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Abstract

Deep Equilibrium Models (DEQs) and Neural Ordinary Differential Equations1

(Neural ODEs) are two branches of implicit models that have achieved remarkable2

success owing to their superior performance and low memory consumption. While3

both are implicit models, DEQs and Neural ODEs are derived from different4

mathematical formulations. Inspired by homotopy continuation, we establish a5

connection between these two models and illustrate that they are actually two sides6

of the same coin. Homotopy continuation is a classical method of solving nonlinear7

equations based on a corresponding ODE. Given this connection, we proposed a8

new implicit model called HomoODE that inherits the property of high accuracy9

from DEQs and the property of stability from Neural ODEs. Unlike DEQs, which10

explicitly solve an equilibrium-point-finding problem via Newton’s methods in the11

forward pass, HomoODE solves the equilibrium-point-finding problem implicitly12

using a modified Neural ODE via homotopy continuation. Further, we developed an13

acceleration method for HomoODE with a shared learnable initial point. It is worth14

noting that our model also provides a better understanding of why Augmented15

Neural ODEs work as long as the augmented part is regarded as the equilibrium16

point to find. Comprehensive experiments with several image classification tasks17

demonstrate that HomoODE surpasses existing implicit models in terms of both18

accuracy and memory consumption.19

1 Introduction20

Recent studies of implicit models have certified that such models can meet or even surpass the perfor-21

mance of traditional deep neural networks. Instead of specifying the explicit computation process22

of the output, implicit models define the joint conditions that the layer’s input and output satisfy.23

Instances of such models include the Neural Ordinary Differential Equations (Neural ODEs) [10],24

which treat ODEs as a learnable component and can be viewed as continuous Residual Networks [25]25

(ResNets), the Deep Equilibrium Models (DEQs) [6], which compute the equilibrium point of a26

nonlinear transformation corresponding to an infinite-depth weight-tied network; and optimization27

layers [4], which leverage the optimization techniques as layers of neural networks.28

Although DEQs and Neural ODEs, as popular implicit models in recent years, have garnered much29

attention in terms of theoretical analysis and application, an insightful connection between these two30

branches of the implicit model has not been established. DEQs involve an equilibrium-point-finding31

problem, which is a nonlinear equation system. Generally, this can be solved via the homotopy32

continuation method [38], a classical method that solves nonlinear equations along the zero path33

of the homotopy mapping and can be further formulated as an ODE. This motivated us to consider34

whether we could bridge DEQs and Neural ODEs via the theory of homotopy continuation.35
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In this paper, we show that Neural ODEs can also be viewed as a procedure for solving an equilibrium-36

point-finding problem. However, while both of the two models can be considered as solving37

equilibrium-point-finding problems, they differ in how the input information is used. On the one hand,38

DEQs regard the input information as the condition that determines the equilibrium-point-finding39

problem to solve via injecting it into the equilibrium function in the forward pass. On the other hand,40

Neural ODEs generate the initial points with different input information and expect them to converge41

to different equilibrium points. Therefore, we claim that DEQs and Neural ODEs are actually two42

sides of the same coin.43

Inspired by the theoretical connection between the two models, we developed a new implicit model44

called HomoODE, which inherits the advantages of both. Specifically, HomoODE injects the input45

information into the underlying dynamic of an equilibrium-point-finding problem in the same way46

as a DEQ does, but then obtains the output from an ODE solver just as a Neural ODE does. The47

connection between DEQ and Neural ODE means that HomoODE avoids DEQ’s problem of unstable48

convergence in DEQs and the weak representation capability of Neural ODEs. Further, a common49

issue for implicit models is the trade-off between computational speed and precision. Therefore, a50

natural intuition to accelerate such models is to find a good initial point that is close to the solution.51

We observed that, as the distance between the initial point and the solution drops to some range, the52

numbers of function evaluations (NFE) almost stop decreasing when applying homotopy continuation.53

Hence, we introduced an extra loss instead of zero vector initialization in DEQ to train a shared54

initial point. In this way, the distance from the initial point to each solution is within appropriate55

ranges. A series of experiments with several image classification tasks verify that HomoODE is able56

to converge stably and that it outperforms existing implicit models with better memory efficiency57

on several image classification tasks, and our acceleration method significantly reduces the NFE of58

HomoODE. In summary, our contributions are as follows:59

(1) A connection between DEQs and Neural ODEs. We establish a connection between DEQs60

and Neural ODEs via homotopy continuation, which illustrates that DEQs and Neural ODEs are61

actually the two sides of the same coin. We believe this new perspective provides novel insights into62

the mechanisms behind implicit models.63

(2) A New Implicit Model: HomoODE We propose a new implicit model called HomoODE, that64

inherits the advantages of both DEQs and Neural ODEs. HomoODE implicitly solves equilibrium-65

point-finding problems using homotopy continuation, unlike DEQs which explicitly solve these66

problems via Newton’s methods. Additionally, we have accelerated HomoODE with a learnable67

initial point that is shared among all samples.68

(3) Understanding Augmented Neural ODE. We demonstrate that Augmented Neural ODE can be69

treated as a special case of HomoODE based on homotopy continuation. Hence Augmented Neural70

ODE enjoys better representation ability and outperforms Neural ODE.71

(4) Better Performance. We conduct experiments on image classification datasets and confirm our72

HomoODE outperforms DEQ, Neural ODE, and variants of them both in accuracy and memory73

usage. Furthermore, we also perform the sensitivity analysis on the hyper-parameters to research the74

characters of our model.75

2 Related Works76

Deep Equilibrium Models. DEQs [6] have shown competitive performance on a range of tasks, such77

as language modeling[6], graph-related tasks [20], image classification or segmentation [7], image78

generation [39], inverse problems in imaging[16], image denoising [17] and optical flow estimation79

[5]. DEQs find an equilibrium point of a nonlinear dynamical system corresponding to an effectively80

infinite-depth weight-tied network. However, training such models requires careful consideration81

of both initializations and the model structure [6, 9, 3], and often consumes long training times.82

