4A,∀c∈C

Eθ∗ [τ]‖θ∗ − θ‖2Ec∼ν [
∑
a pc,aφ(c,a)φ(c,a)>]/2

where the last inequality follows from Wald’s identity:

∑
a′∈A

Eθ∗ [Tc′,a′(τ)] =
∑
a′∈A

Eθ∗

[
τ∑
t=1

1{at = a′, ct = c′}

]
= Eθ∗

[
τ∑
t=1

1{ct = c′}

]
= Eθ∗ [τ]νc′ .

Noting that d(Pθ∗(π̂ = π∗),Pθ(π̂ = π∗)) ≥ log(1/2.4δ) and we can minimize over θ, given the
conditions, we have that

log(1/2.4δ) ≤ max
pc∈4A,∀c∈C

min
θ:∃c:νc〈θ,φ(c,a)−φ(c,π∗(c))〉>0

Eθ∗ [τ]‖θ∗ − θ‖2Ec∼ν [
∑
a pc,aφ(c,a)φ(c,a)>]/2

=Eθ∗ [τ] max
pc∈4A,∀c∈C

min
c,a∈C×A
π∗(c)6=a

〈φ(c, π∗(c))− φ(c, a), θ∗〉2

2‖φ(c, a)− φ(c, π∗(c))‖Ec∼ν [
∑
a pc,aφ(c,a)φ(c,a)>]−1

.

After rearranging we conclude that

Eθ∗ [τ] ≥ min
pc∈4A,∀c∈C

max
c,a∈C×A
π∗(c) 6=a

2‖φ(c, a)− φ(c, π∗(c))‖Ec∼ν [
∑
a pc,aφ(c,a)φ(c,a)>]−1

〈φ(c, π∗(c))− φ(c, a), θ∗〉2
log(1/2.4δ).

To see that equation (7) is a lower bound, follow the exact same sequence of steps but taking any
θ ∈ Rd and maxπ∈Π Ec∼ν [〈θ, φ(c, π(c))− φ(c, π∗(c))〉] > 0.

19

Proof of Theorem 2.14 To see the second part of the theorem statement, observe that

max
π∈Π\π∗

‖φπ − φπ∗‖2Ec∼ν [
∑
a∈A pc,aφ(c,a)φ(c,a)>]−1

= max
π∈Π\π∗

‖Ec∼ν [φ(c, π(c))− φ(c, π∗(c))]‖2Ec∼ν [
∑
a∈A pc,aφ(c,a)φ(c,a)>]−1

≤ max
π∈Π\π∗

Ec∼ν
[
‖φ(c, π(c))− φ(c, π∗(c))‖2Ec∼ν [

∑
a∈A pc,aφ(c,a)φ(c,a)>]−1

]
≤ max

π∈Π
4Ec∼ν

[
‖φ(c, π(c))‖2Ec∼ν [

∑
a∈A pc,aφ(c,a)φ(c,a)>]−1

]
= max
q∈4Π

4Ec∼ν

[∑
π∈Π

qπ‖φ(c, π(c))‖2Ec∼ν [
∑
a∈A pc,aφ(c,a)φ(c,a)>]−1

]

= max
q∈4Π

4 Tr

Ec∼ν

[∑
π∈Π

qπφ(c, π(c))φ(c, π(c))>

]
Ec∼ν

[∑
a∈A

pc,aφ(c, a)φ(c, a)>

]−1


≤ 4d

where the last line takes pc,a =
∑
π∈Π 1{π(c) = a}qπ, which is at least as good as the minimizing

choice in the theorem.

A.5 Proof for Corollary 2.16

Proof. Observe that

ρΠ,ε0 := min
pc∈4A, ∀c∈C

max
π∈Π\π∗

Ec∼ν
[(

1
pc,π(c)

+ 1
pc,π∗(c)

)
1{π∗(c) 6= π(c)}

]
(Ec∼ν [r(c, π∗(c))− r(c, π(c))] ∨ ε0)2

= min
pc∈4A, ∀c∈C

max
ε≥ε0

max
π∈Π\π∗:∆(π)≤ε

Ec∼ν
[(

1
pc,π(c)

+ 1
pc,π∗(c)

)
1{π∗(c) 6= π(c)}

]
ε2

= min
pc∈4A, ∀c∈C

max
ε≥ε0

max
π∈Π\π∗:∆(π)≤ε

Ec∼ν
[(

1
pc,π(c)

+ 1
pc,π∗(c)

)
1{π∗(c) 6= π(c),∆(π) ≤ ε}

]
ε2

≤ min
pc∈4A, ∀c∈C

max
ε≥ε0

max
π∈Π\π∗:∆(π)≤ε

Ec∼ν
[(

1
pc,π(c)

+ 1
pc,π∗(c)

)
1{∃π ∈ Π : π∗(c) 6= π(c),∆(π) ≤ ε}

]
ε2

(i)

≤ max
ε≥ε0

max
π∈Π\π∗:∆(π)≤ε

Ec∼ν [(|A|+ |A|)1{∃π ∈ Π : π∗(c) 6= π(c),∆(π) ≤ ε}]
ε2

= max
ε≥ε0

2|A|Ec∼ν [1{∃π ∈ Π : π∗(c) 6= π(c),∆(π) ≤ ε}]
ε2

≤ 2|A|
ε0

Ccsc
Π (ε0),

where (i) follows from taking pc ∈ 4A to be the uniform distribution over all actions for each c ∈ C.
To relate this to the policy disagreement coefficient, note that

∆(π) = Ec∼ν [r(c, π∗(c))− r(c, π(c))] ≥ Ec∼ν [1{π(c) 6= π∗(c)}(min
c∈C

min
a∈A

r(c, π∗(c))− r(c, a))]

= Pν(π(c) 6= π∗(c))∆uniform.

Therefore,

max
ε≥ε0

2|A|Ec∼ν [1{∃π ∈ Π : π∗(c) 6= π(c),∆(π) ≤ ε}]
ε2

≤ max
ε≥ε0

2|A|Ec∼ν
[
1{∃π ∈ Π : π∗(c) 6= π(c),Pν(π(c) 6= π∗(c)) ≤ ε

∆uniform
}
]

ε2

≤ 2|A|
ε0∆uniform

Cpol
Π (ε0/∆uniform).

20

B Contextual Rage Proofs Section 3.2

Proof of Lemma 3.1. For any V ⊆ Π and π ∈ V , define the Catoni estimator as ôπ∗,π,`(V) and define
the event

Eπ,`(V) = {|ôπ∗,π,`(V)− 〈φπ∗ − φπ, θ∗〉| ≤ ε`}

where it is implicit that ôπ∗,π,` := ôπ∗,π,`(V) is the resulting estimate after round ` if Π` had been
equal to V . Define w`(V) such that [w`(V)]c,a = νcp

(`)
c,a and τ`(V) to be the number of samples

in `th round analogously. By the properties of the Catoni estimator, we have for any V ⊂ Π with
probability at least 1− δ

2`2|Π| that

|ôπ∗,π,`(V)− 〈φπ∗ − φπ, θ∗〉| ≤ ‖φπ∗ − φπ‖A(w`(V))−1

√
2 log(2`2|Π|/δ)

τ`(V)− log(2`2|Π|/δ)

≤

√
‖φπ∗ − φπ‖2A(w`(V))−1

2ε−2
` ρ(w`(V),V) log(2`2|Π|/δ)

√
2 log(2`2|Π|/δ) = ε`.

Consequently,

P

(∞⋃
`=1

⋃
π∈Π`

{Ecπ,`(Π`)}

)
≤
∞∑
`=1

P

(⋃
π∈Π`

{Ecπ,`(Π`)}

)

=

∞∑
`=1

∑
V⊆Π

P

(⋃
π∈V
{Ecπ,`(V)},Π` = V

)

=

∞∑
`=1

∑
V⊆Π

P

(⋃
π∈V
{Ecπ,`(V)}

)
P(Π` = V)

≤
∞∑
`=1

∑
V⊆Π

δ|V|
2`2|Π|P(Π` = V) ≤ δ.

Thus, assume
⋂∞
`=1

⋂
π∈Π`

{Eπ,`(Π`)} holds. For any π ∈ Π` we have

ôπ,π∗,` = ôπ,π∗,` − 〈φπ − φπ∗ , θ∗〉+ φπ∗ , θ∗〉
≤ ε` + 〈φπ − φπ∗ , θ∗〉 ≤ ε`

which implies that π∗ would survive to round `+1. And for any π′ ∈ Π` such that 〈φπ∗ −φπ′ , θ∗〉 >
2ε` we have

max
π∈Π`

ôπ,π′,` ≥ ôπ∗,π′,`

= 〈φπ′ − φπ∗ , θ∗〉 − ôπ′,π∗,` + 〈φπ∗ − φπ′ , θ∗〉
> −ε` + 2ε` = ε`

which implies this π′ would be kicked out. Note that this implies that maxπ∈Π`+1
〈φπ∗ − φπ, θ∗〉 ≤

2ε` = 4ε`+1.

Proof of Theorem 3.2. Define S` = {π ∈ Π : 〈φπ∗ −φπ, θ∗〉 ≤ 4ε`}. The above lemma implies that
with probability at least 1− δ we have

⋂∞
`=1{Π` ⊆ S`}. Observe that if for any V ⊂ Π we define

ρ(w,V) := minw∈Ω maxπ,π′∈V ‖φπ − φπ′‖2A(w)−1 then

ρ(w(`),Π`) = min
w∈Ω

max
π,π′∈Π`

‖φπ − φπ′‖2A(w)−1 ≤ min
w∈Ω

max
π,π′∈S`

‖φπ − φπ′‖2A(w)−1 = ρ(S`).

21

For ` ≥ dlog2(4∆−1)e we have that S` = {π∗}, thus the sample complexity to identify π∗ is
dlog2(4∆−1)e∑

`=1

τ` =

dlog2(4∆−1)e∑
`=1

d4ε−2
` ρ(w(`),Π`) log(2`2|Π|/δ)e

≤
dlog2(4∆−1)e∑

`=1

4ε−2
` ρ(S`) log(2`2|Π|/δ) + 1

≤ c log(log(∆−1)|Π|/δ)
dlog2(4∆−1)e∑

`=1

ε−2
` ρ(S`)

for some absolute constant c > 0. We now note that

min
w∈Ω

max
π∈Π

‖φπ − φπ∗‖2A(w)−1

(〈φπ∗ − φπ, θ∗〉)2
= min
w∈Ω

max
`≤dlog2(4∆−1)e

max
π∈S`

‖φπ − φπ∗‖2A(w)−1

(〈φπ∗ − φπ, θ∗〉)2

≥ 1

dlog2(4∆−1)e
min
w∈Ω

dlog2(4∆−1)e∑
`=1

max
π∈S`

‖φπ − φπ∗‖2A(w)−1

(〈φπ∗ − φπ, θ∗〉)2

≥ 1

16dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

ε−2
` min

w∈Ω
max
π∈S`

‖φπ − φπ∗‖2A(w)−1

≥ 1

64dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

ε−2
` min

w∈Ω
max
π,π′∈S`

‖φπ − φπ′‖2A(w)−1

=
1

64dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

ε−2
` ρ(S`)

where we have used the fact that maxπ,π′∈S` ‖φπ − φπ′‖2A(w)−1 ≤ 4 maxπ∈S` ‖φπ − φπ∗‖2A(w)−1

by the triangle inequality.

C Proof for sample complexity of Algorithm 2

In this section we provide a proof for the sample complexity of Algorithm 2.
Theorem C.1. Under E , for all ` ∈ N, the following holds:

1. π̂` ∈ S` := {π ∈ Π : V (π∗)− V (π) ≤ ε`};

2. n` . minw∈Ω maxπ∈Π

‖φπ∗−φπ‖
2
A(w)−1 log(1/δl)

ε2l+∆(π)2 .

Without loss of generality, we assume that ∀t, the reward rt ∈ [0, 1]. Note that by the result about
Catoni estimator in [28], we have for all ` ∈ N and π, π′ ∈ Π, that

|Cat({〈φπ − φπ′ , Ot〉}n`t=1)− 〈φπ − φπ′ , θ∗〉| ≤ ‖φπ − φπ′‖A(w(`))−1

√
2 log(2`2|Π|/δ)

n` − log(2`2|Π|/δ)
.

Therefore, in the `th round, we have for any π, π′ ∈ Π,∣∣∣∆̂l(π, π
′)−∆(π, π′)

∣∣∣ = |Cat({〈φπ − φπ′ , Oi〉}n`i=1)− 〈φπ − φπ′ , θ∗〉|

≤

√
2‖φπ − φπ′‖2A(w(`))−1 log(2`2|Π|/δ)

n`
. (8)

Then, let δl = δ
2l2|Π| we define the event

El =
⋂

π,π′∈Π

∣∣∣∆̂l(π, π
′)−∆(π, π′)

∣∣∣ ≤
√

2‖φπ − φπ′‖2A(w(`))−1 log(1/δl)

n`

 ,

22

and E =
⋂∞
l=0 El. First, by equation 8, we have that E happens with probability at least 1 − δ.

In order to show the sample complexity lower bound, we use proof by induction. Note that in a

step of Lemma C.4, we can show that nl . minw∈Ω maxπ∈Π

‖φπ̂l−1
−φπ‖2

A(w)−1
log(1/δl)

ε2l+∆(π)2 , so we
induct on this result. Assume in round l − 1, π̂l−1 ∈ Sl−1 = {π ∈ Π : ∆(π, π∗) ≤ εl−1} and

nl−1 . minw∈Ω maxπ∈Π

‖φπ̂l−2
−φπ‖2

A(w)−1
log((l−1)2|Π|2/δ)

ε2l−1+∆(π)2 . Then, the following lemma gives us
an upper bound on the UCB.
Lemma C.2. We have for any π ∈ Π,√

‖φπ̂l − φπ‖
2
A(w(`))−1 log(1/δl)

nl
≤ 1

28

(
4εl + ∆̂l−1(π, π̂l−1)

)
.

Proof. By definition of nl and w(`) and π(`) being the saddle point, we have

− 1

4
∆̂l−1(π(`), π̂l−1) + 28

√
2‖φπ(`) − φπ̂l−1

‖2
A(w(`))−1 log(1/δl)

n`

= max
π∈Π
−1

4
∆̂l−1(π, π̂l−1) +

√
1568‖φπ − φπ̂l−1

‖2
A(w(`))−1 log(1/δl)

n`
≤ εl.

Solving for nl gives us

nl ≥ max
π∈Π

1568
∥∥φπ − φπ̂l−1

∥∥2

A(w(`))−1 log(1/δl)

(4εl + ∆̂l−1(π, π̂l−1))2
.

We have for any π ∈ Π,

2nl ≥ 3136 max
π∈Π

∥∥φπ̂l−1
− φπ

∥∥2

A(w(`))−1 log(1/δl)

(4εl + ∆̂l−1(π, π̂l−1))2

≥ 1568

∥∥φπ̂l−1
− φπ

∥∥2

A(w(`))−1 log(1/δl)

(4εl + ∆̂l−1(π, π̂l−1))2

+ 1568

∥∥φπ̂l−1
− φπ̂l

∥∥2

A(w(`))−1 log(1/δl)

(4εl + ∆̂l−1(π̂l, π̂l−1))2

(i)

≥ 1568

(∥∥φπ̂l−1
− φπ

∥∥2

A(w(`))−1 +
∥∥φπ̂l−1

− φπ̂l
∥∥2

A(w(`))−1

)
log(1/δl)

max{(4εl + ∆̂l−1(π̂l, π̂l−1))2, (4εl + ∆̂l−1(π, π̂l−1))2}
(ii)

≥ 1568
‖φπ̂l − φπ‖

2
A(w(`))−1 log(1/δl)

max{(4εl + ∆̂l−1(π̂l, π̂l−1))2, (4εl + ∆̂l−1(π, π̂l−1))2}
.

where (i) holds by lower bounding the ratio with a larger denominator, and (ii) holds by trian-
gular inequality. Therefore, using the fact that ∆̂(π, π̂l−1) ≥ 0 for any π ∈ Π since π̂l−1 =

arg maxπ∈Π V̂l−1(π), we have
√

max{(4εl + ∆̂l−1(π̂l, π̂l−1))2, (4εl + ∆̂l−1(π, π̂l−1))2} =

max{4εl + ∆̂l−1(π̂l, π̂l−1), 4εl + ∆̂l−1(π, π̂l−1)}, so we have√
‖φπ̂l − φπ‖

2
A(w(`))−1 log(1/δl)

nl
≤ 1

28

(
4εl + max{∆̂l−1(π, π̂l−1), ∆̂l−1(π̂l, π̂l−1)}

)
.

