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A APPENDIX

A.1 PROOF OF LEMMA 3.2

Proof. Let vy € (0,1). Sety = min{~y,Yo/c}. Denote 5 = ~v/+/m. Then
|21 = 2| = lo (742 + ¢) — 0 (742" - ¢)|

<7 HAze — Azt

A - )

<Al Alll= ==,

SGevmlzf =27, Al < evm

Z—IH.

, o is 1-Lipschitz continuous

=vo|2¢ — 2
Applying the above argument ¢ times, we obtain
12571 = 2| < 5gll=t = 20l = wllzt | = llo (@)l < wllell,
where we use the fact z° = 0. For any positive integers p, ¢ with p < g, we have
Il = 29 <l2? — 2 o+ 2 - 2
< loll+-- -+l
<yllell L+~ +9*+--)

p
+E
——0_ 9.
el

Since v € (0, 1), we have ||zP — 2%|| — 0 as p — oo. Hence, {2¢}2°, is a Cauchy sequence. Since
R™ is complete, the equilibrium point z* is the limit of the sequence {2¢}2° , so that z exists and
is unique. Moreover, let ¢ — oo, then we obtain ||z? — z*|| < %Hgb”, so that the fixed-point

iteration converges to z linearly.

Let p = 0 and ¢ = /, then we obtain || || < 1= ||¢|.

A.2 PROOF OF LEMMA 3.3

Proof. (i) To simplify the notations, we denote D £ diag(c’(3A4z + ¢)), and E

diag(c’(Wx)). The differential of f is given by

df =d(z — 30 (7Az + ¢))
=dz — Dd(7Az + ¢)
=[I,, —3YDA])dz —4¥D(dA)z — Dd¢.
Taking vectorization on both sides yields

vec (df) =[I,, — YD A] vec (dz) — vec (YDdAz) — Dvec (do)

=[I,, — ¥DA]vec (dz) — 7[zT ® D]vec (dA) — Dvec (d¢) .

Therefore, the partial derivative of f with respect to z, A, and ¢ are given by

of _ .
0
aj;:—ﬂZT@@D]T
of _
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(ii)

(iii)

It follows from the definition of the feature vector ¢ in equation 4 that

1 1 1
dep = ﬁda(Wm) = ﬁE(dW)m == (7 ® E| vec (W).

Thus, the partial derivative of ¢ with respect to W is given by

0o 1 T T

—_— = — E| . 23

oW = U [z" @ E| (23)
By using the chain rule, we obtain the partial derivative of f with respect to W as follows

1
0f _000] 1 (1 p)" DT

oW oW dp  m
Let v be an arbitrary vector, and u be an arbitrary unit vector. The reverse triangle inequality
implies that
|(L — 7 diag (o’ (v)) A) ul| Z[u - |7 diag(c’(v)) Aul

>|lu] - 7| diag(c” (v)) Il Al [[u]

(a)

> (L=0)|ul

=1-7

>0,

where (a) is due to |o’(v)] < 1 and [[Allop < cy/m. Therefore, taking infimum on the

left-hand side over all unit vector u yields the desired result.

Since f(z*, A, W) = 0, taking implicit differentiation of f with respect to A at z* gives us

0z of of B
(M z—z*) <8Z z—z*) + (M z—z*) B 0

The results in part (i)-(ii) imply the smallest eigenvalue of % .« 1s strictly positive, so that it
is invertible. Therefore, we have

9z* of of
aA __<Mz_z*> (az

Similarly, we obtain the partial derivative of z* with respect to W as follows

oz* of of —1_ 1
( z—z*) (az z—z*) B ﬁ [

ow ~  \aw
To further simplify the notation, we denote z to be the equilibrium point z* by omitting the
superscribe, i.e., 2 = z*. Let § = u’ 2z + v’ ¢ be the prediction for the training data (z,y).
The differential of g is given by

dj=d(u"z+v"¢) =u"dz + zdu + v de + ¢ dv.