Many studies have been devoted to solving these problems. For example, the Monotone Operator83

Equilibrium Network (monDEQ) [43] ensures stable convergence to a unique equilibrium point by84

involving monotone operator theory. Bai et al. [9] propose an explicit regularization scheme for DEQs85

that stabilizes the learning of DEQs by regularizing the Jacobian matrix of the fixed-point update86

equations. Kawaguchi et al.[30] prove that DEQs converge to global optimum at a linear rate for a87

general class of loss functions by analyzing its gradient dynamics. Agarwala et al.[3] show that DEQs88

are sensitive to the higher-order statistics of their initial matrix family and consequently propose a89
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practical prescription for initialization. From the perspective of optimization, Optimization Induced90

Equilibrium Networks (OptEq)[44] theoretically connect their equilibrium point to the solution of91

a convex optimization problem with explicit objectives. Instead of regularizing the structures or92

involving parameterizations of the implicit layer design, Bai et al. [8] propose a model-specific93

equilibrium solver, which both guesses an initial value of the optimization and performs iterative94

updates. However, unlike DEQs, which explicitly solve equilibrium-point-finding problems via95

Newton’s methods, our HomoODE solves these problems based on homotopy continuation implicitly.96

Accordingly, HomoODE does not suffer from the issue of unique equilibrium like DEQ and thus can97

avoid the stability issue. Moreover, we accelerate HomoODE using a good initial point learned with98

a corresponding loss function. Unlike Bai et al.’s approach [8], HomoODE learns an initial point99

shared among all samples without involving a network-based initializer.100

Neural Ordinary Differential Equations. Neural ODEs have been applied to time series modeling101

[42, 32], continuous normalizing flows [10, 18], and modeling or controlling physical environments102

[47, 41, 45, 19, 14]. Neural ODEs treat ODEs as a learnable component and produce their outputs by103

solving the Initial Value Problem [10, 12, 29]. However, Neural ODEs are often characterized by104

long training times and sub-optimal results when the length of the training data increases [13, 15].105

Prior works have tried to tackle these problems by placing constraints on the Jacobian[13] or high106

derivatives of the differential equation [31]. Conversely, Augmented Neural ODEs [12] learn the flow107

from the input to the features in an augmented space with better stability and generalization. Ghosh et108

al. [15] treat the integration time points as stochastic variables without placing any constraints. With109

diffeomorphism, the complexity of modeling the Neural ODEs can be offloaded onto the invertible110

neural networks [46], and training Neural ODEs with the adaptive checkpoint adjoint method [48]111

can be accurate, fast, and robust to initialization. The symplectic adjoint method [36] finds the exact112

gradient via a symplectic integrator with appropriate checkpoints and memory consumption that is113

competitive to the adjoint method. The advantage of HomoODE is that it inherits the property of114

high accuracy from DEQs and the property of stability from Neural ODEs. In addition, HomoODE115

provides an explanation of why Augmented Neural ODEs achieve better performance than Neural116

ODEs. Notably, Augmented Neural ODEs can be viewed as a special case of HomoODE.117

Homotopy Continuation. Homotopy continuation [38] is a numerical technique that traces the118

solution path of a given problem as the parameter changes from an initial value to a final value.119

Homotopy methods have been successfully applied to solving pattern formation problems arising120

from computational mathematics and biology including computing multiple solutions of differential121

equations [21, 22], state problems of hyperbolic conservation laws [21], computing bifurcation points122

of nonlinear systems [24] and solving reaction–diffusion equations [23]. Recent advances in deep123

learning have also seen the homotopy continuation method fused into learning processes. For instance,124

Ko et al.[33] adapt homotopy optimization in Neural ODEs to gain better performance with less125

more training epochs. HomPINNs [27] traces observations in an approximate manner to identify126

multiple solutions, then solves the inverse problem via the homotopy continuation method. To reach127

a good solution to the original geometrical problem, Hruby et al. [26] learn a single starting point128

for a real homotopy continuation path. In this work, we establish a connection between DEQs and129

Neural ODEs from the perspective of homotopy continuation and develop a new implicit model130

called HomoODE based on this theoretical relationship.131

3 Background on Homotopy Continuation132

Homotopy continuation has been broadly applied to solve nonlinear equations. The first step to133

solving a specific problem r(z) = 0 is to construct a homotopy mapping.134

Definition 1 (Homotopy mapping [38]) The function H(z, λ) = λr(z) + (1− λ)g(z) is said to be a135

homotopy mapping from g(z) to r(z), if λ is a scalar parameter from 0 to 1, and g(z) is a smooth136

function. The equation H(z, λ) = 0 is the zero path of this homotopy mapping.137

Homotopy mapping provides a continuous transformation by gradually deforming g(z) into r(z)138

while λ increases from 0 to 1 in small increments. Hence, the solution to r(z) can be found by139

following the zero path of the homotopy mapping H(z, λ) = 0. Usually, one can choose g(z) as an140

artificial function with an easy solution. Here, we specifically consider Fixed Point Homotopy which141

chooses g(z) = z − z0:142

H(z, λ) = λr(z) + (1− λ)(z − z0), (1)
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where z0 ∈ Rn is a fixed vector, and is the initial point of the homotopy continuation method. In one143

practical trick, we can follow the zero path by allowing both z and λ to be functions of an independent144

variable s, which represents arc length along the path. In other words, (z(s), λ(s)) is the point arrived145

at by traveling a distance s along the zero path from the initial point (z(0), λ(0)) = (z0, 0). In the146

zero path, we have H(z(s), λ(s)) = 0, for all s ≥ 0. Take the derivative for this equation with147

respect to s lead to:148

∂H(z, λ)

∂z

dz

ds
+

∂H(z, λ)

∂λ

dλ

ds
= 0. (2)

The vector (dzds ,
dλ
ds ) ∈ Rn+1 is the tangent vector to the zero path, and it lies in the null space of149

matrix
[
∂H(z,λ)