With the above results, the following lemma controls the difference between the empirical gap and
the true gap.

23

Lemma C.3. With inductive hypotheses, we have for any π ∈ Π,

|∆̂l−1 (π, π̂l−1)−∆ (π, π∗) | ≤ 2εl−1 +
1

4
∆(π, π∗).

Proof. We prove this by induction. First, in round l = 0, this holds by choosing a sufficiently large
n0. Then, in round l − 1,

|∆̂l−1 (π, π̂l−1)−∆ (π, π∗) |
= |∆̂l−1 (π, π̂l−1)−∆ (π, π̂l−1)−∆ (π̂l−1, π∗) |

≤

√√√√2
∥∥φπ − φπ̂l−1

∥∥2

A(w(`−1))−1 log(1/δl−1)

nl−1
+ εl−1

(i)

≤
√

2

28

(
4εl−1 + max{∆̂l−2(π, π̂l−2), ∆̂l−2(π̂l−1, π̂l−2)}

)
+ εl−1

(ii)

≤
√

2

28

(
4εl−1 + 2εl−2 +

5

4
∆(π, π̂l−2) + 2εl−2 +

5

4
∆(π̂l−1, π̂l−2)

)
+ εl−1

≤
√

2

28

(
4εl−1 + 4εl−2 +

5

4
∆(π, π∗) +

5

4
∆(π̂l−1, π∗)

)
+ εl−1

≤
√

2

28

(
4εl−1 + 4εl−2 +

5

4
∆(π, π∗) +

5

4
εl−1

)
+ εl−1

≤ 2εl−1 +
1

4
∆(π, π∗),

where (i) follows from the preceding lemma and (ii) follows from the inductive hypothesis that

|∆̂l−2(π, π̂l−2)−∆(π, π∗)| ≤ 2εl−2 +
1

4
∆(π, π∗).

We make use of these two lemmas to state a lower bound on nl.

Lemma C.4. Under E , the choice for nl in the algorithm satisfies

nl . min
w∈Ω

max
π∈Π

‖φπ∗ − φπ‖
2
A(w)−1 log(1/δl)

ε2l + ∆(π)2
.

Proof. By inductive hypothesis on nl−1 and under El, we have for any π ∈ Π,

∆(π, π∗) = ∆(π, π̂l−1) + ∆(π̂l−1, π∗)

(i)

≤ ∆̂l−1(π, π̂l−1) +

√√√√2
∥∥φπ̂l−1

− φπ
∥∥2

A(w(`−1))−1 log((l − 1)2|Π|2/δ)
nl−1

+ εl−1

(ii)

≤ ∆̂l−1(π, π̂l−1) +

√
2

28

(
4εl−1 + ∆̂l−2(π, π̂l−2)

)
+ εl−1

≤ ∆̂l−1(π, π̂l−1) +

√
2

28

(
4εl−1 +

5

4
∆(π, π∗) + 2εl−2

)
+ εl−1

≤ ∆̂l−1(π, π̂l−1) +
1

4
∆(π, π∗) + 2εl−1.

24

where (i) follows from El−1 and (ii) follows from Lemma C.2. Therefore,

min
w∈Ω

max
π∈Π
−1

4
∆̂l−1(π, π̂l−1) + 28

√√√√2
∥∥φπ − φπ̂l−1

∥∥2

A(w)−1 log(1/δl)

nl

≤ min
w∈Ω

max
π∈Π
− 3

16
∆(π, π∗) +

1

2
εl + 28

√√√√2
∥∥φπ − φπ̂l−1

∥∥2

A(w)−1 log(1/δl)

nl

≤ min
w∈Ω

max
π∈Π

(
− 3

16
∆(π, π∗) + 28

√
2 ‖φπ∗ − φπ‖

2
A(w)−1 log(1/δl)

nl

+ 28

√√√√2
∥∥φπ∗ − φπ̂l−1

∥∥2

A(w)−1 log(1/δl)

nl

)
+

1

2
εl

≤ min
w∈Ω

max
π∈Π

− 3

16
∆(π, π∗) + 28

√
2 ‖φπ∗ − φπ‖

2
A(w)−1 log(1/δl)

nl

+28

√
max

π′∈Sl−1

2 ‖φπ∗ − φπ′‖
2
A(w)−1 log(1/δl)

nl

+
1

2
εl

which is less than εl whenever

nl & min
w∈Ω

max
π∈Π

‖φπ∗ − φπ‖
2
A(w)−1 log(1/δl)

ε2l + ∆(π, π∗)2
.

Then we finish our first goal. The next goal is to show that π̂l ∈ Sl.
Lemma C.5. Under El, we have ∆(π̂l, π∗) ≤ εl.

Proof. On El, we have

∆(π̂l, π̂l−1)

≤ ∆̂l(π̂l, π̂l−1) +

√√√√2
∥∥φπ̂l − φπ̂l−1

∥∥2

A(w(`))−1 log(1/δl)

nl
(by event El)

≤ ∆̂l(π∗, π̂l−1) +

√√√√2
∥∥φπ̂l − φπ̂l−1

∥∥2

A(w(`))−1 log(1/δl)

nl
(by minimality of π̂l)

≤ ∆(π∗, π̂l−1) +

√√√√2
∥∥φπ̂l−1

− φπ∗
∥∥2

A(w(`))−1 log(1/δl)

nl
+

√√√√2
∥∥φπ̂l − φπ̂l−1

∥∥2

A(w(`))−1 log(1/δl)

nl
(by event El)

≤ ∆(π∗, π̂l−1) +

√
2

28

(
4εl + ∆̂l−1(π∗, π̂l−1) + 4εl + ∆̂l−1(π̂l, π̂l−1)

)
(by Lemma C.2)

≤ ∆(π∗, π̂l−1) +

√
2

28

(
4εl + 2εl−1 +

5

4
∆(π∗, π̂l−1) + 4εl + 2εl−1 +

5

4
∆(π̂l, π̂l−1)

)
(by Lemma C.3)

≤ ∆(π∗, π̂l−1) +
3

56

(
8εl−1 +

5

4
∆(π̂l, π∗)

)
.

Therefore, 209
224∆(π̂l, π∗) ≤ 6

7εl and ∆(π̂l, π∗) ≤ εl, so π̂l ∈ Sl.

25

D The FW-GD subroutine

We now introduce the FW-GD subroutine that solves the optimization problem of equation (5).
Note that its objective has three variables. We first reduce it to a max-min problem over (λ, γ) by
considering n in a dyadic sequence. This is good enough as we only need to find the optimal n up to
a constant factor. Then, we combine the Frank-Wolfe algorithm [21] for minimizing over λ with the
gradient descent algorithm [7] which minimizes over γ. Algorithm 4 shows the full subroutine. In
line 10, we use the standard gradient descent subroutine combining with a clipping on λ, with details
in Algorithm 7.

Algorithm 4 FW-GD
Input: Π policy sets, number of actions |A|, π̂l−1 ∈ Π, ηl > 0, K ∈ N, threshold εl, γmin, γmax

1: Initialize n1 = 1, L = |A|2 ((1+ηl)γmax)5/2

η
3/2
l

γ2
min

2: for r = 1, 2, · · · do
3: Initialize λ0 = e0 ∈ RΠ, γ0 = 1|Π| ·

√
log(1/δl)

|A|2ηlnr
∈ R|Π| // Never explicitly materialized

4: for t = 0, 1, 2, · · · ,K do
5: Compute

πt = arg max
π∈Π

[
∇λhl(λt, γt, nr)

]
π

(9)

6: Set the FW-gap

gt =
〈
∇λhl(λt, γt, nr), eπt − λ

t〉 =
[
∇λhl(λt, γt, nr)

]
πt
−

∑
π∈supp(λt)

[
∇λhl(λt, γt, nr)

]
π

7: Set βt = min

{
gt

L‖λt−eπt‖21
, 1

}
8: Set κt = εl

(t+1)2

9: Set λt+1 = (1− βt)λt + βteπt // Only 1-sparse updates recorded
10: Set γt+1 = GD(λt, nr, κt) // Only differences from γ0 recorded
11: end for
12: if hl(λK+1, γK+1, nr) ≤ εl then
13: break
14: else
15: nr+1 = 2 · nr
16: end if
17: end for
Output: λK+1 ∈ 4Π, γ

K+1 ∈ R|Π|+ , nr

In this section, we will mainly focus on showing that the algorithm is computationally efficient
with access to an argmax oracle (Definition 2.3), i.e. the second part of Theorem 3.3. Specifically,
Section D.1 quantifies the number of oracle calls, and Section D.2 quantifies the number of offline
data needed in order to approximate the expectation over the context distribution. We leave the
convergence analysis of the algorithm in Section G. The main result for this section is stated below.
Theorem D.1. Let Tl be the number of iterations for FW-GD in the lth round. Then, Algorithm 3 is
computationally efficient and requires at most O(

∑log2(1/ε)
l=1 T 2

l |D|) calls to a constrained argmax
oracle, with the size of the history D exceeding poly(ε−1, log |Π|, γmax, γ

−1
min, η

−1, |A|, log(1/δ))
with probability at least 1− δ, where poly denotes some polynomial.

The size of the history follows directly from Lemma D.6 and D.7. We will see that η, γmax, γmin

all scale at most polynomially on |A| and ε−1, and thus we get the statement in Theorem D.1. The
bound on the number of oracle calls follows directly from Lemma D.2 and the fact that Tl−1 ≤ Tl.
We will see in Theorem G.1 that Tl = poly(|A|, ε−1

l), which shows that the total number of oracle
calls is at most poly(|A|, ε−1, log(1/δ), log(|Π|)).

D.1 Proof of computational efficiency

In this section, we address the technical issues on computational efficiency of our algorithm. Fix an
iteration t and let Tl be the number of iterations for FW-GD in the lth round.

26

Lemma D.2. Equation (9) can be computed with (t+ Tl−1)|D| call to a cost-sensitive classification
oracle.

Proof. We consider the tth iteration of the lth round for some nr. In this iteration, we compute

[∇λhl(λt,γt, nr)]π =

nl∑
i=1

ri

p
(`)
ci,ai + [γl−1]π

(1{π(ci) = ai} − 1{π̂l−1(ci) = ai}) +
log(1/δl)

[γt]πn

+ Ec∼νD

(∑
a∈A

√
(λt � γt)>(t

(c)
a + ηl)

)∑
a′∈A

[γt]π(t
(c)
a′ + ηl)π√

(λt � γt)>(t
(c)
a′ + ηl)

 .
Define γ0 :=

√
log(1/δl)
|A|2ηlnr . Initially, each coordinate of γt is γ0. In round t of the algorithm, at

most t coordinates of γ will change, and these coordinates will be in supp(λt). Also, for any
j 6∈ supp(λl−1), γl−1

j = γ0. Therefore, let t(c)a (·, π̂l−1) ∈ R|Π|, in round l,

argmax
π∈Π\(supp(λt)∪supp(λl−1))

[
∇λhl(λt, γt, nr)

]
π

= argmax
π∈Π\(supp(λt)∪supp(λl−1))

nl∑
i=1

ri

p
(`)
ci,ai + γ0

1{π(ci) = ai}+
log(1/δl)

γ0nr

+ Ec∼νD

(∑
a∈A

√
(λt � γt)>(t

(c)
a (π̂l−1) + ηl)

)∑
a′∈A

γ0(t
(c)
a′ (π̂l−1) + ηl)π√

(λt � γt)>(t
(c)
a′ (π̂l−1) + ηl)


= argmax
π∈Π\(supp(λt)∪supp(λl−1))

nl∑
i=1

ri

p
(`)
ci,ai + γ0

1{π(ci) = ai}

+ Ec∼νD

∑
a′∈A

∑
a∈A

√
(λt � γt)>(t

(c)
a (π̂l−1) + ηl)√

(λt � γt)>(t
(c)
a′ (π̂l−1) + ηl)

γ0t
(c)
a′ (π̂l−1)π


= argmax
π∈Π\(supp(λt)∪supp(λl−1))

nl+|D|∑
i=1

Li(π(ci))

which is a cost-sensitive classification problem with cost vector

Li(a) =


ri

p
(`)
ci,ai

+γ0

1{a = ai} for i = 1, · · · , nl(
γ0

sa,ci
+ γ0

sπ̂l−1(ci),ci

)
1{a 6= π̂l−1(ci)} for i = nl + 1, · · · , nl + |D|

where sa,c =

√
(λt�γt)>(t

(c)
a (π̂l−1)+ηl)∑

a′∈A

√
(λt�γt)>(t

(c)

a′ (π̂l−1)+ηl)
. Note that sa,c is computable since λt has at most t

non-zero elements in step t. Then, let π] := supp(λt) ∪ supp(λl−1), we have

arg max
π∈Π

[
∇λhl(λt, γt, nr)

]
π

= arg max

{
argmax
π∈Π]

[
∇λhl(λt, γt, nr)

]
π
, argmax
π∈Π\Π]

[
∇λhl(λt, γt, nr)

]
π

}
.

The first piece could be found directly since supp(λt) ∪ supp(λl−1) ≤ t+ Tl−1. The second piece
could be computed with (t+Tl−1)|D| calls to a constrained cost-sensitive classification oracle, stated
in Lemma D.3 below.

Lemma D.3. For any set Bt ⊂ Π, we can compute argmax
π∈Π\Bt

[∇λhl(λt, γt, nr)]π using |Bt| · |D|

calls to a constrained cost-sensitive classification oracle defined in Definition 2.3.

27

Proof. Algorithm 5 below shows that we could compute this argmax via the C-AMO oracle. First,
by construction of the algorithm, we have that πe 6∈ Bt, so πe ∈ Π \Bt. It remains to show that πe
achieves the maximum. We prove this via contradiction. Assume that there is some other π′ 6= πe
that satisfies π′ 6∈ Bt and∇λ[hl(λ, γ, n)]π′ > ∇λ[hl(λ, γ, n)]πe . By construction of our algorithm,
we know that ∇λ[hl(λ, γ, n)]πk is non-increasing in k. We find the largest 0 ≤ j ≤ i− 1 such that

∇λ[hl(λ, γ, n)]πj+1
≤ ∇λ[hl(λ, γ, n)]π′ ≤ ∇λ[hl(λ, γ, n)]πj .

First, since j is the largest, we have∇λ[hl(λ, γ, n)]πj+1
< ∇λ[hl(λ, γ, n)]π′ , i.e. the first inequality

is strict. By assumption that π′ 6∈ Bt and π′ 6= πe, we have π′ 6= πk, ∀0 ≤ k ≤ i. So ∃c0 ∈ D such
that π′(c0) 6= πj(c0). Then we get a contradiction since in iteration j, at line 6 we should return π′c0
instead of πj+1. Therefore, there does not exist such π′ and πe achieves the maximum.

Algorithm 5 Constrained cost-sensitive classification
Input: policy set Π, set of policies to avoid Bt, objective function hl, context history D, tolerance ε

1: π0 = argmax
π∈Π

[∇λhl(λ, γ, n)]π , i = 0

2: while πi ∈ Bt do
3: for c ∈ D do
4: compute π′c = argmax

π∈Π
π(c)6=πi(c)

[∇λhl(λ, γ, n)]π s.t. [∇λhl(λ, γ, n)]π ≤ [∇λhl(λ, γ, n)]πi

5: end for
6: πi+1 = argmax

c∈D
[∇λhl(λ, γ, n)]π′c

7: i = i+ 1
8: end while
9: πe = πi

Output: πe

Lemma D.4. We can compute equation (6) with Tl|D| calls to a constrained argmax oracle.