-1
) =7[z"® D]T I, —3DA]"" (24

2" ® E]' D" [I,, —yDA]™T (25)

The partial derivative of y with respect to u, v, z, and ¢ are given by
oy oy Y oy

a_ua %—Z, %:d)a %—’U, (26)

Let £ = 1(§ — y)2. Then 8¢/9§ = (§ — y). By chain rule, we have
ot 0y ol .
%:a%@zz(y—y) 27
o ogot .
96wy d(J —y)- (28)
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By using equation 24-equation 25 and chain rule, we obtain

ot _0z ot
A 0A 0z
0z 0y of  _ . T - _
—ajafzafgzﬁ’(y—y) [ZT®D] (I, —4¥DA] " u (29)
and
o _ oz g0t 09 oyt
OW ~ OW 9z oy OW 0¢ 0y
1
=m0 —yle" © E|" [DY (I 3D A) " u+v]. (30)
Since L = " | ¢; with ¢; = £(g;,y;), wehave dL = """ | d¢; and L/9¢; = 1. Therefore,
we obtain
oL - B _
A= 8A Zw 2@ D" I, —D; A" (31)
Z — )zl ® )T [DI (I, —3D; A) Tu+v] (32)
=1 a \/7
OL =0l A, .
e =2 g = (i~ )z (33)
i=1 i—1
OL =00 <A,
90 2 v = ;(yi —Yi) i (34)
O

A.3 PROOF OF LEMMA 3.4

Proof. Let z; denote the ¢-th equilibrium

point of x;. By using equation 24, 25, 31 and 32, we

obtain the dynamics of the equilibrium point z; as follows

dz; [0z T dvec (A) n 8z \ " dvec (W)
dt  \0A dt oW dt
(22T (ZOEY (22 (oL
~\0A 0A ow ow
PR T . _
=—5> (@ —v) Im —AD; A" [z] ® Di] [2] ® D;]" [I,, —4D;A]""
j=1
1<, s _
- > (@ — y) Um — D: A" D; [2] © E;] [2] ® Ej]" [D} (I, — ¥D; A) " u + v]
j=1
= - :72 (3)] - yj) [Im - ’NYDiA]_l DIDJT [Im - :YDjA]_T uzisz

S ) L~ DiAT

1

DiEq;EjT [D» (I, —AD; ATy +v] ccsz]
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By using equation 23 and 32, we obtain the dynamics of the feature vector ¢;

deys _ (6@ )T dvec (W)

dt oW dt

() ()

n

1 . - _
== > (@i —y)EiE] D] (I, = AD; A) "u + vz x;.
j=1

By chain rule, the dynamics of the prediction §j; is given by

dii _ (05:\" dzi (05 \"dei (05" du  (05:\" dv
N dt Op; dt ou dt ov dt

dt 82)1‘
= 5/2 (QJ - y]) [UT(Im - ’S/DLA)ilDLD]T(I’m - :YDjA>7Tuj| (Z;'sz)

s N—n

j=1
1 . - _ T - _
-— > (5 — i) [(DZT(I,,L —4D;A)'u+v) EET] (DI (I, —9D;A) Tu+ v)} (xXx;)
j=1
= (@ —v) (=] z)
j=1
= (5 — i) (@] B;).
j=1
Define the matrices M (t) € R"*" and Q(t) € R™*" as follows
1
M(t)i; £—u" (I, — yD;A)"'D;D] (I, — 7D;A) ",
m
1
Q(t)i; 2— (DI (I, —¥D;A) 'u +v)" E,ET (DT (I, —3D;A) Tu + v).

m

Let X € R, ®(t) € R™™, and Z(t) € R"*™ be the matrices whose rows are the training
data x;, feature vectors ¢;, and equilibrium points z; at time ¢, respectively. The dynamics of the
prediction vector ¥ is given by

W [PM(0) + 1) 0 20207 + Q1) o XXT + 2()0)] (5(1) ~ y).

A.4 PROOF OF LEMMA 3.5
A.4.1 REVIEW OF HERMITE EXPANSIONS

To make the paper self-contained, we review the necessary background about the Hermite polyno-
mials in this section. One can find each result in this section from any standard textbooks about
functional analysis such as MacCluer (2008); Kreyszig (1978), or most recent literature (Nguyen &
Mondelli, 2020, Appendix D) and (Oymak & Soltanolkotabi, 2020, Appendix H).