∂z , ∂H(z,λ)
∂λ

]
∈ Rn×(n+1). To complete the definition of (dzds ,

dλ
ds ), a normalization150

condition is imposed to fix the length of the tangent vector, i.e.151 ∥∥∥∥dzds
∥∥∥∥2 + ∣∣∣∣dλds

∣∣∣∣2 = 1. (3)

Given the tangent vector and the initial point, we can trace the zero path and obtain the solution of152

F (z) = 0 by solving the ODE (2).153

4 Bridging DEQs & Neural ODEs via Homotopy Continuation154

Here we briefly review DEQs and Neural ODEs, then bridge these two models via homotopy continu-155

ation. DEQs aim to solve the equilibrium point of the function f(z;x, θ), which is parameterized by156

θ and the input injection x. The underlying equilibrium-point-finding problem of DEQs is defined as157

follows:158

z⋆ = f(z⋆;x, θ). (4)
Usually, we choose f(z;x, θ) as a shallow stacked neural layer or block. Hence, the process of159

solving the equilibrium point can be viewed as modeling the “infinite-depth” representation of a160

shallow stacked block. One can use any black-box root-finding solver or fixed point iteration to161

obtain the equilibrium point z⋆.162

Unlike the underlying equilibrium-point-finding problem of DEQs, Neural ODEs view its underlying163

problem as an ODE, whose derivative is parameterized by the network. Specifically, Neural ODEs164

map a data point x into a set of features by solving the Initial Value Problem [29] to some time T .165

The underlying ODE of Neural ODEs is defined as follows:166

dz(t)

dt
= F (z(t), t; θ), z(t0) = x, (5)

where z(t) represents the hidden state at time t, F (z(t), t; θ) is neural networks parameterized by θ.167

The same coin. DEQs apply Newton’s methods to solve the underlying equilibrium-point-finding168

problem z = f(z;x, θ). By defining r(z) = z − f(z;x, θ), one can alternatively solve this169

equilibrium-point-finding problem based on homotopy continuation. Now we will show that the170

underlying dynamics in Neural ODEs can also be treated as an equilibrium-point-finding problem.171

Firstly, we apply the Fixed Point Homotopy to solve the equilibrium-point-finding problem z =172

f(z; θ) and obtain the homotopy mapping H(z, λ) = λ(z − f(z; θ)) + (1− λ)z. Taking the partial173

derivative of H(z, λ) with respect to z and λ, respectively, we obtain174

∂H(z, λ)

∂z
= I − λ∇zf(z; θ),

∂H(z, λ)

∂λ
= −f(z; θ). (6)

By substituting the partial derivative in (6) into (2), we can obtain:175

dz

ds
= (I − λ∇zf(z; θ))

−1f(z; θ)
dλ

ds
. (7)

Based on the normalization condition (3), we can reformulate (7) as the following differential176

equation:177

dz

ds
= (I − λ(z)∇zf(z; θ))

−1f(z; θ)

√
1−

∥∥∥∥dzds
∥∥∥∥2. (8)
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As Neural ODEs do, we can use neural networks to approximate the underlying dynamics of such an178

ODE (8). However, the norm of neural network output is likely to exceed the unit length, i.e. violating179

the normalization condition (3). To address this issue, we introduce v := ds
dt as the velocity of the180

point (z, λ) traveling along the zero path, and modify the normalization condition by introducing v181

into (3):182 ∥∥∥∥dzdt
∥∥∥∥2 + ∣∣∣∣dλdt

∣∣∣∣2 = v2. (9)

Note that the convergence of the homotopy continuation is not affected by the value of v. The183

underlying dynamics of (7) becomes184

dz

dt
= (I − λ(z)∇zf(z; θ))

−1f(z; θ)

√
v2 −

∥∥∥∥dzdt
∥∥∥∥2. (10)

Following Neural ODEs, the differential equation (10) can be approximated by neural networks, i.e.185
dz
dt = F (z(t), t; θ). However, we still need to ensure the existence of a corresponding equilibrium-186

point-finding problem for Neural ODE. Ingeniously, the modified normalization can also ensure the187

existence of the equilibrium-point-finding problem. When we obtain the Neural ODEs (5) by training188

the neural networks F (z(t), t; θ), we can compute the changing process of λ(t) and the velocity v by189

solving the following equations:190

dλ

dt
=

√
v2 − ∥F (z(t), t; θ)∥2, λ(0) = 0, λ(1) = 1. (11)

Note that the modified normalization condition (9) provides the dynamic with another degree of191

freedom, which guarantees the existence of λ(t). Otherwise, there might be no solution for λ(t)192

as there are two initial conditions for the system. Hence, the equilibrium-point-finding problem193

z = f(z; θ) is implicitly determined by the following partial differential equation:194

F (z(t), t; θ) = (I − λ(t)∇zf(z; θ))
−1f(z; θ)

√
v2 − ∥F (z(t), t;x; θ)∥2. (12)

Therefore, Neural ODEs can be regarded as the procedure of solving an equilibrium-point-finding195

problem with homotopy continuation, and the hidden state at t = 0, z(t0) is the initial point of196

homotopy continuation.197

Two sides. We have shown that both DEQs and Neural ODEs can be considered as solving198

equilibrium-point-finding problems through homotopy continuation. Now we discuss the difference199

in underlying equilibrium-point-finding problem between DEQs and Neural ODEs. On the one hand,200

the equilibrium-point-finding problem of DEQs is parameterized by the input injection x from the201

same initial point. The input injection x can be viewed as the condition to fuse the information202

of input to the underlying equilibrium-point-finding problem. The underlying problem of DEQs203

varies depending on different conditions x. Therefore, DEQs are able to map inputs to diverse204

representations, which is crucial for achieving superior performance. On the other hand, unlike DEQs,205