Proof. We follow the proof technique in Lemma D.2 and break the argmin into two pieces with
π ∈ supp(λl) and π ∈ Π \ supp(λl). We only show how to compute the second piece as the first
piece could be compute directly. We know that ∆̂γl

l (π, π̂l−1) =
∑nl
i=1

ri
p

(`)
ci,ai

+[γl]π
(1{π̂l−1(ci) =

ai} − 1{π(ci) = ai}). Then, similar to proof of Lemma D.2, let γπ = γ0 for all π ∈ Π \ supp(λl),
we have

argmin
π∈Π\supp(λl)

∆̂γl

l (π, π̂l−1) + Ec∼νD

[(
[γl]π

p
(`)
c,a

+
[γl]π
sa′,c

)
1{π̂l−1(c) 6= π(c)}

]
+

log(1/δl)

[γl]πnl

= argmin
π∈Π\supp(λl)

nl∑
i=1

ri

p
(`)
ci,ai + [γl]π

(1{π̂l−1(ci) = ai} − 1{π(ci) = ai})

+ Ec∼νD

[(
[γl]π

p
(`)
c,a

+
[γl]π

p
(`)
c,a′

)
1{π̂l−1(c) 6= π(c)}

]

= argmin
π∈Π\supp(λl)

nl∑
i=1

− ri

p
(`)
ci,ai + γ0

1{π(ci) = ai}

+ Ec∼νD

[(
γ0

p
(`)
c,a

+
γ0

p
(`)
c,a′

)
1{π̂l−1(c) 6= π(c)}

]

= argmin
π∈Π\supp(λl)

nl∑
i=1

ri

p
(`)
ci,ai + γ0

1{π(ci) = ai}

− Ec∼νD

[(
γ0

p
(`)
c,a

+
γ0

p
(`)
c,a′

)
1{π̂l−1(c) 6= π(c)}

]

28

which is a cost-sensitive classification problem with cost vector

Li(a) =


ri

p
(`)
ci,ai

+γ0

1{a = ai} for i = 1, · · · , nl

−
(

γ0

p
(`)
ci,a

+ γ0

p
(`)

ci,π̂l−1(ci)

)
1{a 6= π̂l−1(ci)} for i = nl + 1, · · · , nl + |D|.

D.2 Quantify the offline data

We first prove a general result for an empirical process bound of the difference of the expectation and
the truth in Lemma D.5.

Lemma D.5. Let m = |D| and define some set K ⊂ γmax4Π. Consider some function u : C ×K →
R with c, κ 7→ u(c, κ) and define F , {c 7→ u (c, κ) : κ ∈ K}. If

1. u satisfies that for any c ∈ C and κ ∈ K, u(c, κ) ∈ [0, b] where b <∞ is a uniform upper
bound;

2. there exists L <∞ such that ‖u(·, κ1)− u(·, κ2)‖F ≤ L ‖κ1 − κ2‖1.

Then, with probability at least 1− δ,

sup
κ∈K
|Ec∼νD [u(c, κ)]− Ec∼ν [u(c, κ)]| ≤

√
b2

2m
log

(
2

δ

)
+

16√
m
Lγmax

√
2k log(3e|Π|/k).

Proof. By the bounded condition on u we have {Ec∼νD [u(c, κ)] : κ ∈ K} satisfies the bounded
difference property with parameter b. Then we use McDiarmid’s inequality to get with probability at
least 1− δ,

sup
κ∈K
|Ec∼νD [u(c, κ)]− Ec∼ν [u(c, κ)]|

≤

√
b2

2m
log

(
2

δ

)
+ E

[
sup
κ∈K
|Ec∼νD [u(c, κ)]− Ec∼ν [u(c, κ)]|

]
.

Also, note that by definition of F and classical results on entropy integral [37],

E
[

sup
κ∈K
|Ec∼νD [u(c, κ)]− Ec∼ν [u(c, κ)]|

]
≤ 8√

n
sup
Q

∫ ∞
0

√
logN(F , L2(Q), ε)dε,

where N(F , L2(Q), ε) is the covering number. By condition 2 and property of covering numbers,

sup
Q
N(F , L2(Q), ε) ≤ N(F , ‖·‖F , ε) ≤ N(K, ‖·‖1 , ε/L).

Denote Bk1 as the l1 ball with dimension k. We know that for ε ≤ 1, N(Bk1 , ‖·‖1 , ε) ≤
(

3
ε

)k
. Since

K ⊂ γmax4(k)
Π ⊂ γmaxB

k
1 , and there are

(
Π
k

)
ways to choose such a support γmaxB

k
1 , by union

bound over k-dimensional subspaces we have

N(K, ‖·‖1 , ε/L) ≤
(

Π

k

)
N(γmaxB

k
1 , ‖·‖1 , ε/L)

≤
(

Π

k

)
N(Bk1 , ‖·‖1 , ε/(Lγmax))

≤
(
e|Π|
k

)k (
3Lγmax

ε

)k
≤
(

3Lγmaxe|Π|
εk

)k
.

29

Therefore,

sup
Q

∫ ∞
0

√
logN(F , L2(Q), ε)dε ≤

∫ ∞
0

√
logN(K, ‖·‖1 , ε/L)dε

≤
∫ Lγmax

0

√
k log

(
3Lγmaxe|Π|

εk

)
dε

= Lγmax

∫ 1

0

√
k log

(
3e|Π|
εk

)
dε

≤ Lγmax

√∫ 1

0

k log

(
3e|Π|
εk

)
dε

≤ Lγmax

√
2k log(3e|Π|/k).

Combining all results yields

E

 sup
λ∈4(k)

Π

|Ec∼νD [u(c, κ)]− Ec∼ν [u(c, κ)]|

 ≤ 16√
m

sup
Q

∫ ∞
0

√
logN(F , L2(Q), ε)dε

≤ 16√
m
Lγmax

√
2k log(3e|Π|/k).

Therefore, our result follows.

Then, we take two special kind of u(c, κ), and get the bounds for our estimate of the expectation over
ν with the offline history D.

Lemma D.6. Let m = |D|. Then, with probability at least 1− δ, we have

sup
(λ,γ)∈γmax4

(k)
Π

∣∣∣∣∣Ec∼νD
[(∑

a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2]
− Ec∼ν

[(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2]∣∣∣∣∣
≤

√
|A|4γ2

max(1 + ηl)2

2m
log

(
2

δ

)
+

16√
m
|A|2γmax

√
2k(1 + ηl)γmax

ηlγmin
log

(
3e|Π|
k

)
.

Proof. Define κ ∈ K such that κπ = λπγπ . Then, K ⊂ γmax4Π since
∑
π∈Π κπ =

∑
π∈Π λπγπ ≤

γmax. Then, let u(c, κ) =

(∑
a∈A

√
κ>(t

(c)
a + ηl)

)2

. We aim to use the result of Lemma D.5 to

get our bound. First, since for any κ ∈ K and any c ∈ D, u(c, κ) ∈ [|A|2γminηl, |A|2(1 + ηl)γmax],

30

so condition 1 is satisfied. Also, note that u(c, κ) is Lipschitz in κ, i.e.

‖u(·, κ1)− u(·, κ2)‖F
= sup

c∈C
|u(c, κ1)− u(c, κ2)|

= sup
c∈C

∣∣∣∣∣∣
(∑
a∈A

√
κ>1 (t

(c)
a + ηl)

)2

−

(∑
a∈A

√
κ>2 (t

(c)
a + ηl)

)2
∣∣∣∣∣∣

≤ sup
c∈C

∣∣∣∣∣
(∑
a∈A

√
κ>1 (t

(c)
a + ηl) +

√
κ>2 (t

(c)
a + ηl)

)(∑
a∈A

√
κ>1 (t

(c)
a + ηl)−

√
κ>2 (t

(c)
a + ηl)

)∣∣∣∣∣
= sup

c∈C

(∑
a∈A

√
κ>1 (t

(c)
a + ηl) +

√
κ>2 (t

(c)
a + ηl)

)∑
a∈A

∣∣∣(κ1 − κ2)>t
(c)
a

∣∣∣√
κ>1 (t

(c)
a + ηl) +

√
κ>2 (t

(c)
a + ηl)


≤ sup

c∈C

(∑
a∈A

√
κ>1 (t

(c)
a + ηl) +

√
κ>2 (t

(c)
a + ηl)

)∑
a∈A

‖κ1 − κ2‖1√
κ>1 (t

(c)
a + ηl) +

√
κ>2 (t

(c)
a + ηl)


≤ |A|2

√
(1 + ηl)γmax

ηlγmin
‖κ1 − κ2‖1 .

Therefore, condition 2 is satisfied with L = |A|2
√

(1+ηl)γmax

ηlγmin
. Plugging in the result in Lemma D.5,

we get

sup
λ∈4(k)

Π

|Ec∼νD [u(c, κ)]− Ec∼ν [u(c, κ)]|

≤

√
|A|4γ2

max(1 + ηl)2

2m
log

(
2

δ

)
+

16√
m
|A|2γmax

√
2k(1 + ηl)γmax

ηlγmin
log

(
3e|Π|
k

)
.

Lemma D.7. For any π ∈ Π, with probability at least 1− δ,

sup
(λ,γ)∈γmax4Π

∣∣∣∣∣∣Ec∼νD
∑
a∈A

∑
a′∈A

√
(λ� γ)>(t

(c)
a′ + ηl)√

(λ� γ)>(t
(c)
a + ηl)

(γπ[t(c)a]π)


−Ec∼ν

∑
a∈A

∑
a′∈A

√
(λ� γ)>(t

(c)
a′ + ηl)√

(λ� γ)>(t
(c)
a + ηl)

(γπ[t(c)a]π)

∣∣∣∣∣∣
≤ γmax

(√
|A|4(1 + η)γmax

2ηγminm
log

(
2

δ

)
+

8|A|2γmax√
m(ηlγmin)3/2

√
2k log(3e|Π|/k)

)
.

Proof. First, note that

∑
a′∈A

√
(λ� γ)>(t

(c)
a′ + ηl)√

(λ� γ)>(t
(c)
a + ηl)

(γπ[t(c)a]π) ≤ γmax

∑
a′∈A

√
(λ� γ)>(t

(c)
a′ + ηl)√

(λ� γ)>(t
(c)
a + ηl)

[t(c)a]π.

31

Then, we define u(c, κ) =
∑
a∈A

∑
a′∈A

√
κ>(t

(c)

a′ +ηl)√
κ>(t

(c)
a +ηl)

[t
(c)
a]π. First, note that for any c ∈ C and

κ ∈ K, u(c, κ) ∈
[
0, |A|2

√
(1+η)γmax√
ηγmin

]
, so condition 1 in Lemma D.5 is satisfied. Also,

‖u(c, κ1)− u(c, κ2)‖F = sup
c∈C
|u(c, κ1)− u(c, κ2)| (10)

= sup
c∈C

∣∣∣∣∣∣
∑
a∈A

∑
a′∈A

√
κ>1 (t

(c)
a′ + ηl)√

κ>1 (t
(c)
a + ηl)

[t(c)a]π −
∑
a∈A

∑
a′∈A

√
κ>2 (t

(c)
a′ + ηl)√

κ>2 (t
(c)
a + ηl)

[t(c)a]π

∣∣∣∣∣∣
= sup

c∈C

∣∣∣∣∣∣
∑
a∈A

∑a′∈A

√
κ>1 (t

(c)
a′ + ηl)

√
κ>2 (t

(c)
a + ηl)−

√
κ>2 (t

(c)
a′ + ηl)

√
κ>1 (t

(c)
a + ηl)√

κ>1 (t
(c)
a + ηl)

√
κ>2 (t

(c)
a + ηl)

[t(c)a]π

∣∣∣∣∣∣
≤ sup

c∈C

∑
a∈A


∑
a′∈A

∣∣∣∣√κ>1 (t
(c)
a′ + ηl)

√
κ>2 (t

(c)
a + ηl)−

√
κ>2 (t

(c)
a′ + ηl)

√
κ>1 (t

(c)
a + ηl)

∣∣∣∣√
κ>1 (t

(c)
a + ηl)

√
κ>2 (t

(c)
a + ηl)

 .
(11)

Note that by triangular inequality∣∣∣∣√κ>2 (t
(c)
a + ηl)

√
κ>1 (t

(c)
a′ + ηl)−

√
κ>1 (t

(c)
a + ηl)

√
κ>2 (t

(c)
a′ + ηl)

∣∣∣∣
≤
∣∣∣∣√κ>2 (t

(c)
a + ηl)−

√
κ>1 (t

(c)
a + ηl)

∣∣∣∣√κ>1 (t
(c)
a′ + ηl)

+

√
κ>1 (t

(c)
a + ηl)

∣∣∣∣√κ>1 (t
(c)
a′ + ηl)−

√
κ>2 (t

(c)
a′ + ηl)

∣∣∣∣ .
Also note that∣∣∣∣√κ>2 (t

(c)
a + ηl)−

√
κ>1 (t

(c)
a + ηl)

∣∣∣∣ =

∣∣∣∑π∈Π([κ1]π − [κ2]π)(t
(c)
a + ηl)π

∣∣∣√
κ>2 (t

(c)
a + ηl) +

√
κ>1 (t

(c)
a + ηl)

≤ 1

2
√
ηlγmin

‖κ2 − κ1‖1 .

Therefore, (11) is bounded by |A|2 1
ηlγmin

1
2
√
ηlγmin

‖κ2 − κ1‖1, so condition 2 is satisfied with

L = |A|2
2(ηlγmin)3/2 . Then, by Lemma D.5, with probability at least 1− δ,

sup
(λ,γ)∈γmax4Π

∣∣∣∣∣∣Ec∼νD
∑

a

∑
a′∈A

√
(λ� γ)>(t

(c)
a′ + ηl)√

(λ� γ)>(t
(c)
a + ηl)

(γπ[t(c)a]π)


−Ec∼ν

∑
a

∑
a′∈A

√
(λ� γ)>(t

(c)
a′ + ηl)√

(λ� γ)>(t
(c)
a + ηl)

(γπ[t(c)a]π)

∣∣∣∣∣∣
≤ γmax

(√
|A|4(1 + η)γmax

2ηγminm
log

(
2

δ

)
+

8|A|2γmax√
m(ηlγmin)3/2

√
2k log(3e|Π|/k)

)
.

E Proof of Theorem 3.3

We first write down Algorithm 3 in full detail in Algorithm 6. We aim to show that Algorithm 6
achieves the sample complexity lower bound. The two big goals here is to show that π̂l ∈ Sl for all l,
which shows that we get the optimal policy, and nl achieves the sample complexity lower bound.

32

Algorithm 6 Full CODA Algorithm
Input: policies Π = {π : C → A}π , feature map φ : C × A → Rd, δ ∈ (0, 1), historical data D = {νs}s
1: initiate π̂0 ∈ Π arbitrarily, λ0 = eπ̂0 , ∆̂0(π), γ0 appropriately
2: for l = 1, 2, · · · do
3: εl = 2−l, ηl = C1ε

2
l |A|−4, δl = δ/(l2|Π|2), Tl appropriately

4: t
(c)
a (π′) = {1{π(c) = a, π′(c) 6= a}+ 1{π(c) 6= a, π′(c) = a}}π∈Π ∈ RΠ

5: Define γmin := 1
3

√
ηl log(1/δl)

n
, γmax :=

√
log(1/δl)

|A|2ηln
6: Define

hl(λ, γ, n) =
∑
π∈Π

λπ

(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)

+ Ec∼νD

[(∑
a∈A

√
(λ� γ)>(t

(c)
a (π̂l−1) + ηl)

)2]
. (12)

7: Let λl, γl, nl = FW-GD(Π, |A|, π̂l−1, ηl, Tl, εl, γmin, γmax). These are the solutions to

n` := min{n ∈ N : max
λ∈4Π

min
γ∈[γmin,γmax]|Π|

hl(λ, γ, n) ≤ ε`} (13)

8: Receive contexts c1, c2, · · · , cnl ∼ ν.