We consider an L?-space defined by L?(R, dP), where dP is the Gaussian measure, that is,
1 22
dP = p(x)dx, where r)=—e 2.
e o) = =
Thus, L?(R, dP) is a collection of functions f for which
o 2 o 2 2
[ 1r@rar@ = [ 1@ pe)ds = Beon 1f@) < .

—0o0 — 00
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Lemma A.1. The relu activation o € L*(R, dP).

Proof. Note that

/ |U(x)\2p(x)dm < / |x\2p(x)dx =E,on(0,1) |ac|2 = Var(z) = 1.

—00 — 00

For any functions f,g € L?(R, dP), we define an inner product

/ I / F@)g(@)p(@)de = Eyoyon [ (2)g(x)].

Furthermore, the induced norm || - || is given by

117 =40 = [ @R dP@) = Bayon F@F.

—00

This L? space has an orthonormal basis with respect to the inner product defined above, called
normalized probabilist’s Hermite polynomials {h,(x)}5, that are given by

1 2 2 2 d” 2
n,x°/2 nn z°/2 n z°/2 —x°/2
hn(x) = m(—l) e /*D"(e ), where D"(e )= e .

Lemma A.2. The normalized probabilist’s Hermite polynomials is an orthonormal basis of
L2(R,dP): (hm,hn) = Smn.

Proof. Note that D"(e_“‘2/ 2 = e’/2p, (x) for a polynomial with degree of n and leading term
is (—1)™a™. Thus, we can consider h,,(z) = #(71)”Pn(z).

Assume m < n

<hn7 hm> :EmwN(O,l) [hn(x)hm (x)]

:/OO B () o, (m)%

= / D™(e~*"/?)h,, (x)dz, rewrite hy,(z) by its definition

e 7 /de

— (1) D" (e —=*/ 2P, (x)dz, rewrite h,, by the polynomial form
\/ 27r\F / 7 "

1
= Vel
There is no boundary terms because the super exponential decay of e=7"/2 gt infinity. Since m < n,

then D,,(P,,) = 0 so that (h,, h,,)=0. If m = n, then D, (P,,) = (=1)"n!. Thus, (h,, h,) =
1. O

—1)2"'“” / e ™/2D, [Py (z)]dz, integration by parts n times

Remark: Since {h,,} is an orthonormal basis, for every f € L?(R,dP), we have

oo

F@) =" (fhn) hn(2)

n=0

in the sense that

N 2 N 2
Jim | f(@) = D (f ) ha(@)|| = Jim Eoono (@) = D {F hn) hu(2)| =0
n=0 n=0

Lemma A.3. f € L*(R,dP) if and only if 7% |(f, hn)|* < oo.
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Proof. Note that

= T @) dP(e)

— 00

I

NE
=
s
¢
&

N———

M2
?
=
&
QL
!

=0

Il
Nk
<

O
Lemma A.4. Consider a Hilbert space H with inner product (-, -). If || f, — f|| — O and ||g,, —g|| —
0, then <f, g) = hmnﬁoo <fn7 gn>

Proof. Observe that
|<f,g> - <fnagn>| S |<f>g> - <fnag>| + |<fnag> - <fnvgn>|
<[ f1llg = gnll + 1fnllllg — gnll-

Let n — oo, then the continuity of || - || implies the desired result. O

Lemma A.5. Let {h,(z)} be the normalized probabilist’s Hermite polynomials. For any fixed
number ¢, we have

ert— t/2

(35)

Proof. First show f(z) = e®="/t ¢ H £ [2(R,dP).
<f7f> wa(Ol ‘f( )|
:/OO 62:1:t7t2 1 €7w2/2dx

o V2T
> 1 — 2t)?
:etz/oo\/iexp{ (372)}dx, x ~ N(2t,1)
t2
=e’ < 00.