Neural ODEs solve an equilibrium-point-finding problem with fixed condition x and different initial206

points z(t0). Neural ODEs map the data into a set of features z(t0) and inject them as the initial207

points of the ODE. The fixed underlying problem ensures the stability of Neural ODEs but loses208

diversified representation capabilities. Therefore, we claim that DEQs and Neural ODEs are actually209

two sides of the same coin from the perspective of homotopy continuation.210

5 HomoODE: an efficient and effective implicit model211

As we show above, both DEQs and Neural ODEs can be considered as solving equilibrium-point-212

finding problems through homotopy continuation. Two well-known approaches for solving nonlinear213

equations are Newton’s Method [2] and homotopy continuation [38]. DEQs solve an equilibrium-214

point-finding problem r(z) = 0 via Newton’s Methods which are local in the sense that a good215

estimate of the solution is required for the convergence. Unlike Newton’s Method, homotopy216

continuation is global in the sense that solutions of g(z) = 0 may not need to be anywhere close217

to the solution of r(z) = 0 [11]. Inspired by the connection between DEQs and Neural ODEs, a218

very natural thought is that we can apply homotopy continuation to solve the underlying nonlinear219
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Figure 1: Comparison between different running mechanisms of implicit models.

equation of DEQs. By replacing the equilibrium-point-finding problem z = f(z; θ) to z = f(z;x, θ),220

we can obtain the following differential equation:221

dz

dt
= (I − λ(z)∇zf(z;x, θ))

−1f(z;x, θ)

√
v2 −

∥∥∥∥dzdt
∥∥∥∥2 (13)

Hence, we proposed a new implicit model called HomoODE, which models an equilibrium problem222

z = f(z;x, θ) implicitly. Specifically, we employ neural networks to approximate the differential223

equation (13). In the design of the network structure, we introduce the condition x into the underlying224

dynamic of HomoODE as DEQ does and obtain the output from the same initial point through the225

ODE solver as Neural ODE does. In this way, HomoODE not only has the ability of diversified226

representation of DEQs but also has the property of stable convergence of Neural ODEs. In addition,227

the time information t is not explicitly formulated by the dynamic of HomoODE (13). So unlike228

Neural ODEs, HomoODE does not require the input of time information t. Figure 1 illustrates the229

structure of HomoODE as well as Neural ODE and DEQ.230

Forward Pass. In HomoODE, raw data x is first input to a feature extractor g(x;ω) and then injected231

into an ODE solver. Suppose z(t) represents the intermediate state of HomoODE, calculating z(t)232

involves an integration starting from the initial point z(t0) = 0 to the solution z(t1). Notably,233

the output z(t1) is equivalent to the solution z⋆ of the implicit equilibrium-point-finding problem234

z = f(z;x, θ). Then we can use the ODE solvers to obtain the solution z⋆ of the origin equilibrium235

problem and this representation can be used for downstream tasks, such as classification, regression,236

etc.237

z(t1) = ODESolve(z(t0), F (z(t), t;x, θ), t0, t1) (14)

Backward Pass. In the backward pass of HomoODE, we can apply the adjoint sensitivity method,238

or straightly differentiate through the operations of the forward pass. The condition traces back239

to another gradient flow. More details related to the construction of HomoODE dynamics and the240

computation of the gradients based on the adjoint method can be referred to in the supplementary241

materials.242
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6 Acceleration for HomoODE243

0 2 4 6 8 10 12
1=d

100

250

400

550

700

850

1000

N

relation
limit

Figure 2: Relationship between the dis-
tance from z0 to z⋆ and the iteration
number of ODE solver. The x-axis is
the inversion of the distance 1/d, and
the y-axis is the iteration number N .

In practice, it was found that HomoODE needs more func-244

tion evaluations in the ODE-solving process, which results245

from bad initialization (e.g., zero vector initialization). To246

address this issue, we referred to [8], which makes an247

input-based initial point guess with an extra neural net-248

work to accelerate the equation-solving procedure in DEQ.249

However, this method poses an extra cost in both memory250

and computation.251

To avoid these drawbacks, we further investigate the rela-252

tionship between the number of iterations and the distance253

from the initialization z0 to the solution z⋆ in homotopy254

continuation. Specifically, we perform the homotopy con-255

tinuation method on a nontrivial nonlinear equation using256

ode45 in Matlab [28]. As is shown in Figure 2, it does not257

bring any reduction in the number of iterations when the258

initial point is close enough to the equilibrium solution.259

This means it is unnecessary to approximate the specific initial point accurately for a specific sample260

x.261

Hence, we share the initial point for all the samples x and just maintain a scalar value for the averaged262

value of the whole feature map in one channel. Briefly, we just need to store a tensor with the shape263

of (1, 1, c) as the shared initial information z̃0, and broadcast it into the initial point z0 with the shape264

of (h,w, c) when taking it into the ODE solver. The loss function of z̃0 is defined as follows:265

L(z̃0) := Ex∼D

[
(z⋆(x)− z̃0)

2
]
, (15)

where z⋆(x) denotes the equilibrium solution of the sample x and D denotes the distribution of x. In266

fact, this update on z̃0 is equivalent to maintaining the dynamic geometrical center of the equilibrium267

points of all the samples.268

7 Understanding Augmented Neural ODE by HomoODE269

Augmented Neural ODEs, as a simple extension of Neural ODEs, are more expressive models and270

outperform Neural ODEs. Augmented Neural ODEs allow the ODE flow to lift points into the extra271

dimensions to avoid trajectories crossing each other [12]. However, more theoretical analysis of how272

and why augmentation improves Neural ODEs is lacking. Our work provides another perspective on273

understanding the effectiveness of Augmented Neural ODEs. Augmented Neural ODEs formulate274

the augmented ODE problem as:275

d

dt

[
h(t)
a(t)

]
= F (

[
h(t)
a(t)

]
, t; θ),

[
h(0)
a(0)

]
=

[
x
0

]
, (16)

where a(t) ∈ Rp denotes a point in the augmented part, and h(t) ∈ Rd is the hidden state at time t.276