9: For each cs, s = 1, 2, · · · , nl, pull arms as ∼ p
(`)
cs where p(`)

cs,as ∝
√

(λl � γl)>(t
(cs)
as (π̂l−1) + ηl),

and observe rewards rs where t(cs)
as (π̂l−1) ∈ R|Π|

10: For each π ∈ Π, define the IPS estimator

∆̂γl

l (π, π̂l−1) =

nl∑
s=1

rs

p
(`)
cs,as + [γl]π

(1{π̂l−1(cs) = as} − 1{π(cs) = as})

11: set

π̂l = arg min
π∈Π

∆̂γl

l (π, π̂l−1) + Ec∼νD

[(
[γl]π

p
(`)
c,a

+
[γl]π

p
(`)

c,a′

)
1{π̂l−1(c) 6= π(c)}

]
+

log(1/δl)

[γl]πnl
. (14)

12: end for
Output: π̂l

Theorem E.1. With probability at least 1 − δ, Algorithm 6 returns a policy π̂ satisfying V (π∗) −
V (π̂`) ≤ ε in a number of samples not exceeding O(ρ∗,ε log(|Π| log2(1/∆ε)/δ) log2(1/∆ε) where
∆ε := max{ε,minπ∈Π V (π∗)− V (π)}.

Proof. We first define our key events. Recall

∆̂γl

l (π, π̂l−1) =

nl∑
s=1

rs

p
(`)
cs,as + [γl]π

(1{π̂l−1(cs) = as} − 1{π(cs) = as})

and ∆(π, π′) = V (π′)− V (π). Define w(λ, γ) ∈ R|A|×|C| with

[w(λ, γ)]a,c := νc · pc,a = νc ·

√
(λ� γ)>(t

(c)
a (π̂l−1) + ηl)∑

a′∈A

√
(λ� γ)>(t

(c)
a′ (π̂l−1) + ηl)

.

Then define the events

El :=
⋂

π,π′∈Π

{∣∣∣∆̂γl

l (π, π′)−∆(π, π′)
∣∣∣ ≤ 2[γl]π ‖φπ − φπ′‖2A(w(λl,γl))−1 +

2 log(1/δl)

[γl]πnl

}
,

and the good event E =
⋂∞
l=1 El. Lemma E.3 shows that E happens with probability at least 1− δ,

and Lemma E.7 shows that under this event E ,

nl . min
w∈Ω

max
π∈Π

‖φπ∗ − φπ‖
2
A(w)−1 log(1/δl)

ε2l + ∆(π, π∗)2
.

33

Therefore, the total number of samples is no more than

log2(1/∆ε)∑
l=1

min
w∈Ω

max
π∈Π

‖φπ∗ − φπ‖
2
A(w)−1 log(l2|Π|2/δ)

ε2l + ∆(π, π∗)2

(i)

≤
log2(1/∆ε)∑

l=1

min
w∈Ω

max
π∈Π\π∗

2 ‖φπ∗ − φπ‖
2
A(w)−1 log(l2|Π|2/δ)

ε2l + ∆(π, π∗)2

(ii)

≤
log2(1/∆ε)∑

l=1

min
p(c)∈4A,∀c∈C

max
π∈Π\π∗

Ec∼ν
[(

1

p
(c)

π∗(c)
+ 1

p
(c)

π(c)

)
1{π∗(c) 6= π(c)}

]
log(l2|Π|2/δ)

∆(π, π∗)2 + ε2l

. ρ?,ε(Π, v) log(log2(1/∆ε)|Π|/δ) log2(1/∆ε).

where (i) follows from the fact that π∗ gives zero for the RHS, and (ii) follows from Lemma H.1.

In what follows, we will fill in the road map to the proof of Lemma E.3 and E.7. First, Lemma E.2
controls the estimation error of the gap and shows that P(E`) > 1 − δ`, which leads to the high-
probability of the good event E (Lemma E.3). Lemma E.4 applies the duality machinery in Section G
and controls the variance term. Lemma E.5 applies the result of Lemma E.4 and shows an upper
bound for the difference between estimate gap and the true gap, which is a very similar result of
Lemma C.3. Lemma E.6 is an important lemma showing the analytical solution of w given some λ
and γ. With all of these results above, we get Lemma E.7 which gives the upper bound on the sample
complexity.

Lemma E.2. For any l > 0, π, π′ ∈ Π, with probability at least 1− δl,

∣∣∣∆̂γl

l (π, π′)−∆(π, π′)
∣∣∣ ≤ 2[γl]π ‖φπ − φπ′‖2A(w(λl,γl))−1 +

2 log(1/δl)

[γl]πnl
.

Proof. Define

V̂ γ
l

l (π) :=

nl∑
s=1

rs

p
(`)
cs,as + [γl]π

1{π(cs) = as},

so that

∆̂γl

l (π, π′) = V̂ γ
l

l (π′)− V̂ γ
l

l (π).

First, note that below.

V (π) = Ec∼ν [r(c, π(c))]

= Ec∼ν

[
E
a∼p(`)

c

[
r(c, a)

1{π(c) = a}
p

(`)
c,a

∣∣∣∣c
]]

= E

[
1

t

t∑
s=1

rs

p
(`)
cs,as

1{π(cs) = as}

]
.

34

Therefore,∣∣∣E [V̂ γll (π)− V̂ γ
l

l (π′)
]
− [V (π)− V (π′)]

∣∣∣
≤

∣∣∣∣∣E
[

1

nl

nl∑
s=1

(
1

p
(`)
cs,as + [γl]π

− 1

p
(`)
cs,as

)
(1{π(cs) = as} − 1{π′(cs) = as})

]∣∣∣∣∣
=

∣∣∣∣∣∣E
 1

nl

nl∑
s=1

−[γl]π

p
(`)
cs,as

(
p

(`)
cs,as + [γl]π

) (1{π(cs) = as} − 1{π′(cs) = as})

∣∣∣∣∣∣
≤ E

 1

nl

nl∑
s=1

[γl]π (1{π′(cs) = as, π(cs) 6= as}+ 1{π′(cs) 6= as, π(cs) = as})

p
(`)
cs,as

(
p

(`)
cs,as + [γl]π

)


= [γl]πE

 1

p
(`)
c,a

(
p

(`)
c,a + [γl]π

)
ν2
c

[φπ − φπ′]2a,c


= [γl]π

∑
c∈C

νc
∑
a∈A

p(`)
c,a

1

p
(`)
c,aν2

c

(
p

(`)
c,a + [γl]π

) [φπ − φπ′]2a,c

≤ [γl]π ‖φπ − φπ′‖2A(w(λl,γl))−1

where the last inequality follows since νcp
(`)
c,a = [w(λl, γl)]a,c. Meanwhile, note that

rs

p
(`)
cs,as + [γl]π

(1{π(cs) = as} − 1{π′(cs) = as}) ≤
1

[γl]π
,

and

E

(rs

p
(`)
cs,as + [γl]π

(1{π(cs) = as} − 1{π′(cs) = as})

)2


≤ E

[
1

(p
(`)
cs,as + [γl]π)2

(1 {π (cs) = as} − 1 {π′ (cs) = as})
2

]

= E

[
1

(p
(`)
cs,as + [γl]π)2ν2

c

[φπ − φπ′]2a,c

]
≤ ‖φπ − φπ′‖2A(w(λl,γl))−1

by a similar argument as before. Therefore, by Bernstein’s inequality, we have with probability at
least 1− δ,∣∣∣V̂ γll (π)− V̂ γ

l

l (π′)− E
[
V̂ γ

l

l (π)− V̂ γ
l

l (π′)
]∣∣∣ ≤

√
‖φπ − φπ′‖2A(w(λl,γl))−1

2 log(1/δ)

nl
+

log(1/δ)

[γl]πnl
.

Combining this with the deviation on expectation gives us∣∣∣∆̂γl

l (π, π′)−∆(π, π′)
∣∣∣

≤ [γl]π ‖φπ − φπ′‖2A(w(λl,γl))−1 +

√
‖φπ − φπ′‖2A(w(λl,γl))−1

2 log(1/δ)

nl
+

2 log(1/δ)

[γl]πnl

≤ 2[γl]π ‖φπ − φπ′‖2A(w(λl,γl))−1 +
4 log(1/δ)

[γl]πnl
.

Lemma E.3. P(E) ≥ 1− δ.

35

Proof. By Lemma E.2 and a union bound over all policies, we have

P (El | El−1, · · · , E1) ≥ 1− δ

l2
.

Since E =
⋂∞
l=0 El,
P(Ec) = P((∩∞l=0El)c) = P (∪∞l=0Ecl) = P

(
∪∞l=0

(
Ecl \

(
∪j<lEcj

)))
≤
∞∑
l=0

P
(
Ecl \

(
∪j<lEcj

))
≤
∞∑
l=0

P (Ecl | (∩j<lEj)) ≤
∞∑
l=0

δ

l2
≤ δ.

Therefore, P(E) ≥ 1− δ.

Lemma E.4. Under E , we have for any π ∈ Π,

[γl]π
∥∥φπ − φπ̂l−1

∥∥2

A(w(λl,γl))−1 +
log(1/δl)

[γl]πnl
≤ 1

6
εl +

1

64
∆̂γl−1

l−1 (π, π̂l−1).

Proof. We know that the choice of nl ensures
hl(λ

l, γl, nl) ≤ εl.
Also, by Theorem G.1 we have

1

3
εl ≥ max

π∈Π

(
−1

8
∆̂γl−1

l−1 (π, π̂l−1) + 8[γl]π
∥∥φπ − φπ̂l−1

∥∥2

A(w(λl,γl))−1 +
8 log(1/δl)

[γl]πnl

)
− hl(λl, γl, nl).

Combining the above two displays gives us
εl ≥ hl(λl, γl, nl)

≥ max
π∈Π

(
−1

8
∆̂γl−1

l−1 (π, π̂l−1) + 8[γl]π
∥∥φπ̂l−1

− φπ
∥∥2

A(w(λl,γl))−1 +
8 log(1/δl)

[γl]πnl

)
− 1

3
εl.

Therefore, for any π ∈ Π,

[γl]π
∥∥φπ − φπ̂l−1

∥∥2

A(w(λl,γl))−1 +
log(1/δl)

[γl]πnl
≤ 1

6
εl +

1

64
∆̂γl−1

l−1 (π, π̂l−1).

Lemma E.5. Under E , for all l ∈ N, the following holds:

1. |∆̂γl−1

l−1 (π, π̂l−1)−∆ (π, π∗) | ≤ 2εl−1 + 1
4∆(π, π∗).

2. π̂l ∈ Sl := {π ∈ Π : ∆(π, π∗) ≤ εl}.

Proof. We prove this by induction. First, in round l = 0, this holds since our rewards are bounded by
1. Then, assume that in round l − 1, we have π̂l−1 ∈ Sl−1 and

|∆̂γl−2

l−2 (π, π̂l−2)−∆ (π, π∗) | ≤ 2εl−2 +
1

4
∆(π, π∗).

Then, on round l,

|∆̂γl−1

l−1 (π, π̂l−1)−∆ (π, π∗) |

= |∆̂γl−1

l−1 (π, π̂l−1)−∆ (π, π̂l−1)−∆ (π̂l−1, π∗) |

≤ 2[γl−1]π
∥∥φπ − φπ̂l−1

∥∥2

A(w(λl−1,γl−1))−1 +
2 log(1/δl−1)

[γl−1]πnl−1
+ εl−1

(from event E and inductive hypothesis)

≤ 2

3
εl +

1

64
∆̂
γl−2

l−2 (π, π̂l−2) +
1

64
∆̂
γl−2

l−2 (π̂l−1, π̂l−2) + εl−1 (from Lemma E.4)

≤ 5

3
εl−1 +

1

64

(
2εl−2 +

5

4
∆(π, π∗) + 2εl−2 +

5

4
∆(π̂l−1, π∗)

)
(from inductive hypothesis)

≤ 5

3
εl−1 +

1

64

(
2εl−2 +

5

4
∆(π, π∗) + 2εl−2 +

5

4
εl−1

)
≤ 2εl−1 +

1

4
∆(π, π∗).

36

Also,

∆(π̂l, π̂l−1) ≤ ∆̂γl

l (π̂l, π̂l−1) + [γl]π̂l
∥∥xπ̂l − φπ̂l−1

∥∥2

A(w(λl,γl))−1 +
log(1/δl)

[γl]π̂lnl
(from E)

≤ ∆̂γl

l (π∗, π̂l−1) + [γl]π∗
∥∥φπ∗ − φπ̂l−1

∥∥2

A(w(λl,γl))−1 +
log(1/δl)

[γl]π∗nl
(eqn (6), the minimum)

≤ ∆(π∗, π̂l−1) + 2[γl]π∗
∥∥φπ∗ − φπ̂l−1

∥∥2

A(w(λl,γl))−1 +
2 log(1/δl)

[γl]π∗nl
(from E)

≤ ∆ (π∗, π̂l−1) +
1

3
εl +

1

32
∆̂γl−1

l−1 (π∗, π̂l−1) (from Lemma E.4)

≤ ∆ (π∗, π̂l−1) +
1

3
εl +

1

32

(
2εl−1 +

5

4
∆ (π∗, π∗)

)
. (from the above)

Therefore,

∆(π̂l, π∗) = ∆(π̂l, π̂l−1)−∆ (π∗, π̂l−1)

≤ 1

3
εl +

1

16
2εl

≤ ε`

Therefore, ∆(π̂l, π∗) ≤ εl, so π̂l ∈ Sl.

Lemma E.6. For any λ ∈ 4Π, γ ∈ R|Π|, and π′ ∈ Π, we have

min
w∈Ω

∑
π∈Π

λπγπ‖φπ − φπ′‖2A(w)−1 = Ec∼ν

(∑
a∈A

√
(λ� γ)>t

(c)
a (π′)

)2
 .

wherewa,c = νcp
(c)
a and p(c)

a ∝
√∑

π∈Π λπγπ(1{π′(c) = a, π(c) 6= a}+ 1{π′(c) 6= a, π(c) = a})
and � denotes element-wise multiplication.

37

Proof. For any λ ∈ 4Π,

min
w∈Ω

∑
π∈Π

λπγπ‖φπ − φπ′‖2A(w)−1

= min
w∈Ω

∑
π∈Π

∑
a,c

λπγπ
wa,c

(φπ − φπ′)>ea,ce>a,c(φπ − φπ′)

= min
p1,...,p|C|∈4A

∑
π∈Π

∑
a,c

λπγπ
νcpc,a

(φπ − φπ′)>ea,ce>a,c(φπ − φπ′)

=
∑
c

min
pc∈4A

∑
a

∑
π∈Π

λπγπ
νcpc,a

(φπ − φπ′)>ea,ce>a,c(φπ − φπ′)

=
∑
c

1

νc
min
pc∈4A

∑
a

1

pc,a

(∑
π∈Π

λπγπ(φπ − φπ′)>ea,ce>a,c(φπ − φπ′)

)

=
∑
c

1

νc

∑
a∈A

√∑
π∈Π

λπγπ(φπ − φπ′)>ea,ce>a,c(φπ − φπ′)

2

=
∑
c

1

νc

∑
a∈A

√∑
π∈Π

λπγπν2
c (1{π′(c) = a, π(c) 6= a}+ 1{π′(c) 6= a, π(c) = a})

2

=
∑
c

νc

∑
a∈A

√∑
π∈Π

λπγπ(1{π′(c) = a, π(c) 6= a}+ 1{π′(c) 6= a, π(c) = a})

2

= Ec∼ν

(∑
a∈A

√
(λ� γ)>t

(c)
a (π′)

)2
 .

Note that the minimizer

pc,a =

√∑
π∈Π λπγπ(φπ − φπ′)>ea,ce>a,c(φπ − φπ′)∑

a′

√∑
π∈Π λπγπ(φπ − φπ′)>ea′,ce>a′,c(φπ − φπ′)

∝
√∑
π∈Π

λπγπ(1{π′(c) = a, π(c) 6= a}+ 1{π′(c) 6= a, π(c) = a}).

Lemma E.7. Under E , the choice for nl in the algorithm satisfies

nl . min
w∈Ω

max
π∈Π

‖φπ∗ − φπ‖
2
A(w)−1 log(1/δl)

ε2l + ∆(π)2
.