Thus f(z) € H. Then f(z) = >.°  (f, hn) hy(z). Note that
(f, ha) =Egonv(o,1) [f (@) P ()]

e 1 2 2 1 2

_ st 22 4 —1)"e” /2D e " /2y . e ® /de

/m e
1

_T \/ﬁ
1

— -1 2n / ext—t2/2tn . 6—3122/2dm
vV

2 2
™= /2. D, (e7® /?)dx, integration by parts n times

e :
_W/ \/%ef(xft)z/zdx, x~ N(t1)
"

Vnl

16



Under review as a conference paper at ICLR 2022

Lemma A.6. Let a,b € R? with ||a|| = ||b]| = 1, then
Ew~N(0,Id)[hn(<a7w>)hm(<baw>)] = <avb>n dimn

Proof. Given fixed numbers s and ¢, we define two functions f(w) = e{@®)t="/2 and g(w) =
ebw)s=s*/2 Jet g = (a,w) and y = (b, w). Then we have

f(w) :6<a,w)t7t2/2 ettt 2/2 Z \/7 Z \/7 >)

n=0
{b w)s—s /2 ys— 52 _ s"
g(w =e = —
) - =3 )= 3 Sl
Define a Hilbert space H; = L2(RY dP), where dP is the multivariate Gaussian measure,

equipped with inner product (f,g) £ Eyno,1,)[f(w)g(w)]. Clearly, f,g € Hy. Define se-
quences { fy } and {gn} as follows

N
Z\F n({a,w)) and gN(w)=thn(<b,w>)-

Since || f — fn|| — 0 and ||g — gn|| — O, we have

Ew~n(o,10)[f(w)g(w)] = (f, 9)

]\}lm <vagN>

= ngnoo Ew~n(0,1,)[fN (w)gn (w)]

tnm

:z\}iinoonz TV Bwen(0,14)[hn((@; w))gn((b, w))]

Note that the LHS is also given by

2 2
Euwmn (0,10 [f (w)g(w)] =e~* /2=s /QEwNN(o,Id)[6<a’w>t+<b’w>s}

_ —t2/2—32/2E weN (0.1 )[ Zi‘l=1 'wi(ait"l‘bis)]

7t /2 S /2 HE 0 1) wl(aiteris)]

:67t2/2752/2 H My, (ait + blS)
=1
:e(a,b>st

> (a,b)" (st)"
$ e

Since s and ¢ are arbitrary numbers, matching the coefficients yields

Eao (0,1 [fen (@, w)) 1 (b, w))] = (@, B)" G

17
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A.4.2 LOWER BOUND THE SMALLEST EIGENVALUES OF G™

The result in this subsection is similar to the results in (Nguyen & Mondelli, 2020, Appendix D) and
(Oymak & Soltanolkotabi, 2020, Appendix H). The key difference is the assumptions made on the
training data. In particular, Oymak & Soltanolkotabi (2020) assumes the training data is -separable,
ie., min{||x; — x;||, ||x; + «;||} > ¢ > 0forall i # j, and Nguyen & Mondelli (2020) assumes
the data x; follows some sub-Gaussian random variable, while we assume no two data are parallel
to each other, i.e., ; |f «; for all ¢ # j.

Lemma A.7. Given an activation function o, if o € L?(R, dP) and ||z;|| = 1 for all i € [n], then

G™ = (o hi)] (XXT o0 XXT) (36)
k=0

k times

where o is elementwise product.

Proof. Observe
G(;JO =Ewn(0,14) [o((w, z;))o((w, wj>)]

= (0, i) (0. 10) Buov(0, 1) [P ((w, 23) Vg ((w, ;) )]
0

o
B
i

B

(0, he) (o, he) - (@i, ;)" 61

-

>
~
Il

0

(o, hie)? (i, )"

M

=
Il

0

2
Note that the tensor product of ; and x; is ¢; ® x; € R? % 1, so that

k
(Ti, ;)" = <$i®"'®$i7w]’®"'®w]‘>
k times k times

Here we introduce the (row-wise) Khatri-Rao product of two matrices A € R¥*™ B ¢ RF*".
Then
Al* ® Bl*

A*B: eRkan
Ak*®Bk*

where A;, indicates the i-th row of matrix A. Therefore, the i-th row of X # --- x X £ X*" is
T; ® - @ x,;. As aresult, we obtain a more compact form of equation 36 as follows

G =" (o, ) (X ) (X*F)T 37)
k=0

Lemma A.8. If o(x) is a nonlinear function and |o(z)| < |z| and , then
sup{n : (o, hy) > 0} = oo.