Specifically, Augmented Neural ODEs can track back the ODE flow to recover the original input x by277

using the hidden state h(t) and the time information t. The input x is the injection of the dynamics278

in HomoODE. The augmented part a(t) can be viewed as the intermediate z(t) in HomoODE.279

In Augmented Neural ODEs, we can treat the recovered input x as the condition in HomoODE,280

improving its representation ability. Hence, Augmented Neural ODEs outperform Neural ODEs.281

However, the origin input x computed by Augmented Neural ODEs may not be accurate enough.282

This probably is the reason why the performance of Augmented Neural ODEs is not competitive to283

HomoODE.284

8 Experiments285

To confirm the efficiency of HomoODE, we conduct experiments on several classical image clas-286

sification datasets to compare our model with the previous implicit model, including DEQ [6],287
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monDEQ [43], Neural ODE [10] and Augmented Neural ODE [12]. Concretely, we evaluate the288

stability of the training process via the learning curve of accuracy in the test dataset and exhibit the289

performance of different implicit models in terms of accuracy, memory consumption, and inference290

time. It is worth noting that we also perform HomoODE with & without the data augmentation and291

the adjoint backpropagation technique to check their impacts on our model. Besides, we also contrast292

HomoODE with zero vector initialization and learnable initialization to assess the capability of our293

acceleration method.294

G
roupN

orm
+

R
eL

U

D
ropout

+
G

roupN
orm

3
×

3 C
onv2d (s=

1) 3
3 C

onv2d (s=
1)

3
3 C

onv2d (s=
1)

3
3 C

onv2d (s=
2)

+

Condition

Figure 3: The deployed neural network architecture in HomoODE. Here, s denotes the stride and the
channel number of all convolutional layers is 64.

Experimental setup. HomoODE is performed on several standard datasets, including CIFAR-10295

[34], SVHN [37], and MNIST [35]. As shown in Figure 3, HomoODE contains several simple296

convolutional layers. Its network structure is not specially designed for image classification tasks297

like MDEQ [7]. Notably, the memory consumption of HomoODE is less than that of other implicit298

models as reported in [43, 45, 7]. As we discussed in Section 5, the time information t is not fused299

into the input of HomoODE, unlike Neural ODE. Besides, we optimize the shared initial information300

z̃0 using SGD optimizer with the learning rate 0.02 and perform the update once every 20 updates for301

HomoODE.302
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Figure 4: Learning curve of different implicit
models on CIFAR-10 datasets across 5 runs
without data augmentation. The x-axis de-
notes the epoch during training and the y-axis
denotes the accuracy of models on the test
datasets.

Comparison with former implicit models. Table 1303

presents the performance of HomoODE with differ-304

ent settings and other implicit models in the CIFAR-305

10 dataset. It can be observed that HomoODE out-306

performs the previous implicit models in terms of307

both accuracy and memory consumption. Moreover,308

the inference time of HomoODE is much faster than309

DEQ and its variants. This means it is possible to310

deploy HomoODE in applications with real-time re-311

quirements. Notably, there is a large improvement in312

our model if the data augmentation technique is ap-313

plied. This indicates HomoODE has a powerful rep-314

resentation ability compared to other implicit models315

with similar model capacity. Extensive experiments316

in SVHN and MNIST also confirm these properties317

of our model as shown in Table 2. Besides, we also318

plot the learning curves of different algorithms in Fig-319

ure 4. The results demonstrate the stability of training320

HomoODE compared with other methods and exhibit321

that HomoODE is not prone to over-fitting, whereas322

other ODE-based models may suffer from that.323

Efficiency of the learnable initialization. Figure 5 illustrates that the learnable initialization trick324

can improve HomoODE with about 2.5× speedup in the inference time than before. This impact325

is obvious in both cases with & without the adjoint backpropagation technique. In addition, the326

corresponding test accuracy during the training process also reflects this acceleration technique does327
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Method Model size Inference Time Accuracy

DEQ [6] 170K 8.1× 82.2± 0.3%
monDEQ [43] 172K 1.6× 74.0± 0.1%

Neural ODE [10] 172K 0.7× 55.3± 0.3%
Aug. Neural ODE [12] 172K 1.5× 58.9± 2.8%

HomoODE 132K 1.2× 85.8± 0.1%
HomoODE† 132K 1.0× 83.2± 0.4%
HomoODE⋆ 132K 1.4× 90.1± 0.2%
HomoODE⋆† 132K 1.1× 88.4± 0.1%

Table 1: Performance of HomoODE compared to pre-
vious implicit models on CIFAR-10. ⋆ with data aug-
mentation; † with adjoint method. The inference time
is expressed as a multiple of the inference time of
HomoODE with the adjoint method. Each result is
obtained with 5 random runs.

Dataset Method Model size Accuracy

SVHN

DEQ [6] 170K 93.6± 0.5%
monDEQ [43] 170K 92.4± 0.1%

Neural ODE [10] 172K 81.0± 0.6%
Aug. Neural ODE [12] 172K 83.5± 0.5%

HomoODE 132K 95.9± 0.1%

MNIST

DEQ [6] 80K 99.5± 0.1%
monDEQ [43] 84K 99.1± 0.1%

Neural ODE [10] 84K 96.4± 0.5%
Aug. Neural ODE [12] 84K 98.2± 0.1%

HomoODE 34K 99.6± 0.1%

Table 2: Performance of HomoODE compared to pre-
vious implicit models on SVHN and MNIST. Each
result is obtained with 5 random runs.
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Figure 5: Learning curve of HomoODE
with different settings on CIFAR-10 across
5 runs without data augmentation. The x-
axis denotes the epoch during training. The
y-axis (up) denotes the accuracy of models
on the test dataset and the y-axis (down)
denotes the NFE of them in the forward
pass.