38

Proof.

hl(λ
l, γl, nl)

=
∑
π∈Π

[λl]π ·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

[γl]πn

)
+ Ec∼νD

[(∑
a∈A

√
(λl � γl)>(t

(c)
a + ηl)

)2]

≤ max
λ∈4Π

min
γ

∑
π∈Π

λπ ·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)
+ Ec∼ν

[(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2]
+

1

4
εl

(by Theorem G.2, the saddle point argument)

≤ max
λ∈4Π

min
γ

∑
π∈Π

λπ ·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)
+ Ec∼ν

[(∑
a∈A

√
(λ� γ)>t

(c)
a

)2]
+

1

2
εl

(by Lemma H.3, controlling the bias)

= max
λ∈4Π

min
w∈Ω

min
γ∈R|Π|+

∑
π∈Π

λπ ·
(
−∆̂γl−1

l−1 (π, π̂l−1) + γπ
∥∥φπ̂l−1

− φπ
∥∥2

A(w)−1 +
log(1/δl)

γπn

)
+

1

2
εl

(by Lemma E.6, the definition of w)

= min
w∈Ω

max
π∈Π

min
γ>0
−1

8
∆̂γl−1

l−1 (π, π̂l−1) + 8γ
∥∥φπ̂l−1

− φπ
∥∥2

A(w)−1 + 8
log(1/δl)

γnl
+

1

2
εl

(by Lemma G.17, the strong duality)

≤ min
w∈Ω

max
π∈Π

min
γ

(
− 3

32
∆(π, π∗) + 8γ

∥∥φπ̂l−1
− φπ

∥∥2

A(w)−1 + 8
log(1/δl)

γnl

)
+

3

4
εl (by Lemma E.5)

≤ min
w∈Ω

max
π∈Π

− 3

32
∆(π, π∗) + 16

√∥∥φπ̂l−1
− φπ

∥∥2

A(w)−1 log(1/δl)

nl

+
3

4
εl

≤ min
w∈Ω

max
π∈Π

− 3

32
∆(π, π∗) + 16

√
‖φπ∗ − φπ‖

2
A(w)−1 log(1/δl)

nl

+16

√∥∥φπ∗ − φπ̂l−1

∥∥2

A(w)−1 log(1/δl)

nl

+
3

4
εl

≤ min
w∈Ω

max
π∈Π

− 3

32
∆(π, π∗) + 16

√
‖φπ∗ − φπ‖

2
A(w)−1 log(1/δl)

nl

+16

√
max

π′∈Sl−1

‖φπ∗ − φπ′‖
2
A(w)−1 log(1/δl)

nl

+
3

4
εl.

which is less than εl whenever

nl & min
w∈Ω

max
π∈Π

‖φπ∗ − φπ‖
2
A(w)−1 log(1/δl)

ε2l + ∆(π)2
. (15)

F Intuition for convergence of duality gap

It could seem mysterious that one could find a log(|Π|)-sparse and ε-good solution of the optimization
problem maxλ∈4Π

min
γ∈R|Π|+

hl(λ, γ). In this section, we aim to provide some intuition and a
constructive proof of an easier case.

The existence of such a solution critically relies on the fact that for any fixed γ ∈ [γmin, γmax]|Π|,
we can find a log(|Π|)-sparse solution λt such that maxλ∈4Π

g(λ, γ)− g(λt, γ) ≤ εl. Also, if we
consider min

γ∈R|Π|+
hl(λ, γ) for a fixed λ, the gradient descent algorithm allows us to find a good

solution of γ in arbitrary precision. In what follows, we provide an argument for convergence analysis
of the unregularized objective hl assuming L-Lipschitz gradient and we can solve γ exactly.

39

Suppose the primal and dual problems are defined as follows:

Pl(w, γ, n) = max
π∈Π

[
−∆(π) +

log(1/δl)

γπn
+ γπ ‖φπ∗ − φπ‖

2
A(w)−1

]

hl(λ, γ, n) =
∑
π∈Π

λπ ·
(
−∆(π) +

log(1/δl)

γπn

)
+ Ec∼ν

(∑
a∈A

√
(λ� γ)>t

(c)
a

)2
 ,

then

∇λhl(λ, γ, n) = −∆(π) +
log(1/δl)

γπn
+ γπ ‖φπ∗ − φπ‖

2
A(w(λ,γ))−1 .

Observe that
max
π∈Π

[∇λhl(λ, γ)]π = Pl(w(λ, γ), γ, n).

Therefore, the Frank-Wolfe gap

gt =
〈
∇λht

(
λt, γt, n

)
, eπt − λt

〉
= max

π∈Π

[
∇λhl

(
λt, γt, n

)]
π
− hl

(
λt, γt, n

)
= Pl(w(λt, γt), γt, n)− hl(λt, γt, n).

Note that if we assume γt = arg minγ hl(λ
t, γ, n), we have

Pl(w(λt, γt), γt, n)

= max
π∈Π

[
−∆(π) +

log(1/δl)

[γt]πn
+ [γt]π ‖φπ∗ − φπ‖

2
A(w(λt,γt))−1

]
≥ max

π∈Π
min
γ

[
−∆(π) +

log(1/δl)

γπn
+ γπ ‖φπ∗ − φπ‖

2
A(w(λt,γt))−1

]
≥ min
w∈Ω

max
π∈Π

min
γ

[
−∆(π) +

log(1/δl)

γπn
+ γπ ‖φπ∗ − φπ‖

2
A(w)−1

]
= max
λ∈4Π

min
w∈Ω

min
γ∈[γmin,γmax]Π

∑
π∈Π

λπ

(
−∆(π) +

log(1/δl)

γπn
+ γπ ‖φπ∗ − φπ‖

2
A(w)−1

)

= max
λ∈∆Π

min
γ∈[γmin,γmax]Π

∑
π

λπ ·
(
−∆(π) +

log(1/δl)

γπn

)
+ Ec

(∑
a

√
(λ� γ)>t

(c)
a

)2


= hl(λ
∗, γ∗)

≥ min
γ∈[γmin,γmax]Π

∑
π

[
λt
]
π
·
(
−∆(π) +

log(1/δl)

γπn

)
+ Ec

(∑
a

√
(λt � γ)

>
t
(c)
a

)2


= hl(λ
t, γt, n).

Therefore, to show that hl(λ∗, γ∗, n) − hl(λ
t, γt, n) is small, it is sufficient to show that

Pl(w(λt, γt), γt, n)− hl(λt, γt, n) is small, which corresponds to a small Frank-Wolfe gap. Then,
we can use similar arguments in Lemmas G.4 and G.5 to show that the Frank-Wolfe gap is small.

G Convergence analysis of FW-GD

G.1 Statement of the convergence results

In this section, we will characterize the performance of Algorithm 6, a.k.a. Algorithm 3. Our goal is
to show two results: the duality gap converges to zero, and our algorithm converges to the saddle
point. It is known that Frank-Wolfe algorithm directly deals with the duality gap [32], so we will
define our primal and dual problem in what follows. Since we are computing nl via binning, in each

40

inner loop n is fixed. Then, we define our dual objective the same as (12) with the shorthand notation
hl(λ, γ) := hl(λ, γ, n). We formulate our primal objective as

Pl(w(λ, γ), γ) := max
π∈Π

(
−∆̂γl−1

l−1 (π, π̂l−1) + γπ
∥∥φπ − φπ̂l−1

∥∥2

A(w(λ,γ))−1 +
log(1/δl)

γπn

)
, (16)

where w(λ, γ) ∈ R|A|×|C| such that

[w(λ, γ)]a,c = νc · pc,a = νc ·

√
(λ� γ)>(t

(c)
a + η)∑

a′∈A

√
(λ� γ)>(t

(c)
a′ + η)

. (17)

Then we will show those two results. First, Theorem G.1 bounds the duality gap of the primal and
dual objective. Second, Theorem G.2 shows that Algorithm 3 converges to a saddle point.

Theorem G.1. For any l ∈ N, with the number of FW-GD iterations Tl = O(L2ε−2
l) where

L = |A|2 ((1+ηl)γmax)5/2

η
3/2
l γ2

min

, we have

∣∣Pl(w(λl, γl), γl)− hl(λl, γl)
∣∣ ≤ εl.

Moreover, Tl depends at most polynomially on |A|, ε−1
l , log(1/δl).

Proof. First, Lemma H.2 shows that for any λ, γ, and n, hl(λ, γ, n) = 〈λ,∇λhl(λ, γ, n)〉. Therefore,
at some iteration t, the Frank-Wolfe gap

gt =
〈
∇λhl(λt, γt), eπt − λt

〉
= max

π∈Π
[∇λhl(λt, γt)]π − hl(λt, γt).

Lemma G.6 shows that with a small choice of the regularization parameter the primal objective is close
to the maximum component of the gradient, i.e. |Pl(w(λl, γl), γl)−maxπ∈Π[∇λhl(λl, γl)]π| ≤ εl

2 .
Also, Lemma G.5 shows that if t ≥ L2ε−2

l is large enough, the Frank-Wolfe gap is bounded by εl.
Combining these two lemmas, for t ≥ L2ε−2

l , we have

|Pl(w(λl, γl), γl)− hl(λl, γl)|
≤ |Pl(w(λl, γl), γl)−max

π∈Π
[∇λhl(λl, γl)]π|+ |hl(λl, γl)−max

π∈Π
[∇λhl(λl, γl)]π|

≤ |Pl(w(λ, γ), γ)−max
π∈Π

[∇λhl(λ, γ)]π|+ gl

≤ εl
2

+
εl
2

= εl.

Finally, we conclude that Tl = poly(|A|, ε−1
l , log(1/δl)) since γmax = O(|A|−1η

−1/2
l), γmin =

O(
√
ηl), and ηl = O(|A|−4ε2l) all depends polynomially on |A| and ε−1

l . This shows Theorem
G.1.

We now have the second main result of this section.

Theorem G.2. For any l, with Tl = poly(|A|, ε−1
l , log(1/δl)) and the size of the history D ≥

poly(|A|, ε−1, log(1/δ), log(|Π|)), Algorithm 3 converges to a saddle point, i.e.∣∣∣ max
λ∈∆Π

min
γ∈[γmin,γmax]Π

hl(λ, γ)− hl(λl, γl)
∣∣∣ ≤ εl.

41

Proof. Note that

Pl(w(λl, γl), γl)

= max
π∈Π

[
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

[γl]πn
+ [γl]π

∥∥φπ̂l−1
− φπ

∥∥2

A(w(λl,γl))−1

]
≥ max

π∈Π
min
γ

[
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn
+ γπ

∥∥φπ̂l−1
− φπ

∥∥2

A(w(λl,γl))−1

]
≥ min
w∈Ω

max
π∈Π

min
γ

[
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn
+ γπ

∥∥φπ̂l−1
− φπ

∥∥2

A(w)−1

]
= max
λ∈4Π

min
w∈Ω

min
γ∈[γmin,γmax]Π

∑
π∈Π

λπ

(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn
+ γπ

∥∥φπ̂l−1
− φπ

∥∥2

A(w)−1

)
(by Lemma G.17, strong duality)

= max
λ∈∆Π

min
γ∈[γmin,γmax]Π

∑
π

λπ ·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)

+ Ec∼ν

(∑
a

√
(λ� γ)>t

(c)
a

)2
 (by Lemma E.6)

≥ max
λ∈4Π

min
γ∈[γmin,γmax]Π

∑
π∈Π

λπ ·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)

+ Ec∼ν

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2
− 1

2
εl (by Lemma H.3)

≥ min
γ∈[γmin,γmax]Π

∑
π

[
λl
]
π
·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)

+ Ec∼ν

(∑
a∈A

√
(λl � γ)>(t

(c)
a + ηl)

)2
− 1

2
εl

≥ min
γ∈[γmin,γmax]Π

∑
π

[
λl
]
π
·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)

+ Ec∼νD

(∑
a∈A

√
(λl � γ)>(t

(c)
a + ηl)

)2
− 3

4
εl

(by Lemma D.6, controlling the history)

≥
∑
π

[
λl
]
π
·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

[γl]πn

)

+ Ec∼νD

(∑
a∈A

√
(λl � γl)>(t

(c)
a + ηl)

)2
− εl
(by Lemma G.7, the GD convergence)

= hl(λ
l, γl)− εl.

In other words,

Pl(w(λl, γl), γl) ≥ max
λ∈∆Π

min
γ∈[γmin,γmax]Π

hl(λ, γ) ≥ hl(λl, γl)− εl.

On the other hand, by Theorem G.1, we have Pl(w(λl, γl), γl) ≤ hl(λl, γl) + εl. Therefore, we have

max
λ∈∆Π

min
γ∈[γmin,γmax]Π

hl(λ, γ) ∈
[
hl(λ

l, γl)− εl, hl(λl, γl) + εl

]
and so we have our result.

42

G.2 Technical proofs

G.2.1 Guarantees on γ

We first provides some guarantees of γ and the convergence of the GD subroutine.
Lemma G.3. Consider a fixed n. Let γ∗ = arg minγ hl(λ, γ, n). Then we have for all i,

[γ∗]i ∈

[
1

3

√
ηl log(1/δl)

n
,min

{√
log(1/δl)

2nEc[1{π(c) 6= π∗(c)}]
,

√
log(1/δl)

|A|2ηln

}]
.

Proof.

[∇γhl(λ, γ)]π

= Ec

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)
·

∑
a′∈A

λπ([t
(c)
a′]π + ηl)√

(λ� γ)>(t
(c)
a′ + ηl)

− λπ log(1/δl)

γ2
πn

≥ Ec

(∑
a∈A

√
λπ([t

(c)
a]π + ηl)

)2
− λπ log(1/δl)

γ2
πn

≥ |A|2ηlλπ + 2λπEc[1{π(c) 6= π∗(c)}]− λπ log(1/δl)

γ2
πn

,

where the first to second line follows from Cauchy-Schwartz - (
∑
a xa)

∑
a

(
ya
xa

)
≥ (
∑
a

√
ya)2.

We first solve λπ log(1/δl)
γ2
πn

< |A|2ηlλπ and get γπ >
√

log(1/δl)
|A|2ηln . We also solve λπ log(1/δl)

γ2
πn

<

2λπEc[1{π(c) 6= π∗(c)}] and get γπ <
√

log(1/δl)
2nEc[1{π(c)6=π∗(c)}] . Therefore, the πth component of

the gradient is always positive whenever γπ > min
{√

log(1/δl)
2nEc[1{π(c) 6=π∗(c)}] ,

√
log(1/δl)
|A|2ηln

}
. Therefore,

the minimum γ should have γπ ≤ min
{√

log(1/δl)
2nEc[1{π(c)6=π∗(c)}] ,

√
log(1/δl)
|A|2ηln

}
. On the other hand, let

s = arg minπ γπ . Then,

ηlγs ≤ (λ� γ)>(t(c)a + ηl) =
(
λ� (t(c)a + ηl)

)>
γ ≤

∥∥∥λ� (t(c)a + ηl)
∥∥∥

1
· ‖γ‖∞.

Then ∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl) ≤

∑
a∈A

√∥∥∥λ� (t
(c)
a + ηl)

∥∥∥
1
·
√
‖γ‖∞.

Note that (∑
a∈A

√∥∥∥λ� (t
(c)
a + ηl)

∥∥∥
1

)2

=

(∑
a∈A

√
λ>(t

(c)
a + ηl)

)2

≤

(∑
a∈A

λ>(t(c)a + ηl)

)
|A|

≤ |A|(1 + ηl).

Since for any π,
∑
a′∈A[t

(c)
a′]π ≤ 2, so

[∇γhl(λ, γ)]π ≤
√
|A|(1 + ηl) ‖γ‖∞ ·

(2 + ηl)λπ√
ηlγs

− λπ log(1/δl)

γ2
πn

.

Let π = s, then by the fact that ‖γ‖∞ ≤
√

log(1/δl)
|A|2ηln , we have

[∇γhl(λ, γ)]s ≤
√
|A|(1 + ηl)

(
log(1/δl)

|A|2ηln

)1/4

· (2 + ηl)λs√
ηlγs

− λs log(1/δl)

γ2
sn

.