Proof. 1t is equivalent to show o(z) is not a finite linear combination of polynomials. We prove
by contradiction. Suppose o(z) = ag + a1 + -+ - + a,z™. Since o(0) = 0 = ag, then o(x) =
a1z + - - + apx™. Observe that

o) a4+ ana”
lim = lim
T—y00 |:L‘| Z—00 |q;|
= lim ‘al 4 Fapa™
T—r0o0
=00
which contradicts % < 1forall x # 0. O

18
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Lemma A9. If x; || @; for all i # j, then there exists ko > 0 such that Ay, [(X**)(X*¥)T] >0
for all & > kg. Therefore, Apin (G>) > 0.

Proof. To simplify the notation, denote K = (X**)” € R*>*"_ Since z; [f z; and ||&;| = 1, then
let 6 £ max{|(z;,z;)|} = max{|cosf,;|} and § € (0,1), where 0;; is the angle between z; and
;. For any unit vector v € R", we have

o (X)X )T = Kv]?

n
Z 'UiK*z'
=1

’Uivj <K*’L7 K*]>

2

e
NE

@,
Il
—

.
Il
-

vivy (@i, ;)"

e
NE

s
Il
_

<.
Il
_

-

2|z |2+ v (@, x5)"

i=1 i#j
k
=1+ ZUﬂ}j <£L’i,w]‘> N
i
where the last equality is because ||x;|| = 1 and ||v|| = 1. Note that

> vy (@i )| <3 vl o] (i, )|

i#] i#]

<&* > |uil lvsl, by [{@i, @;)| <
i#j

n 2
<o (z |)
=1

<né®, by Cauchy-Schwart inequlity.
By inverse triangle inequality, we have
| Kv|? > 1—nd".

Choose ko > logn/log(1/3), then Apin { (X **)(X**)T} > 0 for all k > k. O

19
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A.5 PROOF OF LEMMA 3.6

Proof. By using the concentration inequality for standard Gaussian random variables, we have

11»{||G(0)—G°°||222)} g]P{HG(O)—GOOHFZ);f}
{||G(0)—G°°I% > (?)2

{ S em-err= (3
5 fles0-ost= (2)'
-y r{em-el= )

2m (o /4n)?
2|

| A\

<n?2exp {—

<9,
poand P{>""  z; > e} <30 P{x; >e/n}. O

where we use the fact || X || < || X]|

A.6 PROOF OF LEMMA 3.7
Proof. By using the 1-Lipschitz continuity of (z), we have
G = GO =l (XW o (XWT) — o (XW(0) o (XW(0)")"|
<o (XWX — o (XW o (XW(0)")|
o (XW ) (XW(0))T — o(XW(0) o (XW(0)")|
= o (XWT) o (XWT) — o (XW(0)7)]|
o (XWT) — o (XW(0)) o (XW(0)")]
<X NIW X IW — W) + | X[[W — W)X W (0)]

4c
< 2w —-w
<X O

A.7 PROOF OF LEMMA 3.8

Proof. Tt suffices to show the result hold for v = min{~o, v0/2c}, where o = 1/2. We prove by
the induction. Suppose that for 0 < s < ¢, the followings hold

(1) )\mm(G(S)) Z )\70,

(i) [lu(s)| < 252 [4(0) -yl

(i) [lo(s)]| < 25215(0) — yll.

20
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i) |W(s)| < 2¢y/m,
V) A(s)]| < 2¢y/m,

i) [19(s) — ylI* < exp{—Xos}|5(0) — y|*

s

Since Amin (G(s)) > 22, we have

ﬁllﬁ(t) —yl* =—2(5(t) —y) T H®)(G(t) —y)
< = ollg(t) — y?