not bring a loss in the performance of our model. Surprisingly, it even brings a slight improvement in328

the case of the adjoint backpropagation technique. This is probably because a good initial point can329

decrease the total length of zero path s, which reduces the gradient error induced by using the adjoint330

method.331

9 Conclusion332

In this paper, we show that both DEQs and Neural ODEs can be viewed as a procedure for solving333

an equilibrium-point-finding problem via the theory of homotopy continuation. Motivated by this334

observation, we illustrate that these two implicit models are actually the two sides of the same coin.335

Specifically, DEQs inject the input information as the condition into the equilibrium-point-finding336

problem z⋆ = f(z⋆;x, θ) while Neural ODEs fuse the input information into the initial point. Further,337

we propose a novel implicit model called HomoODE, which inherits the advantages of both DEQs338

and Neural ODEs. Our experiments indeed verify that HomoODE outperforms both DEQs and339

Neural ODEs while avoiding the instability of the training process, that is often observed with DEQs.340

Moreover, we developed a method to speed up HomoODE and the ODE-solving operation by almost341

three times by using a shared learnable initial point. Overall, the experimental results on several342

classical image classification datasets demonstrate the efficiency of HomoODE in terms of both343

accuracy and memory consumption.344

Although this paper offers a brand new perspective on implicit models, we also want to highlight a345

limitation of this idea, Actually, we do not present an explicit form of the equilibrium transformation346

function, which is implicitly determined by a modified neural ODE. Besides, while HomoODE has347

a powerful representation ability, the equilibrium-point-solving procedure of it is implicit, which348

weakens its interpretability. Hence, exploring a more interpretable approach for the forward pass and349

backpropagation of HomoODE is under consideration in our future work.350
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A Background of Homotopy Continuation469

Homotopy mapping H(z, λ) = λr(z) + (1 − λ)g(z) provides a continuous transformation by470

gradually deforming g(z) into r(z) while λ increases from 0 to 1 in small increments. The solution471

to r(z) can be found by following the zero path of the homotopy mapping H(z, λ) = 0. Usually, one472

can choose an artificial function g(z) with an easy solution. Figure 6 shows the transformation of473

homotopy mapping with λ increasing from 0 to 1, the homotopy function goes from an artificial,474

"easy" problem to the nonlinear problem in which we are interested.475

Figure 6: Transformation of homotopy mapping along with λ.

A.1 Global Convergence of Homotopy Continuation476

Here, we briefly recall the theoretical foundation of homotopy methods to show its global convergence477

with probability one.478

Definition 2 Let En denote n-dimensional real Euclidean space, let U ⊂ En and V ⊂ Em be open479

sets, and let H : U × V × [0, 1) → En be a C2 mapping. H is said to be transversal to zero if the480

Jacobian matrix ∇H has full rank on H−1(0).481

Theorem 1. (Parametrized Sard’s Theorem [1]) If H(z0, z, λ) is transversal to zero, then for almost482

all z0 ∈ U the mapping483

Hz0(z, λ) = H(z0, z, λ), (17)
is also transversal to zero; i.e., with probability one the Jacobian matrix ∇Hz0

(λ, z) has full rank on484

H−1
z0 (0).485

The method for constructing a homotopy algorithm to solve the nonlinear system r(z) = 0 with486

global convergence is as follows: 1) H(z0, z, λ) is transversal to zero; 2) Hz0(z, 0) = H(z0, z, 0) is487

trivial to solve and has a unique solution z0; 3) Hz0(z, 1) = r(z); 4) H−1
z0 (0) is bounded.488

Then for almost all z0 ∈ U there exist a zero path s of Hz0 , along with the Jacobian matrix ∇Hz0 has489

rank n. The zero path starts from (0, z0) and reaching z⋆ at λ = 1. This zero path s does not intersect490

itself, and it is disjoint from any other zero paths of Hz0 . Furthermore, if ∇r(z) is nonsingular, then491

the zero path s has a finite arc length.492

A.2 Fixed Point Homotopy Continuation493

One commonly used homotopy function to find solutions of r(z) = 0 is the Fixed Point Homotopy494

[11] given by:495

H(z, λ) = λr(z) + (1− λ)(z − z0), (18)
where z0 ∈ Rn and λ in unit interval [0, 1]. At λ = 0, the starting system is H(z, 0) = z − z0 = 0496

for which the only solution is z = z0. At λ = 1, the system H(z, 1) = r(z) = 0 is the system of497

equations of interest.498

For U ⊂ Rn, we use int U to denote the interior of U . And we say H is boundary-free at λ0 ∈ [0, 1] if499

z /∈ ∂U for any z ∈ H|−1
λ=λ0

({0}). Generally, we say H is boundary-free for λ in a subset S ⊂ [0, 1]500

if H is boundary-free for all λ ∈ S. The following theorem provides the fixed point of f(z) under501

the existence of Fixed Point Homotopy.502
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Theorem 2. (Fixed Point Theorem [11]) Given smooth function f : U → Rn, let U ∈ Rn be503

compact and intU ̸= ⊘. For some z0 ∈ intU , if H : U × [0, 1] → Rn is boundary-free for504

0 ≤ λ ≤ 1, where505

H(z, λ) = λ(z − f(z)) + (1− λ)(z − z0), (19)
then f has a fixed point, i.e., there exists an z⋆ ∈ U such that f(z⋆) = z⋆.506

A.3 Newton Homotopy507

Another commonly used homotopy function is the Newton homotopy [11], which is defined as508

follows:509
H(z, λ) = λr(z) + (1− λ)[r(z)− r(z0)]

= r(z)− (1− λ)r(z0),
(20)

where r : Rn → Rn is the smooth system of interest, and z0 is a generically chosen point in Rn.510

Notably, there is a close connection between the Newton homotopy and the well-known Newton’s511

method [2] for solving nonlinear equations. Given ∇r(z) is nonsingular, we can apply the differ-512

entiation on the zero path of the homotopy mapping, i.e. H(z, λ) = 0, yielding the initial value513

problem:514

dz

dλ
= −(∇r(z(λ)))−1r(z0),

z(0) = z0.
(21)

Applying Euler’s method at λ = 0 with step size 1 to the above ODE (21) from the initial point515

z = z(0), the approximation of next iteration z(1) becomes:516

z(1) = z(0)− (∇r(z(0)))−1r(z(0)). (22)

Apparently, (22) is a single iteration of Newton’s method. Hence, Newton’s iteration can be considered517

as the application of Euler’s method with step size 1 on the solution curve given by the Newton518

homotopy. However, in contrast to Newton’s method, which is generally a local method, the Newton519

homotopy exhibits certain global convergence properties.520
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Figure 7: Iterative curve of homotopy continuation under different v.