43

We solve
√
|A|(1 + ηl)

(
log(1/δl)
|A|2ηln

)1/4

· (2+ηl)λs√
ηlγs

− λs log(1/δl)
γ2
sn

< 0. Then we get

γs < (1 + ηl)
−1/3(2 + ηl)

−2/3

√
ηl log(1/δl)

n
.

Since (1 + ηl)
−1/3(2 + ηl)

−2/3 > 1
3 whenever ηl ≤ 1, the sth component of the gradient is negative

whenever γs < 1
3

√
ηl log(1/δl)

n . Therefore, minπ γπ ≥ 1
3

√
ηl log(1/δl)

n .

G.2.2 Convergence of Frank-Wolfe gap

Lemma G.4 and G.5 shows that the Frank-Wolfe gap is small. The proof technique follows from the
general Frank-Wolfe analysis.

Lemma G.4. For any ξ ∈ [0, 1], any t, with L = |A|2 ((1+ηl)γmax)5/2

η
3/2
l γ2

min

, we have hl(λt+1, γt+1) ≥

hl(λ
t, γt) + ξgt − 1

2ξ
2L− κt.

Proof. By L-Lipschitz gradient condition of −h` in λ given in Lemma G.12 we have

−hl(λt+1, γt+1) ≤ −hl(λt, γt+1)−
〈
∇λhl(λt, γt+1), λt+1 − λt

〉
+
L

2

∥∥λt+1 − λt
∥∥2

1
.

Therefore,

hl(λ
t+1, γt+1) ≥ hl(λt, γt+1) +

〈
∇λhl(λt, γt+1), λt+1 − λt

〉
− L

2

∥∥λt+1 − λt
∥∥2

1
.

Plugging in λt+1 = (1− βt)λt + βteπt as in line 8 of Algorithm 4, we have

hl((1− βt)λt + βteπt , γ
t+1)

≥ hl(λt, γt+1) +
〈
∇λhl(λt, γt+1), (1− βt)λt + βteπt − λt

〉
− L

2

∥∥(1 + βt)λ
t − βteπt − λt

∥∥2

1

= hl(λ
t, γt+1) + βt

〈
∇λhl(λt, γt+1), eπt − λt

〉
− Lβ2

t

2

∥∥eπt − λt∥∥2

1

= hl(λ
t, γt+1) + βtgt −

Lβ2
t

2

∥∥eπt − λt∥∥2

1
.

Choose βt := arg maxξ∈[0,1]{ξgt − ξ2L
2 ‖eπt − λ

t‖21}. Plugging in this expression gives us

hl(λ
t+1, γt+1) ≥ hl(λt, γt+1) + βt

〈
∇λhl(λt, γt+1), eπt − λt

〉
− Lβ2

t

2

∥∥eπt − λt∥∥2

1

= hl(λ
t, γt+1) + max

ξ∈[0,1]
{ξgt −

ξ2L

2

∥∥eπt − λt∥∥2

1
}

≥ hl(λt, γt+1) + ξgt −
ξ2L

2

for any ξ ∈ [0, 1] since ‖eπt − λt‖
2
1 ≤ 1. Also, by construction of γt+1 and Lemma G.7, we have

hl(λ
t, γt+1) ≥ min

γ
hl(λ

t, γ) ≥ hl(λt, γt)− κt.

Therefore, our result follows.

Lemma G.5. We have for any t, with L = |A|2 ((1+ηl)γmax)5/2

η
3/2
l γ2

min

, mini∈[1,t] gi ≤ L√
t+1

.

Proof. With Lemma G.4, we have

hl(λ
t+1, γt+1, nr) ≥ hl(λt, γt, nr) + ξgt −

1

2
ξ2L− κt.

44

Plugging in the choice ξ = min{ gtL , 1}, we have hl(λ
t+1, γt+1, nr) ≥ hl(λ

t, γt, nr) +
gt
2 min{ gtL , 1} − κt. Summing this up from 0 to t gives us

hl(λ
t+1, γt+1, nr)− hl(λ0, γ0, nr) ≥

t∑
i=0

gi
2

min{gi
L
, 1} − δi

≥ (t+ 1)g∗t min{g
∗
t

L
, 1} −

t∑
i=0

δi.

where g∗t = mini=0,··· ,t gi. Then, as long as
∑t
i=0 δi ≤ εl, by the fact that hl(λt+1, γt+1) −

hl(λ0, γ0) ≤ maxλ∈4Π
minγ hl(λ, γ)−hl(λ0, γ0) <∞. Therefore, we have mini∈[1,t] gi ≤ L√

t+1
.

G.2.3 Connect the Frank-Wolfe gap to the duality gap

Lemma G.6 shows that the primal objective is approximately the maximum component of the gradient
of the dual objective, which simplifies our Frank-Wolfe gap expression.

Lemma G.6. Consider some λ ∈ 4Π, γ ∈ R|Π|+ , and n ∈ N. For ηl < |A|−4ε2l , we have
|Pl(w(λl, γl), γl)−maxπ∈Π[∇λhl(λl, γl)]π| ≤ εl.

Proof. Observe that for any π, π′ ∈ Π and any γ,

γπ ‖φπ′ − φπ‖2A(w(λ,γ))−1

= γπ
∑
a,c

ν2
c

[w(λ, γ)]a,c

(
1{π′(c) = a, π(c) 6= a}+ 1{π′(c) 6= a, π(c) = a}

)
= γπ

∑
c

νc
∑
a

(
νc

[w(λ, γ)]a,c

(
1{π′(c) = a, π(c) 6= a}+ 1{π′(c) 6= a, π(c) = a}

))

= γπEc∼ν

∑
a

∑
a′∈A

√
(λ� γ)>(t

(c)

a′ + ηl)√
(λ� γ)>(t

(c)
a + ηl)

(
1{π′(c) = a, π(c) 6= a}+ 1{π′(c) 6= a, π(c) = a}

)
= Ec∼ν

∑
a

∑
a′∈A

√
(λ� γ)>(t

(c)

a′ + ηl)√
(λ� γ)>(t

(c)
a + ηl)

(γπ[t(c)a]π)

 .
Therefore,

Pl(w(λl, γl), γl)

= max
π∈Π

{
−∆̂γl−1

l−1 (π) + [γl]π
∥∥φπ − φπ̂l−1

∥∥2

A(w(λl,γl))−1 +
log(1/δl)

[γl]πn

}

= max
π∈Π

−∆̂γl−1

l−1 (π) + Ec∼ν

∑
a

∑
a′∈A

√
(λl � γl)>(t

(c)
a′ + ηl)√

(λl � γl)>(t
(c)
a + ηl)

([γl]π[t(c)a]π)

+
log(1/δl)

[γl]πn

 .

Lemma D.7 guarantees that we could replace the expectation over context to history of contexts νD
without incurring much error. In particular, for a sufficiently large history D, it guarantees

max
π∈Π

∣∣∣∣∣∣Ec∼νD
∑

a

∑
a′∈A

√
(λl � γl)>(t

(c)
a′ + ηl)√

(λl � γl)>(t
(c)
a + ηl)

([γl]π[t(c)a]π)


−Ec∼ν

∑
a

∑
a′∈A

√
(λl � γl)>(t

(c)
a′ + ηl)√

(λl � γl)>(t
(c)
a + ηl)

([γl]π[t(c)a]π)

∣∣∣∣∣∣ ≤ εl
2
.

45

On the other hand,

max
π∈Π

−∆̂γl−1

l−1 (π) + Ec∼νD

∑
a

∑
a′∈A

√
(λl � γl)>(t

(c)
a′ + ηl)√

(λl � γl)>(t
(c)
a + ηl)

([γl]π[t(c)a]π)

+
log(1/δl)

[γl]πn


= max

π∈Π

[∇λhl(λl, γl)]π − Ec∼νD

∑
a

∑
a′∈A

√
(λl � γl)>(t

(c)
a′ + ηl)√

(λl � γl)>(t
(c)
a + ηl)

[γl]πηl

 .

Note that when γπ ∈ [γmin, γmax],

Ec∼νD

∑
a

∑
a′∈A

√
(λ� γ)>(t

(c)
a′ + ηl)√

(λ� γ)>(t
(c)
a + ηl)

γπηl

 ∈ [0, |A|2
√
γmax(1 + ηl)

γminηl
γmaxηl

]
.

Therefore, for ηl < |A|−4ε2l ,∣∣∣∣∣∣Ec∼νD
∑

a

∑
a′∈A

√
(λl � γl)>(t

(c)
a′ + ηl)√

(λl � γl)>(t
(c)
a + ηl)

[γl]πηl

∣∣∣∣∣∣ ≤ εl
2
.

Therefore, we have our results.

G.3 Convergence of gradient descent

In this subsection we show convergence for gradient descent.

Algorithm 7 GD
Input: λt, n, κt

1: define ιt = ε3l t
−3|A|−6

2: clip λ and define λ̃ = clip(λ, ιt)

3: run gradient descent of on γ for hl(λ̃, γ, n) over supp(λ̃) and output γt
Output: γt

We will first state the main result of this section.

Lemma G.7. With the number of iterations T = O
(Lγ
ιt

+ 1
κtιt

)
with Lγ = |A|2 ((1+ηl)γmax)3/2

η
3/2
l γ2

min

+

2 log(1/δl)
nγ3

min
, we have hl(λ, γt, n)−minγ hl(λ, γ, n) ≤ κt.

Proof sketch. Lemma G.9 shows that this clipping does not affect the function value that much. Since
we do not assume our function to be convex for γ, we will show that the stationary point is unique
and the gradient is strictly positive around the stationary point. Lemma G.14 first shows that our
function is locally strongly convex around any stationary point. In particular, if we are at a point
where the L1 norm of the gradient is less than λmin, we are locally strongly convex. Lemma G.13
shows our gradient is Lipschitz with respect to the L1 norm. Then, Lemma G.8 then shows that the
gradient descent algorithm converges to a stationary point. It is the classical argument for gradient
descent algorithm on non-convex objectives [22].

Lemma G.8. For any K, with Lγ = |A|2 ((1+ηl)γmax)3/2

η
3/2
l γ2

min

+ 2 log(1/δl)
nγ3

min
,

min
k≤K
‖∇γhl(λ, γk, n)‖21 ≤ 2Lγ

hl(λ, γ0, n)−minγ hl(λ, γ, n)

K
.

With this lemma, we have for a sufficiently large K, the minimum gradient can be made arbitrarily
small. In particular, for K ≥ Lγλ

−1
min we have that the minimum gradient has L1-norm less than

46

λmin, and thus we are in a neighborhood of our stationary point by Lemma G.15. After that, it
takes O(1

κtλmin
) steps to converge to a point whose value is at most κt away from the value of the

stationary point. The results in [30] coupled with Lemma G.14 ensure that our stationary point
is unique. Intuitively, if we have two locally strongly convex stationary points, there must be
a “hill" between them, which also corresponds to a stationary point, but we have shown that all
stationary points must be “holes" due to local strong convexity, so the stationary point has to be
unique. Thanks to the clipping, we can lower bound λmin by ιt, so the total number of steps is
L

λmin
+ 1

κtλmin
= L

ιt
+ 1

κtιt
which matches the result in Lemma G.7.

Lemma G.9. For some iterate t, let ιt = ε3l t
−3|A|−6 and denote λ̃ := clip(λ, ιt) where

[clip(λ, ε)]π := λπ1{λπ ≥ ε}. Then, for any γ, we have∣∣∣hl(λ̃, γ, n)− hl(λ, γ, n)
∣∣∣ ≤ κt.

Proof. For the first term in hl, in the case where λπ ≥ ιt, hl(λ, γ, n) = hl(λ̃, γ, n). When 0 < λπ <
ιt. We see that∑

π∈Π,λπ<ιt

λπ

(
−∆̂γl−1

l−1 (π, π̂l−1) + log(1/δl)
γπn

)
< tε

(
1

γmin
+

1

γmin

)
=

2tιt
γmin

.

Then we focus on the expectation part of hl(λ, γ, n). Note that√
(λ� γ)>(t

(c)
a + ηl) =

√ ∑
π,λπ≥ιt

λπγπ[t
(c)
a + ηl]π +

∑
π,λπ<ιt

λπγπ[t
(c)
a + ηl]π

=

√
(λ̃� γ)>(t

(c)
a + ηl) +

∑
π,λπ<ιt

λπγπ[t
(c)
a + ηl]π

≤
√

(λ̃� γ)>(t
(c)
a + ηl) + tιtγmax

≤
√

(λ̃� γ)>(t
(c)
a + ηl) +

√
tιtγmax.

Therefore,

E

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2
− E

(∑
a∈A

√
(λ̃� γ)>(t

(c)
a + ηl)

)2


= E

[(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl) +

√
(λ̃� γ)>(t

(c)
a + ηl)

)
(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)−

√
(λ̃� γ)>(t

(c)
a + ηl)

)]
≤ |A|√γmax|A|

√
tιtγmax

= |A|2γmax

√
tιt.

Combining two displays above and plugging in γmin and γmax gives∣∣∣hl(λ̃, γ, n)− hl(λ, γ, n)
∣∣∣ ≤ 2tιt

γmin
+ |A|

√
tιt
ηl

=
2tιt|A|ε−1

l√
ηl

+ |A|
√
tιt
ηl
.

Let RHS be κt and solve for ιt we get ιt ≤ min{
√
ηlκtεl
2t|A| ,

ηlκt
|A|2t}. Plugging in ηl = |A|−4ε2l gives

the result.

47

Lemma G.10. Suppose γt satisfies that hl(λ̃, γt, n) − minγ hl(λ̃, γ, n) ≤ κt, then we also have
hl(λ, γ

t, n)−minγ hl(λ, γ, n) ≤ κt, i.e. γt satisfies the desired property.

Proof. Let γ̃∗ = arg minγ hl(λ̃, γ, n) and γ∗ = arg minγ hl(λ, γ, n). The result follows from
applying Lemma G.9 twice on hl(λ̃, γt, n) and hl(λ̃, γ∗, n). In particular,

hl(λ, γ
t, n) ≤ hl(λ̃, γt, n) + κt (Lemma G.9)

≤ hl(λ̃, γ̃∗, n) + 2κt (convergence of GD)

≤ hl(λ̃, γ∗, n) + 2κt (minimality of γ̃∗)
≤ hl(λ, γ∗, n) + 3κt (Lemma G.9)
= min

γ
hl(λ, γ, n) + 3κt.

G.4 Guarantees for strong concavity and local strong convexity

The following series of lemmas show that our optimization problem is strongly concave in λ and local
strongly convex around the minimum γ, as well as explicitly constructing the Lipschitz constants.
These serve as the conditions for convergence of the Frank-Wolfe and gradient descent algorithms.

Lemma G.11. hl(λ, γ, n) is a concave function of λ.

Proof. Note that

E

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2
 = E

[∑
a∈A

∑
a′∈A

√
(t

(c)
a′ + ηl)>(λ� γ)(λ� γ)>(t

(c)
a + ηl)

]
.

we know that λ 7→ (t
(c)
a′ + ηl)

>(λ � γ) and λ 7→ (λ � γ)>(t
(c)
a + ηl) are concave, the square

root function is concave and non-decreasing, and sum of concave functions is concave. Therefore,
hl(λ, γ, n) is concave in λ by property of concave functions.

Lemma G.12. Consider some λ, γ and n. For any λ1, λ2 ∈ 4Π, with L = |A|2 ((1+ηl)γmax)5/2

η
3/2
l γ2

min

,

f(λ2, γ, n) ≤ f(λ1, γ, n) +∇λf(λ1, γ, n)>(λ2 − λ1) + L‖λ2 − λ1‖21,

where f(λ, γ, n) could be either hl(λ, γ, n) or −hl(λ, γ, n).

Proof. The proof for the negative case is exactly the same as the positive case, so we focus on
f(λ, γ, n) = hl(λ, γ, n). We take the gradient of hl with respect to λ and get

[∇λhl(λ, γ, n)]π = −∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

+ Ec∼νD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)∑
a′∈A

γπ(t
(c)
a′ + ηl)π√

(λ� γ)>(t
(c)
a′ + ηl)

 .
By Lemma H.2, for any λ ∈ 4Π, we have 〈λ,∇λhl(λ, γ, n)〉 = hl(λ, γ, n). If we use the shortcut
f(λ) := hl(λ, γ, n), we have

f(λ2)− f(λ1)−∇λf(λ1)>(λ2 − λ1) = f(λ2)−∇λf(λ1)>λ2 = (∇f(λ2)−∇f(λ1))>λ2.