Solving the ordinary differential equation yields
19(t) = ylI* < exp{-Xot}5(0) — y|*.
By using the inductive hypothesis [|[W (s)|| < 2¢y/m, we have
6.0 = | oW (o)) <
It follows from Lemma 3.2 with 79 = 1/2 that
12 ()| < 2[|pi(s)]| < de.

s)|[le:]] < 2e.

\ﬁHW

Note that
<2CZ 19i(s) — il
§20x/ﬁ||y(8) -yl
<L2cv/nexp{—Xos/2}|ly(0) — yl|
and so

lo(t) — v(0)] < / IV L(s)ds
<2ev/my(0) — y / exp{—Aos/2}ds

4c\f
19(0) = yll.
Since v;(0) follows symmetric Bernoulli distribution with 41/+/m, then ||v(0)||?> =
obtain
8/, .
@ < llv(t) = 0 (0} + [le(O) < =7 =11(0) — ]|
Note that
IVuL(s) < 13i(s) = wil 127
i=1
<devn[g(s) -yl
<dev/nexp{—Xos/2}[5(0) — y|
so that

Ju(t) - wO)] < [ [9uL(s)ds < 5

21
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Since u;(0) follows symmetric Bernoulli distribution with £1/,/m, then |[u(0)||> = 1 and we
obtain

16cf

[u@)] < [lu) = w(0)] + [[w(0)] < 19(0) -yl

Note that

IVw L(s)]| < Z ﬁ 19:(5) = wil 1 E:(s)]| (I1Ui(s) " u(s)l] + v (s)ll) ll]

64c\f
— 9 Z 9i(s) — il

<
< fﬁ’in () =yl 9s) - vl
<o l900) i - exp{=Aos/2}

so that

t
W) - W) < / Vo L(s)|lds
128¢cn
—)\2\/‘“
Vmo
~16¢|| X ||?
<R.

9(0) —yl

so that we obtain
W (@) < [W(t) =W ()] +[[W(0)] <2cvm,

provided ¢ > 0 is chosen to be large enough, i.e., ¢ 75 v/Ao/||X||. Moreover, it follows from
Lemma 3.7 that Apin {G(t)} > 22.

Note that
VAL <3 Jh 15:06) ~ e IDHITR6) ™ o)
<2 5(0) - ol sz i
< 9(0) — i - 196) ]
< 9(0) = y? - exp{=dos 2.
so that
14() - A0)| < [ IVaL(s)lds
<o 30wl
Then

IA@I < [|A) — A + [[AO)]| < 2¢v/m.

22
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A.8 DISCRETE TIME ANALYSIS

In this section, we prove the result for discrete time analysis or result for gradient descent. Assume
|A(0)]] < c¢y/m and [[W(0)|| < cy/m. Further, we assume Apin (G(0)) > 3o and we assume

m = Q (52"1\‘75(”2”3)(0) - y||2) and choose 0 < v < min{1/2,1/4c}. Moreover, we assume the
0
stepsize « = O ()\0 / n2). We make the inductive hypothesis as follows forall 0 < s < k

(1) Amln(C‘:( )) 2 ATO’

. <Jﬂc¢5 3(0) —
(i) Jlu(s)l < ==19(0) -y
(i) [Jo(s)l| < 5 15(0) — wll
) [W(s)l| < 2cy/m,

V) A < 2ey/m,
i) 19(s) =yl < (1 — aro/2)*[[5(0) — ylf*.

Proof. By using the inductive hypothesis we have for any O <s<k

1pi(s)ll = = (W (s)@:)|l < =W (s)] < 2¢

and

1/2
[®(s)]| < 1@ (s)llp = (Zldh II2> < 2¢ev/n. (38)

By using Lemma 3.2, we obtain the upper bound for the equilibrium point z;(s) forany 0 < s < k
as follows

Iz:(s)] < ()] = 2[lbi(s)]| < 4e,

where the last inequality is because we choose 79 = 1/2, and

1/2
1Z(s)l < [|Z(s)llr = (Z [|2:(s) 2) = dev/n. (39)

By using the upper bound of ¢;(s), we obtain for any 0 < s < k

IV L(s ||<Z|yz —yil ()