B The impact of different values of velocity v for the homotopy continuation521

In Section 4 we introduce v := ds
dt as the velocity of the point (z, λ) traveling along the zero path,522

and modify the normalization condition by introducing v into (3). Here we demonstrate that the523

convergence of the homotopy method is not affected by such modification by numerical experiments.524

We choose a nontrivial nonlinear equation and solve it via homotopy continuation under different525

velocities v. Figure 7 shows the zero paths of homotopy continuation under different velocities v.526

Apparently, the zero paths are all on the same trajectory and heading for the same solution. Hence,527

the convergence of the homotopy method doesn’t depend on the change in the value of velocity. With528

the modified normalization condition, the underlying dynamics become:529

dz

dt
= (I − λ(z)∇zf(z; θ))

−1f(z; θ)

√
v2 −

∥∥∥∥dzdt
∥∥∥∥2. (23)
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Following Neural ODEs, we can employ neural networks to approximate the differential equation530

above. The existence of a corresponding equilibrium-point-finding problem for Neural ODE is also531

guaranteed by the modified normalization condition. Specifically, one can refer to (11) (12). Hence,532

Neural ODEs can be regarded as the procedure of solving an equilibrium-point-finding problem with533

homotopy continuation.534

C Bridging DEQ and Neural ODE from another type of Homotopy method535

We have established the connection between DEQs and Neural ODEs via Fixed Point Homotopy in536

Section 4. Here, we also show that we can show a similar connection using another type of Homotopy537

method, i.e., Newton Homotopy.538

By defining r(z) = z − f(z; θ), and setting z0 = 0 for simplification, from (20) we have:539

H(z, λ) = z − f(z; θ) + (1− λ)f(0; θ), (24)

Different from Fixed Point Homotopy, we can associate z directly with λ without introducing v.540

From (21) we have:541

dz

dλ
= (I −∇zf(z(λ); θ))

−1f(z(λ); θ), z(0) = 0. (25)

Here we can view λ as the time information for the differential equation, and z(1) is the solution z⋆542

of the corresponding equilibrium-point-finding problem when λ = 1. We can also employ neural543

networks to approximate the differential equation as Neural ODEs do. Therefore, Neural ODEs544

can also be regarded as the procedure of solving an equilibrium-point-finding problem via Newton545

Homotopy.546

D Stability of HomoODE547

This section demonstrates the stability of HomoODE based on Picard–Lindeöf Theorem [29].548

Theorem 3. (Picard–Lindeöf Theorem [29]) Let I : [a, b] be an interval, let f : I × Rn → Rn be a549

function, and let550

z′(t) = f(t, z(t)), (26)

be the associated ordinary differential equation. If f is Lipschitz continuous in the second argument z,551

then this ODE possesses a unique solution on [a, a+ϵ] for each possible initial value z(0) = z0 ∈ Rn,552

where ϵ < 1
L , L is the Lipschitz constant of the second argument of f .553

HomoODE solves the equilibrium-point-finding problem implicitly using a modified Neural ODE via554

homotopy continuation. Hence it also has the stability of Neural ODE, which can be explained by the555

Picard–Lindeöf Theorem. Assuming the underlying dynamic of HomoODE is Lipschitz continuous556

in z, then both existence and uniqueness can be guaranteed by the Picard–Lindeöf Theorem.557

E Accelearation for HomoODE558

In Section 6, it is mentioned that the update on the shared initial point z0 is equivalent to maintaining a559

dynamic geometrical center of the equilibrium points of all the samples. We will show the correctness560

of this proposition and illustrate the relationship between the learning rate and the step of the dynamic561

update.562

Proposition 1. The update on the shared initial point z0 is equivalent to maintaining a dynamic563

geometrical center of the equilibrium points of all the samples.564

Proof. Recall that the loss function of z0 is defined as L(z0) := Ex∼D

[
(z⋆(x)− z0)

2
]
. According565

to the definition of the variance, we have566

Var(z⋆(x)− z0) = E
[
(z⋆(x)− z0)

2
]
− E [z⋆(x)− z0]

2
. (27)
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Define z̄⋆ := E(z⋆(x)), we obtain567

E
[
(z⋆(x)− z0)

2
]
= Var (z⋆(x)− z0) + E [z⋆(x)− z0]

2

= Var (z⋆(x)− z0) + (z̄⋆ − z0)
2

= Var (z⋆(x)) + (z̄⋆ − z0)
2

(28)

Here Var (z⋆(x)) is irrelevant to z0. Hence, minz0 E
[
(z⋆(x)− z0)

2
]

is equivalent to minimizing568

minz0 (z̄
⋆ − z0)

2, which means the update on z0 is equivalent to maintaining a geometrical center of569

the equilibrium points of all the samples.570

According to Proposition 1, we can also write the update as the form of z0 = αz̄⋆+(1−α)z0, which571

is more straightforward. Therefore, we also want to further explore the relationship between the572

learning rate ηinit and update step α. Consider the gradient descent on z0573

z0 = z0 − η∇z0Ex∼D

[
(z⋆(x)− z0)

2
]

= z0 + 2η (z̄⋆(x)− z0)

= 2ηz̄⋆(x) + (1− 2η)z0.