48

Note that

(∇λf(λ2)−∇λf(λ1))>λ2

=
∑
π∈Π

[λ2]πEc∼νD

(∑
a∈A

√
(λ2 � γ)>(t

(c)
a + ηl)

)∑
a′∈A

γπ · (t(c)a′ + ηl)π√
(λ2 � γ)>(t

(c)

a′ + ηl)


−

(∑
a∈A

√
(λ1 � γ)>(t

(c)
a + ηl)

)∑
a′∈A

γπ · (t(c)a′ + ηl)π√
(λ1 � γ)>(t

(c)

a′ + ηl)


= Ec∼νD

[∑
a′∈A

(λ2 � γ)>(t
(c)

a′ + ηl)

·
∑
a∈A

√
(λ1 � γ)>(t

(c)

a′ + ηl)

√
(λ2 � γ)>(t

(c)
a + ηl)−

√
(λ2 � γ)>(t

(c)

a′ + ηl)

√
(λ1 � γ)>(t

(c)
a + ηl)√

(λ2 � γ)>(t
(c)

a′ + ηl)
√

(λ1 � γ)>(t
(c)

a′ + ηl)


≤ Ec∼νD

[∑
a′∈A

(λ2 � γ)>(t
(c)

a′ + ηl)

·
∑
a∈A

∣∣∣∣√(λ1 � γ)>(t
(c)

a′ + ηl)

√
(λ2 � γ)>(t

(c)
a + ηl)−

√
(λ2 � γ)>(t

(c)

a′ + ηl)

√
(λ1 � γ)>(t

(c)
a + ηl)

∣∣∣∣√
(λ2 � γ)>(t

(c)

a′ + ηl)
√

(λ1 � γ)>(t
(c)

a′ + ηl)


≤
∑
a′∈A

(1 + ηl)γmax

ηlγmin
· Ec∼νD

[∑
a∈A

∣∣∣∣√(λ2 � γ)>(t
(c)
a + ηl)

√
(λ1 � γ)>(t

(c)

a′ + ηl)

−
√

(λ1 � γ)>(t
(c)
a + ηl)

√
(λ2 � γ)>(t

(c)

a′ + ηl)

∣∣∣∣] (18)

Note that by triangular inequality∣∣∣∣√(λ2 � γ)>(t
(c)
a + ηl)

√
(λ1 � γ)>(t

(c)
a′ + ηl)−

√
(λ1 � γ)>(t

(c)
a + ηl)

√
(λ2 � γ)>(t

(c)
a′ + ηl)

∣∣∣∣
≤
∣∣∣∣√(λ2 � γ)>(t

(c)
a + ηl)−

√
(λ1 � γ)>(t

(c)
a + ηl)

∣∣∣∣√(λ1 � γ)>(t
(c)
a′ + ηl)

+

√
(λ1 � γ)>(t

(c)
a + ηl)

∣∣∣∣√(λ1 � γ)>(t
(c)
a′ + ηl)−

√
(λ2 � γ)>(t

(c)
a′ + ηl)

∣∣∣∣ .
Also note that ∣∣∣∣√(λ2 � γ)>(t

(c)
a + ηl)−

√
(λ1 � γ)>(t

(c)
a + ηl)

∣∣∣∣
=

∣∣∣∑π∈Π((λ2)π − (λ1)π)γπ(t
(c)
a + ηl)π

∣∣∣√
(λ2 � γ)>(t

(c)
a + ηl) +

√
(λ1 � γ)>(t

(c)
a + ηl)

≤ (1 + ηl)γmax

2
√
ηlγmin

‖λ2 − λ1‖1 ,

so (18) is bounded by

∑
a′∈A

(1 + ηl)γmax

ηlγmin
·

(∑
a∈A

2 · (1 + ηl)γmax

2
√
ηlγmin

‖λ2 − λ1‖1
√

(1 + ηl)γmax

)

= |A|2 ((1 + ηl)γmax)5/2

η
3/2
l γ2

min

‖λ2 − λ1‖1 .

49

Lemma G.13. Consider some λ and n. For any γ1, γ2 ∈ 4Π, with Lγ = |A|2 ((1+ηl)γmax)3/2

η
3/2
l γ2

min

+

2 log(1/δl)
nγ3

min
,

hl(λ, γ2, n) ≤ hl(λ, γ1, n) +∇γhl(λ, γ1, n)>(γ2 − γ1) + Lγ‖γ2 − γ1‖21.

Proof.

[∇γhl(λ, γ)]π = Ec

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)
·

∑
a′∈A

λπ([t
(c)

a′]π + ηl)√
(λ� γ)>(t

(c)

a′ + ηl)

− λπ log(1/δl)

γ2
πn

.

Then we have similar to the proof of Lemma G.12, for any γ we have hl(λ, γ, n) −
∇γhl(λ, γ, n)>γ = 2

∑
π
λπ log(1/δl)

γ2
πn

, so

hl(λ, γ2, n)− hl(λ, γ1, n)−∇γhl(λ, γ1, n)>(γ2 − γ1)

= 2
∑
π

λπ log(1/δl)

[γ2]2πn
− 2

∑
π

λπ log(1/δl)

[γ1]2πn
+ (∇γhl(λ, γ2, n)−∇γhl(λ, γ1, n))>γ2.

First, we can follow similar techniques in the proof of Lemma G.12 to bound the second part and get
(∇γhl(λ, γ2, n)−∇γhl(λ, γ1, n))>γ2

≤
∑
a′∈A

(λ� γ2)>(t
(c)

a′ + ηl)

· Ec∼νD

∑
a∈A

 1√
(λ� γ2)>(t

(c)

a′ + ηl)
√

(λ� γ1)>(t
(c)

a′ + ηl)

·
∣∣∣∣√(λ� γ1)>(t

(c)

a′ + ηl)

√
(λ� γ2)>(t

(c)
a + ηl)−

√
(λ� γ2)>(t

(c)

a′ + ηl)

√
(λ� γ1)>(t

(c)
a + ηl)

∣∣∣∣]}
≤
∑
a′∈A

(1 + ηl)γmax

ηlγmin
· Ec∼νD

[∑
a∈A

∣∣∣∣√(λ� γ2)>(t
(c)
a + ηl)

√
(λ� γ1)>(t

(c)

a′ + ηl)

−
√

(λ� γ1)>(t
(c)
a + ηl)

√
(λ� γ2)>(t

(c)

a′ + ηl)

∣∣∣∣] .
Also, note that ∣∣∣∣√(λ� γ2)>(t

(c)
a + ηl)−

√
(λ� γ1)>(t

(c)
a + ηl)

∣∣∣∣
=

∣∣∣∑π∈Π(λπ([γ2]π − [γ1]π)(t
(c)
a)π

∣∣∣√
(λ� γ2)>(t

(c)
a + ηl) +

√
(λ� γ1)>(t

(c)
a + ηl)

≤ 1

2
√
ηlγmin

‖γ2 − γ1‖21 ,

Therefore, similarly we can bound∣∣∣∣√(λ� γ2)>(t
(c)
a + ηl)

√
(λ� γ1)>(t

(c)
a′ + ηl)−

√
(λ� γ1)>(t

(c)
a + ηl)

√
(λ� γ2)>(t

(c)
a′ + ηl)

∣∣∣∣
≤
√

(1 + ηl)γmax

2
√
ηlγmin

‖γ2 − γ1‖21.

For the second term,

2
∑
π

λπ log(1/δl)

[γ2]2πn
− 2

∑
π

λπ log(1/δl)

[γ1]2πn

=
2 log(1/δl)

n

∑
π

λπ
[γ1]2π − [γ2]2π

[γ1]2π[γ2]2π

≤ 2 log(1/δl)

nγ3
min

‖γ2 − γ1‖21.

Therefore, we have the result stated above.

50

Lemma G.14. Consider some fixed λ ∈ 4Π and n. Assume γ∗ is a stationary point of hl(λ, γ, n),
then hl(λ, γ, n) is locally strongly convex at γ∗, i.e. for Lhess = λmin log(1/δl)

γ3
maxn

, there exists ε > 0

such that for all γ ∈ Bε(γ∗), hl(λ, γ, n) ≥ hl(λ, γ∗, n) + Lhess

2 ‖γ − γ∗‖2.

Proof. Since λ and n are fixed, we use the shortcut g(γ) := hl(λ, γ, n) in the proof. Denote the
Hessian of g as M . We aim to show that the Hessian M � LhessI at γ∗. First, since γ∗ is a stationary
point,∇γg(γ∗) = 0, and so for any i,

∑
c∈D

νcD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)
·

∑
a′∈A

λi([t
(c)
a′]i + ηl)√

(λ� γ)>(t
(c)
a′ + ηl)

 =
λi log(1/δl)

γ2
i n

. (19)

Also, we have for i 6= j,

∂2g(γ)

∂γiγj
=
∑
c∈D

νcD

∑
a′∈A

1

2

λi

[
t
(c)
a + ηl

]
i√

(λ� γ)>(t
(c)
a + ηl)

 ·
∑
a∈A

λj

[
t
(c)
a + ηl

]
j√

(λ� γ)>(t
(c)
a + ηl)



+

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)
·

∑
a′∈A

−1

2
·
λiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j

)
(

(λ� γ)>(t
(c)
a′ + ηl)

)3/2

 .

And

∂2g(γ)

∂γ2
i

=
2λi log(1/δl)

γ3
i n

+
∑
c∈D

νcD
1

2

∑
a′∈A

λi

[
t
(c)
a + ηl

]
i√

(λ� γ)>(t
(c)
a + ηl)

2

− 1

2

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)
·

∑
a′∈A

λ2
i

[
t
(c)
a + ηl

]2
i(

(λ� γ)>(t
(c)
a + ηl)

)3/2

 .

Then, for any vector µ ∈ R|Π| with ‖µ‖ = 1, we have

µ>Mµ =
∑
i

∑
j

µiµjMij =
∑
i

µ2
iMii +

∑
i6=j

µiµjMij

=
∑
i

µ2
i

2λi log(1/δl)

γ3
i n

(20)

+
∑
c

νc
∑
i

∑
j

µiµj
1

2

∑
a′∈A

λi

[
t
(c)
a + ηl

]
i√

(λ� γ)>(t
(c)
a + ηl)

 ·
∑
a∈A

λj

[
t
(c)
a + ηl

]
j√

(λ� γ)>(t
(c)
a + ηl)


+ µiµj

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)
·

∑
a′∈A

−1

2
·
λiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j(

(λ� γ)>(t
(c)
a′ + ηl)

)3/2

 .

(21)

In what follows, we will first show that∑
i

µ2
i

λi log(1/δl)

γ3
i n

−
∑
c

νc
∑
i

∑
j

µiµj

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)

·

∑
a′∈A

·
λiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j(

(λ� γ)>(t
(c)
a′ + ηl)

)3/2

 ≥ 0. (22)

51

By equation 19, the LHS of (21) simplifies to

∑
c

νc
∑
i

µ2
i

1

γi

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)∑
a′∈A

λi

[
t
(c)
a′ + ηl

]
i√

(λ� γ)>(t
(c)
a′ + ηl)



−
∑
c

νc
∑
i

∑
j

µiµj

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)
·

∑
a′∈A

·
λiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j(

(λ� γ)>(t
(c)
a′ + ηl)

)3/2

 .

Therefore, it is sufficient to show that

∑
i

µ2
i

1

γi

∑
a′∈A

λi
[
t
(c)

a′ + ηl
]
i√

(λ� γ)>(t
(c)

a′ + ηl)

−∑
i

∑
j

µiµj

∑
a′∈A

λiλj
[
t
(c)

a′ + ηl
]
i

[
t
(c)

a′ + ηl
]
j(

(λ� γ)>(t
(c)

a′ + ηl)
)3/2

 ≥ 0.

Consider some a′ ∈ A. The LHS of the above simplifies to

∑
i

µ2
i

1

γi

λi

[
t
(c)
a′ + ηl

]
i√

(λ� γ)>(t
(c)
a′ + ηl)

−
∑
i

∑
j

µiµj

λiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j(

(λ� γ)>(t
(c)
a′ + ηl)

)3/2

=
1(

(λ� γ)>(t
(c)
a′ + ηl)

)3/2

∑
i

µ2
i

γi
λi

[
t
(c)
a′ + ηl

]
i

∑
j

λjγj

[
t
(c)
a′ + ηl

]
j


−
∑
i

∑
j

µiµjλiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j


=

1(
(λ� γ)>(t

(c)
a′ + ηl)

)3/2

∑
i

∑
j

γ−1
i

(
µ2
iλi

[
t
(c)
a′ + ηl

]
i
λjγj

[
t
(c)
a′ + ηl

]
j

−µiµjλiλjγi
[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j

))
.

Each summand is

γ−1
i

(
µ2
iλi

[
t
(c)
a′ + ηl

]
i
λjγj

[
t
(c)
a′ + ηl

]
j
− µiµjλiλjγi

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j

)
= γ−1

i µiλiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j

(µiγj − µjγi)

= γ−1
i γ−1

j λiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j

(µiγj) (µiγj − µjγi) .

Exchanging subscripts of i and j, we have

γ−1
j γ−1

i λjλi

[
t
(c)
a′ + ηl

]
j

[
t
(c)
a′ + ηl

]
i
(µjγi) (µjγi − µiγj) .

The sum of these two terms is

γ−1
i γ−1

j λiλj

[
t
(c)
a′ + ηl

]
i

[
t
(c)
a′ + ηl

]
j

(µiγj − µjγi)2 ≥ 0.

Therefore, we proved equation (22). We will show next that

∑
i

µ2
i

λi log(1/δl)

γ3
i n

+
∑
c

νc
∑
i

∑
j

µiµj
1

2

∑
a′∈A

λi

[
t
(c)
a + ηl

]
i√

(λ� γ)>(t
(c)
a + ηl)



·

∑
a∈A

λj

[
t
(c)
a + ηl

]
j√

(λ� γ)>(t
(c)
a + ηl)

 ≥ 0. (23)

52

By similar calculation, we can obtain that the above simplifies to

∑
c

νc
∑
i

µiγ
−1
i

∑
a′∈A

λi

[
t
(c)
a′ + ηl

]
i√

(λ� γ)>(t
(c)
a′ + ηl)


·

µi∑
a∈A

∑
j λjγj [t

(c)
a + ηl]j√

(λ� γ)>(t
(c)
a + ηl)

+ µjγi
∑
a∈A

∑
j λj [t

(c)
a + ηl]j√

(λ� γ)>(t
(c)
a + ηl)

 .

We can show that the sum of the above is positive by similar techniques for showing (22). Plugging
equation 22 and 23 in equation 21, we have that

µ>Mµ ≥
∑
i

µ2
i

λi log(1/δl)

γ3
i n

≥ λmin log(1/δl)

γ3
maxn

,

so the Hessian is positive-definite.

Note that the minimum eigenvalue of the Hessian at the stationary point is λmin log(1/δl)
γ3

maxn
> 0, we can

extend the result in Lemma G.14 to α-stationary points, where α < λmin log(1/δl)
γ3

maxn
, and still maintain

local strong convexity.

Lemma G.15. Consider some fixed λ ∈ 4Π and n. Assume γα is an α-stationary point
of hl(λ, γ, n), where α = λmin log(1/δl)

2γ3
maxn

, then hl(λ, γ, n) is locally strongly convex at γα, i.e.

for Lhess = λmin log(1/δl)
2γ3

maxn
, there exists ε > 0 such that for all γ ∈ Bε(γα), hl(λ, γ, n) ≥

hl(λ, γα, n) + Lhess

2 ‖γ − γα‖2.