<20§:|% il

<2cf||y( ) =yl
<2¢v/n(1 — aXo/2)*?|1§(0) — y].
Let 3 := /1 — a\g/2. Then the upper bound of ||V, L(s)|| can be written as
IV L(s)|| < 2¢vnB°[[9(0) -yl (40)

and

|v(k+1) — o |<ZHvs+lfv |faZ||VL

<o - 2¢v/nl|(0) — y| - ZBS

s=0

22
ST el - )

SC\f

6k+1

-8

19(0) = yll,
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where the last inequality we use the facts 8 < 1. By triangle inequality, we obtain

IGC\f

ok + DI < flo(k +1) = v(0)[| + [[l0(0)]] < 19(0) —yll;

which proves the result (iii). Similarly, we can upper bound the gradlent of u

n

IV L(s Z —yilllzll < devn||g(s) —yll < 4evnf*[5(0) =yl 4D

so that

I < 166\f

[u(k +1) —u(0) 19 —yll,

and

)] < (k) — w(0)] + [u(0)] < 32‘”

The result (ii) is also obtained.

19(0) =yl

By using the inductive hypothesis, we can upper bound the gradient of W as follows
n 1 ) .
IVw L(s)| < Z . Jm 19:(5) = wil 1 Ei(s)]| (I1Ti(s) " u(s)l| + v (s)ll) [l

1286
\F -yl Z |9 (s Yil

1280n .
<5 \ﬁll( =yl - [lg(s) =yl
128en |, .
SAO\/EHZ"( ) —yl*- B° (42)
so that
W (k+1) 0) <aZHVwL
1280n s
<a- o f —y|?- fo
512cn 9
_A%fll 9(0) — vyl
<@
~ 16¢|| X2
<R,

where the third inequality holds is because m is large, i.e., m = @(62"‘)[7;)(“2||3}(0) —y|]?). To
0
simplify the notation, we assume

C’ X2
C”” 1% 300) - 92 3)

for some large number C' > 0. Moreover, we obtain

W (k+ 1)l < [W(k+1) = W) + [[W(O) < 2cvm,
provided ¢ > 0 is chosen to be large enough, i.e., ¢ = +/Ag/||X]||. Therefore, it follows from
Lemma 3.7 that Apin {G(k+ 1)} > % Thus, the results (i) and (iv) are established.
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By using similar argument, we can upper bound the gradient of A as follows Note that

IVaL(s)| < Z # 19i(s) = yil 1D [l[[T ()~ () 11125

640
f -yl Z 19i(s) — vl

<SSl
_f“jinm )=l 156~ vl
S (OR
so that
I4G6-+1) — AO)] <03 1VAL
s=0
<o f‘*j’iu ~ gl ZBS
< 50) ~ ol

Since m > % [ 9(0) — y||? and ¢, C > 0 is large enough, we have
0
Ak + DIl < [|A(E +1) = A(O)]| + [LAO)]] < 2ev/m.
Therefore, the result (v) is obtained and the equilibrium points z;(k + 1) exists for all ¢ € [n].

To establish the result (vi), we need to derive the bounds between equilibrium points and feature
vectors. Next, we will bound the difference between equilibrium points z;(k + 1) and z;(k). For
any ¢ > 1, we have

127 (k + 1) = 2{ ()| =llo [FAK + Dz (k +1) + ¢i(k + 1)] — o [JAR)z{ (k) + ¢i(K)] |
<|IFA(k + D)z (k + 1) + ¢i(k +1) = FA(k)z{ (k) — ¢ (k)|
<A Ak + 1)z{(k + 1) — A(k)z{ (k)| + i (k + 1) — pi (k).
where the first term can be bounded as follows
A +1) — ARl (k + Dl + TN A 2] (k + 1) — = (k)|
<7a||VaL(E)[|(4c) + A ARE)|[]|2] (k + 1) = z{ (&)]|
<22 (0) - w6 + (/D k+ 1) - =00
and the second term is bounded as follows

%\\U[W(k + 1)) — o[W (k)] sﬁuww +1) = W)l
<= Tw L)
128‘””” (0) —y|2 - 5"
Thus, we obtain
1251k + 1) — 2500 | <(1/2) 250k + 1) — 2k >||+256“”|| (0) — - 5"

<(1/2) e+ 1) 20+ T 50) 8- Y2

512acn
)\Om

<(1/2)l=} (k +1) = 2 (k)| + 19(0) -yl - B~.
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Let ¢ — oo, then we obtain

512acn

2k +1) = (k)| < S 9(0) ] B

By using the Cauchy-Schwartz inequality, we have

512acn3/?