(29)

Since z0 is the broadcast tensor from initial information z̃0, the actual gradient descent has the form574

of575

z̃0 = 2hwηinitz̄
⋆(x) + (1− 2hwηinit)z̃0. (30)

where h,w are the height and width of the feature map respectively. Finally, we obtain the relationship576

between ηinit and α is ηinit =
α

2hw . This means we can set a large learning rate for ηinit even greater577

than 1, especially when the feature map is large.578

F Adjoint Method for HomoODE579

Algorithm 1 Adjoint Method for HomoODE
Input: initial point z(t0), condition x, parameter θ, start time t0, stop time t1
s0 = [z(t1),

∂L
∂z(t1)

, 0x, 0θ] ▷ Define initial augmented state
def aug_dynamics(([z(t), a(t), ·, ·], t, θ)): ▷ Define dynamics on augmented state

return
[
F (z(t), t;x, θ);−a(t)T ∂f

∂z
,−a(t)T ∂f

∂x
,−a(t)T ∂f

∂θ

]
▷ Compute vector-Jacobian products

[z(t0),
∂L

∂z(t0)
, ∂L
∂x ,

∂L
∂θ ] = ODESolve(s0; aug_dynamics; t1; t0; θ) ▷ Solve reverse-time ODE

return ∂L
∂x ,

∂L
∂θ ▷ Return gradients with respect to x and θ

The adjoint method [10, 40] is an efficient backpropagation method that can save the memory footprint580

in Neural ODE during training. However, there is a minor difference when we apply the adjoint581

method in the training of HomoODE. Unlike Neural ODE which computes the gradient with respect582

to z(t0), our HomoODE calculates the gradient with respect to the condition x instead. Accordingly,583

we modified the adjoint method in Neural ODE and present the computation procedure in Algorithm584

1.585

G Additional Experimental Results586

We conducted additional experiments in CIFAR-100 [34] to validate the potential of applying587

HomoODE to difficult image classification tasks with larger model sizes. Specifically, we extend588

the channel numbers of the convolutional layers to 128 in HomoODE and increase the model size589

of the compared implicit models correspondingly for fairness. The experiments in CIFAR-100 are590

all implemented with data augmentation. The concrete operations in data augmentation involve591

zero-padding the 32×32 images to 40×40 and then performing random horizontal flips. As shown in592

Table 3, the performance of HomoODE is much better than other implicit models in terms of both593

memory consumption and test accuracy.594
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Method Model size Accuracy

DEQ [6] 770K 64.5± 0.7%
monDEQ [43] 1M 59.8± 0.3%

Neural ODE [10] 874K 31.7± 0.6%
Aug. Neural ODE [12] 857K 36.2± 0.9%

HomoODE† 565K 69.30± 0.1%
HomoODE 565K 71.57± 0.2%

Table 3: Additional experiments on CIFAR-100. HomoODE† and HomoODE represent the training
with and without the adjoint method, respectively. The experiments are all implemented with data
augmentation.
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Figure 8: Ablation study on the learning rate for the shared initial point.

Besides, we also performed the ablation study on the learning rate for the shared initial point as595

shown in Figure 8. Notably, the ablation study is implemented with the adjoint method. Given the596

practicality of the adjoint method in handling the backpropagation of large deep models, we are597

inclined to explore a wider range of characters when utilizing it. It can be observed that HomoODE598

is robust to the learning rate for the shared initial point and there exists a slight improvement when599

lr = 0.1. We believe the reason is the same as the slight improvement in contrast experiments of600

HomoODE with/without acceleration. That is, the larger learning rate for the shared initial point601

makes the initial point z0 closer to the current geometrical center of the equilibrium points of all602

samples, which further leads to the shorter zero path that the adjoint method goes through. Finally, it603

reduces the error of backpropagated gradient.604

H Hyper-parameter Settings605

Our experiments are implemented on a GPU of NVIDIA GeForce RTX 3090 with 24GB. The606

hyper-parameters applied in HomoODE are shown in Table 4. Experiments related to other implicit607

models are based on deq 1, monotone_op_net 2 and augmented-neural-odes 3. Notably, the dropout608

layer in our experiments follows the variational dropout operation in [7] because the traditional609

dropout operation hurts the stability of convergence to the equilibrium.610

I More Discussions on Learnable Initial Point611

It is worth noting that we also carried out some trials with an input-based initial point predictor [8] to612

accelerate HomoODE. However, the performance of the initial point predictor in HomoODE is not613

desirable in terms of both inference time and test accuracy. Based on the comprehensive analysis we614

provided in Section B, C, this is probably because too frequent or too large updates on the initial point615

1https://github.com/locuslab/deq
2https://github.com/locuslab/monotone_op_net
3https://github.com/EmilienDupont/augmented-neural-odes
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Parameter MNIST SVHN CIFAR-10 CIFAR-100

Batch Size 64 64 64 64
Optimizer Adam Adam Adam Adam

Learning Rate 0.001 0.001 0.001 0.001
Frequency of Initial Point Update 20 20 20 5

Optimizer for Initial Point SGD SGD SGD SGD
Learning Rate for Initial Point 0.02 0.02 0.02 0.01

Variational Dropout Rate 0.1 0.1 0.1 0.15
Number of Channels 32 64 64 128

Absolute Tolerance for ODE Solver 1E-3 1E-3 1E-3 1E-3
Relative Tolerance for ODE Solver 1E-3 1E-3 1E-3 1E-3

Table 4: Hyper-parameters used in HomoODE under different image classification tasks.

will destroy the stable link between ODE function F (z(t), t;x, θ) and the equilibrium transformation616

function f(z;x, θ). In particular, the additionally-introduced variable v will change sharply when a617

large change is applied to the initial point. In this case, the function λ(t) will change dramatically,618

eventually ruining the trained equilibrium transformation function f(z;x, θ). This phenomenon can619

also be illustrated from the perspective of Newton homotopy. Note that the ODE function is actually620

determined by the initial point. Therefore, once the initial point is changed, the ODE function will621

change and then the trained ODE function will be ruined.622
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