Proof. The proof follows almost identically from that of Lemma G.14. Note that the α-stationary
point ensures that ‖∇γhl(λ, γ)‖1 ≤ α, so equation 19 is rewritten as

∑
i

∣∣∣∣∣∣
∑
c∈D

νcD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)
·

∑
a′∈A

λi([t
(c)
a′]i + ηl)√

(λ� γ)>(t
(c)
a′ + ηl)

− λi log(1/δl)

γ2
i n

∣∣∣∣∣∣ ≤ α.
(24)

Therefore, for any µ we can still use the same trick and get

µ>Mµ ≥
∑
i

µ2
i

λi log(1/δl)

γ3
i n

− α ≥ λmin log(1/δl)

2γ3
maxn

,

so our result follows.

G.5 Proof of strong duality

In this section, we would like to show that strong duality holds. We first show that the primal problem
is convex for w.

Lemma G.16. The primal problem (12) is convex for w.

Proof. Note that the primal problem could be written as

min
w∈Ω

c s.t. ∀π ∈ Π,−∆(π) +

√
‖φπ − φπ∗‖

2
A(w)−1

n
≤ c.

Therefore, we consider the function f(w) := −∆(π) +

√
‖φπ−φπ∗‖2A(w)−1

n for some π ∈ Π. Note

that to show that f(w) = −∆(π) +

√
‖φπ−φπ∗‖2A(w)−1

n is convex for w, it is equivalent to show that

53

g(w) :=
√
‖φπ − φπ∗‖

2
A(w)−1 is convex for w. Note that

g(w) =

√∑
a,c

ν2
cw
−1
a,c(1{π(c) = a, π∗(c) 6= a}+ 1{π(c) 6= a, π∗(c) = a})

=
√ ∑
a,c,t

(c)
a =1

ν2
cw
−1
a,c.

So restricting to a, c such that t(c)a = 1

∂g(w)

∂wa,c
=

1

2
√∑

a,c,t
(c)
a =1

ν2
cw
−1
a,c

· (−ν2
cw
−2
a,c),

and
∂2g(w)

∂w2
a,c

= − 1

4
(∑

a,c,t
(c)
a =1

ν2
cw
−1
a,c

)3/2
· (−ν2

cw
−2
a,c · −ν2

cw
−2
a,c) +

1√∑
a,c,t

(c)
a =1

ν2
cw
−1
a,c

· ν2
cw
−3
a,c

∂2g(w)

∂wa1,c1∂wa2,c2

= − 1

4
(∑

a,c,t
(c)
a =1

ν2
cw
−1
a,c

)3/2
· (−ν2

c1w
−2
a1,c1 · −ν

2
c2w
−2
a2,c2)

Denote the Hessian as M . Then, for any vector µ ∈ R|A|×|C| with ‖µ‖2 = 1, we have

µ>Mµ = −1

4

∑
a,c,t

(c)
a =1

∑
a′,c′,t

(c′)
a′ =1

µa,cµa′,c′

 ∑
a,c,t

(c)
a =1

ν2
cw
−1
a,c

−3/2

ν2
c ν

2
c′w
−2
a,cw

−2
a′,c′

+
∑

a,c,t
(c)
a =1

µ2
a,cν

2
cw
−3
a,c

 ∑
a,c,t

(c)
a =1

ν2
cw
−1
a,c

−1/2

.

To show that this is nonnegative, it is equivalent to show that

− 1

4

∑
a,c,t

(c)
a =1

∑
a′,c′,t(c

′)
a′ =1

µa,cµa′,c′ν
2
c ν

2
c′w
−2
a,cw

−2
a′,c′ +

∑
a,c,t

(c)
a =1

µ2
a,cν

2
cw
−3
a,c

 ∑
a′,c′,t(c

′)
a′ =1

ν2
c′w
−1
a′,c′

 ≥ 0,

which is equivalent to show that∑
a,c,t

(c)
a =1

∑
a′,c′,t

(c′)
a′ =1

−µa,cµa′,c′ν2
c ν

2
c′w
−2
a,cw

−2
a′,c′ + µ2

a,cν
2
cw
−3
a,cν

2
c′w
−1
a′,c′ ≥ 0. (25)

Note that

− µa,cµa′,c′ν2
c ν

2
c′w
−2
a,cw

−2
a′,c′ + µ2

a,cν
2
cw
−3
a,cν

2
c′w
−1
a′,c′

= µa,cw
−3
a,cw

−2
a′,c′ν

2
c ν

2
c′(µa,cwa′,c′ − µa′,c′wa,c)

= w−3
a,cw

−3
a′,c′ν

2
c ν

2
c′(µa,cwa′,c′)(µa,cwa′,c′ − µa′,c′wa,c).

Then, exchanging the label of a and a′, we also get a term like

w−3
a′,c′w

−3
a,cν

2
c′ν

2
c (µa′,c′wa,c)(µa′,c′wa,c − µa,cwa′,c′).

The sum of these two terms is

w−3
a′,c′w

−3
a,cν

2
c′ν

2
c (µa′,c′wa,c)(µa′,c′wa,c − µa,cwa′,c′)

+ w−3
a,cw

−3
a′,c′ν

2
c ν

2
c′(µa,cwa′,c′)(µa,cwa′,c′ − µa′,c′wa,c)

= w−3
a′,c′w

−3
a,cν

2
c′ν

2
c (µa′,c′wa,c − µa,cwa′,c′)(µa′,c′wa,c − µa,cwa′,c′)

= w−3
a′,c′w

−3
a,cν

2
c′ν

2
c (µa′,c′wa,c − µa,cwa′,c′)2 ≥ 0.

54

Therefore, equation 25 becomes

∑
a,c,t

(c)
a =1

∑
a′,c′

t
(c′)
a′ =1

(a′,c′)>(a,c)

(w−3
a′,c′w

−3
a,cν

2
c′ν

2
c (µa′,c′wa,c)(µa′,c′wa,c − µa,cwa′,c′)

+ w−3
a,cw

−3
a′,c′ν

2
c ν

2
c′(µa,cwa′,c′)(µa,cwa′,c′ − µa′,c′wa,c))

=
∑

a,c,t
(c)
a =1

∑
a′,c′

t
(c′)
a′ =1

(a′,c′)>(a,c)

w−3
a′,c′w

−3
a,cν

2
c′ν

2
c (µa′,c′wa,c − µa,cwa′,c′)2 ≥ 0.

Since the above holds for any vector µ, the Hessian is positive-semidefinite, and so the function g(w)
is convex for w.

Lemma G.17. In the optimization problem 12, the strong duality holds, i.e.

min
w∈Ω

max
π∈Π

−∆(π) +

√
‖φπ − φπ∗‖

2
A(w)−1

n

 = max
λ∈4Π

min
w∈Ω

∑
π∈Π

λπ

−∆(π) +

√
‖φπ − φπ∗‖

2
A(w)−1

n

 .

Proof. By Lemma G.16, the primal problem is convex for w, so it is left to check the KKT conditions.
Note that the lagrangian is

L(w, λ, c) = c+
∑
π∈Π

λπ ·

−∆(π) +

√
‖φπ − φπ∗‖

2
A(w)−1

n
− c

 .

Let hπ(w) = −∆(π) +

√
‖φπ−φπ∗‖2A(w)−1

n − c. At an optimal solution w∗ and λ∗, we would like to
show that ∑

π∈Π

λ∗πhπ(w∗) = 0.

We prove this by contradiction. If there is some π such that λπ > 0 and hπ(w∗) < 0. Then we could
find another λ′ ∈ 4Π that places zero mass on this π and thus get a larger objective, so we get a
contradiction. The other conditions follow from the optimality of w∗ and λ∗.

H Useful lemmas

In this section, we state several algebraic facts of our function, which serves as the key to derive
convergence as well as complexity.

Lemma H.1. For any l,

min
w∈Ω

max
π∈Π

∥∥φπ̂l−1
− φπ

∥∥2

A(w)−1

∆(π)2
= min
pc∈4A,∀c∈C

Ec∼ν
[(

1
pc,π̂l−1(c)

+ 1
pc,π(c)

)
1{π̂l−1(c) 6= π(c)}

]
∆(π)2

.

55

Proof. Let wa,c = νcpc,a for some pc ∈ 4A. Then, for any π ∈ Π,

1

∆(π)2

∥∥φπ̂l−1
− φπ

∥∥2

A(w)−1

=
1

∆(π)2

∑
a,c

ν2
c

wa,c
(1{π̂l−1(c) = a, π(c) 6= a}+ 1{π̂l−1(c) 6= a, π(c) = a})

=
1

∆(π)2

∑
a,c

νc
pc,a

(1{π̂l−1(c) = a, π(c) 6= a}+ 1{π̂l−1(c) 6= a, π(c) = a})

=
1

∆(π)2

∑
c

νc

(
1

pc,π̂l−1(c)
+

1

pc,π(c)

)
1{π̂l−1(c) 6= π(c)}

=
1

∆(π)2
Ec∼ν

[(
1

pc,π̂l−1(c)
+

1

pc,π(c)

)
1{π̂l−1(c) 6= π(c)}

]
.

Therefore,

min
w∈Ω

max
π∈Π

∥∥φπ̂l−1
− φπ

∥∥2

A(w)−1

∆(π)2
= min
pc∈4A,∀c∈C

Ec∼ν
[(

1
pc,π̂l−1(c)

+ 1
pc,π(c)

)
1{π̂l−1(c) 6= π(c)}

]
∆(π)2

.

Lemma H.2. For any l, any λ ∈ 4Π, γ > 0, and any n, we have hl(λ, γ, n) = 〈λ,∇λhl(λ, γ, n)〉.

Proof. We first compute

[∇λhl(λ, γ, n)]π = −∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

+ Ec∼νD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)∑
a′∈A

γπ(t
(c)
a′ + ηl)π√

(λ� γ)>(t
(c)
a′ + ηl)

 .
Then, by the fact that

∑
π∈Π

λπ · Ec∼νD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)∑
a′∈A

γπ(t
(c)
a′ + ηl)π√

(λ� γ)>(t
(c)
a′ + ηl)


= Ec∼νD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)∑
a′∈A

(λ� γ)>(t
(c)
a′ + ηl)√

(λ� γ)>(t
(c)
a′ + ηl)


= Ec∼νD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2
 ,

56

we have

〈λ,∇λhl(λ, γ, n)〉

=
∑
π∈Π

λπ [∇λhl(λ, γ, n)]π

=
∑
π∈Π

λπ ·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)

+
∑
π∈Π

λπEc∼νD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)∑
a′∈A

γπ(t
(c)
a′ + ηl)π√

(λ� γ)>(t
(c)
a′ + ηl)


=
∑
π∈Π

λπ ·
(
−∆̂γl−1

l−1 (π, π̂l−1) +
log(1/δl)

γπn

)
+ Ec∼νD

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2


= hl(λ, γ, n).

Lemma H.3. For any λ ∈ 4Π and γ ∈
[
0,min

{√
log(1/δl)

2nlEc[1{π(c)6=π∗(c)}] ,
√

log(1/δl)
|A|2ηlnl

}]Π
, with

ηl = |A|−4ε2l , we have

0 ≤ Ec∼ν

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2
− Ec∼ν

(∑
a

√
(λ� γ)

>
t
(c)
a

)2
 ≤ εl.

Proof. The first inequality is clear since ηl > 0 and λπ, γπ ≥ 0 for all π ∈ Π, so we focus on the
upper bound. Note that

Ec∼ν

(∑
a∈A

√
(λ� γ)>(t

(c)
a + ηl)

)2
− Ec

(∑
a

√
(λ� γ)

>
t
(c)
a

)2


= Ec∼ν

[∑
a∈A

(λ� γ)>(t(c)a + ηl) +
∑
a1∈A

∑
a2∈A

√
(λ� γ)>(t

(c)
a1 + ηl)(t

(c)
a2 + ηl)>(λ� γ)

]

− Ec∼ν

[∑
a∈A

(λ� γ)>t(c)a +
∑
a1∈A

∑
a2∈A

√
(λ� γ)>t

(c)
a1 t

(c)
a2

>
(λ� γ)

]
. (26)

Note that

Ec∼ν

[∑
a1∈A

∑
a2∈A

√
(λ� γ)>(t

(c)
a1 + ηl)(t

(c)
a2 + ηl)>(λ� γ)

]

= Ec∼ν

[∑
a1∈A

∑
a2∈A

√
(λ� γ)>t

(c)
a1 (t

(c)
a2)>(λ� γ) + ηlλ>γ(λ� γ)>(t

(c)
a1 + t

(c)
a2) + η2

l (λ>γ)2

]

≤ Ec∼ν

[∑
a1∈A

∑
a2∈A

√
(λ� γ)>t

(c)
a1 (t

(c)
a2)>(λ� γ)

]

+ 2|A|Ec∼ν

[∑
a∈A

√
ηlλ>γ(λ� γ)>t

(c)
a

]
+ |A|2ηlλ>γ.

57

Then (26) is upper bounded by

Ec∼ν

[∑
a∈A

ηlλ
>γ

]
+ 2|A|Ec∼ν

[∑
a∈A

√
ηlλ>γ(λ� γ)>t

(c)
a

]
+ |A|2ηlλ>γ

= |A|ηlλ>γ + |A|2ηlλ>γ + 2|A|
√
ηlλ>γEc∼ν

∑
a∈A

√∑
π∈Π

λπγπ[t
(c)
a]π


= |A|ηlλ>γ + |A|2ηlλ>γ + 2|A|2

√
ηlλ>γEc∼ν

∑
a∈A

1

|A|

√∑
π∈Π

λπγπ[t
(c)
a]π


= |A|ηlλ>γ + |A|2ηlλ>γ + 2|A|2

√
ηlλ>γEc∼ν

Ea∼µ
√∑

π∈Π

λπγπ[t
(c)
a]π


≤ |A|ηlλ>γ + |A|2ηlλ>γ + 2|A|2

√
ηlλ>γ

√√√√∑
π∈Π

λπγπ
1

|A|
Ec∼ν

[∑
a∈A

[t
(c)
a]π

]

= |A|ηlλ>γ + |A|2ηlλ>γ + 2|A|2
√
ηlλ>γ

√∑
π∈Π

λπγπ
1

|A|
2 · Ec∼ν [1{π(c) 6= π∗(c)}]. (27)

Since γπ ≤
√

log(1/δl)
2nlEc[1{π(c)6=π∗(c)}] , γπEc∼ν [1{π(c) 6= π∗(c)}] ≤

√
Ec[1{π(c)6=π∗(c)}] log(1/δl)

2nl
≤√

log(1/δl)
2nl

. We know from the lower bound argument that

nl & min
w∈Ω

max
π∈Π

‖φπ − φπ∗‖
2
A(w)−1

∆(π)2 + ε2l
log(1/δl) ≥ ε−1

l log(1/δl),

so
√

log(1/δl)
2n .

√
εl. Therefore, (27) is upper bounded by

(|A|+ |A|2)ηlλ
>γ + 2|A|3/2

√
εlηlλ>γ. (28)

Since ηlλ>γ ≤ ηlγmax =
√

ηl log(1/δl)
|A|2nl ≤ √ηl 1

|A| . Plugging this as well as ηl ≤ |A|−4ε2l in
equation 28 gives that the bias is upper bounded by εl.

58

	Introduction
	Related work

	Problem statement and main results
	Inefficiency of low-regret algorithms
	Trivial policy class
	Linear policy class
	Comparison to the Disagreement Coefficient

	Optimal Algorithms for Contextual Bandits
	Reduction to linear realizability and a simple elimination scheme
	A simple, impractical, elimination-style algorithm
	Towards a more efficient algorithm
	An instance-optimal and computationally efficient algorithm.

	Lower Bound Results
	Proof of Theorem 2.2
	Proof of Theorem 2.6
	Trivial Class: Proof of Theorem 2.9
	Proofs of Linear Policy Class
	Proof for Corollary 2.16

	Contextual Rage Proofs Section 3.2
	Proof for sample complexity of Algorithm 2
	The FW-GD subroutine
	Proof of computational efficiency
	Quantify the offline data

	Proof of Theorem 3.3
	Intuition for convergence of duality gap
	Convergence analysis of FW-GD
	Statement of the convergence results
	Technical proofs
	Guarantees on gamma
	Convergence of Frank-Wolfe gap
	Connect the Frank-Wolfe gap to the duality gap

	Convergence of gradient descent
	Guarantees for strong concavity and local strong convexity
	Proof of strong duality

	Useful lemmas