1Z(k+1) = ZR)| <[[Z(k+1) = Z(F)||lF < vlly(U) —yl*- 8k @

In addition, we will also bound the difference in ¢;(k + 1) and ¢;(k). Note that

128accn
)\Om

li(k +1) = ¢i(k)[| = Wk + Da] — oW (k)| < 19(0) - ylI* - 8,

=
—||o
vm
so that

128aicn®/? .

1@k +1) = 2R)] < [@(k+1) = ()l p < ——[19(0) yl*- g (45)

Now, we are ready to establish the result (vi). Note that
1g(k+1) =y =gk +1) — (k) + y(k) - y|I”
=gk +1) =gk + 2 Gk +1) = g(k),9(k) —y) + [[g(k) — y|*.

In the rest of this proof, we will bound each term in the above inequality. By the prediction rule of
y, we can bound the difference between g (k + 1) and g (k) as follows

9k +1) =g (k)| = Z(k + Dulk +1) + S(k + Dok +1) = Z(k)u(k) — 2(k)v(k)|
<N Z(k+ Dk + 1) = Z(k)u(k)| + [ @k + Dok + 1) — B(k)o(k)|],

where the first term can be bounded as follows by using equation 39, 41, 43, 44, hypothesis (ii), and
a large constant Cy > 0

1Z(k + Dlflu(k +1) —uF) || + [ Z(k+1) = Z(F)[[[[wF)]]
=al|Z(k + DIIVu L)+ 1Z2(k+1) = Z(k)|[[[w(F)]]
<aCoc®n|g(0) -yl - 8,

and the second term is bounded as follows by using equation 38, 40, 45, 43, hypothesis (iii), and a
large constant Cy > 0

1Bk + D)[o(k +1) — v(k)| + [k + 1) — D) 0(k)]
=@k + DI[[[Vo L(F)[| + [|®(k + 1) — @ (k) [[[lo(F)]
<aCoc*n||§(0) —y| - B*.
Therefore, we have
19(k +1) — (k)| < aCoc®n]|g(0) —y| - 5, (46)
where the scalar 2 is absorbed in Cy and the constant Cj is difference from C'.
Letg := Z(k)u(k + 1) + ®(k)v(k + 1). Then we have
Gk +1) —g(k),g(k) —y) = @k +1) —g,9(k) —y) + (g — 9(k),9(k) — y).
Let us bound each term individually. By using Cauchy-Schwartz inequality, we have
Gk +1)—g,9(k) —y)
=((Z(k+1) = Z(k))u(k +1),9(k) —y) + (®(k+ 1) — 2(k))v(k +1),9(k) —y)
<UZ(k+1) = ZFE)|[lwE+ )] + |2k +1) = 2E)[[[v(E+ D) |19(k) -yl
<aCoc®n||g(0) —y|| - B*||g(k) — y||, by equation 39, 41, 43, 44
<aCoc?n - 2*(|9(0) — yl|*. (47)
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By using V., L(k) = Z(k)"(§(k) — y), VoL(K) = B(k)T(§(k) — y) and Amin(G(R)) > Ao/2,
we get

(g —9(k), 9(k) —y) = —a(g(k) )" [Z(K)Z(k)" + @(k)@(K)"] (g(k) — )
ap | .
<~ lgk) —yl* (48)
By combining the inequalities equation 46, 47, 48, we obtain

19k +1) = y)* < (1= a [Ao = Coc®n — aCic'n?]) 52(|5(0) — y|*

< (1-%50) #1900 - ul?

k+1
alXp .
~(1-%9) 190 - w

where the second inequality is due to @« = O (%) This proves the result (vi) and complete the
whole proof.

O
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