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A APPENDIX

A.1 PROOF OF LEMMA 3.2

Proof. Let �0 2 (0, 1). Set � , min{�0, �0/c}. Denote �̃ = �/
p
m. Then
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Applying the above argument ` times, we obtain
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where we use the fact z0 = 0. For any positive integers p, q with p  q, we have
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Since � 2 (0, 1), we have kzp
� z

q
k ! 0 as p ! 1. Hence, {z`

}
1
`=1 is a Cauchy sequence. Since

Rm is complete, the equilibrium point z⇤ is the limit of the sequence {z
`
}
1
`=1, so that z exists and

is unique. Moreover, let q ! 1, then we obtain kz
p
� z

⇤
k 

�p

1�� k�k, so that the fixed-point
iteration converges to z linearly.

Let p = 0 and q = `, then we obtain kz
`
k 

1
1��0

k�k.

A.2 PROOF OF LEMMA 3.3

Proof. (i) To simplify the notations, we denote D , diag(�0(�̃Az + �)), and E ,
diag(�0(Wx)). The differential of f is given by

df =d(z � �̃�(�̃Az + �))

=dz �Dd(�̃Az + �)

= [Im � �̃DA] dz � �̃D(dA)z �Dd�.

Taking vectorization on both sides yields

vec (df) = [Im � �̃DA] vec (dz)� vec (�̃DdAz)�Dvec (d�)

= [Im � �̃DA] vec (dz)� �̃[zT
⌦D]vec (dA)�Dvec (d�) .

Therefore, the partial derivative of f with respect to z, A, and � are given by

@f
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= [Im � �̃DA]T

@f

@A
= ��̃

⇥
z
T
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⇤T

@f
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T
.
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It follows from the definition of the feature vector � in equation 4 that

d� =
1

p
m
d�(Wx) =

1
p
m
E(dW )x =

1
p
m

⇥
x
T
⌦E

⇤
vec (W ) .

Thus, the partial derivative of � with respect to W is given by

@�

@W
=

1
p
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⇥
x
T
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⇤T
. (23)

By using the chain rule, we obtain the partial derivative of f with respect to W as follows

@f

@W
=

@�

@W

@f

@�
= �

1
p
m

⇥
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D

T
.

(ii) Let v be an arbitrary vector, and u be an arbitrary unit vector. The reverse triangle inequality
implies that

k(Im � �̃ diag(�0(v))A)uk �kuk � k�̃ diag(�0(v))Auk

�kuk � �̃kdiag(�0(v))kkAkkuk

(a)
� (1� �0)kuk

=1� �0

>0,

where (a) is due to |�
0(v)|  1 and kAkop  c

p
m. Therefore, taking infimum on the

left-hand side over all unit vector u yields the desired result.

(iii) Since f(z⇤
,A,W ) = 0, taking implicit differentiation of f with respect to A at z⇤ gives us
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The results in part (i)-(ii) imply the smallest eigenvalue of @f
@z
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z⇤ is strictly positive, so that it

is invertible. Therefore, we have
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Similarly, we obtain the partial derivative of z⇤ with respect to W as follows
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To further simplify the notation, we denote z to be the equilibrium point z⇤ by omitting the
superscribe, i.e., z = z

⇤. Let ŷ = u
T
z + v

T
� be the prediction for the training data (x,y).

The differential of ŷ is given by

dŷ = d
�
u
T
z + v

T
�
�
= u

T
dz + zdu+ v

T
d�+ �

T
dv.

The partial derivative of ŷ with respect to u, v, z, and � are given by

@ŷ
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@ŷ
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@ŷ
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@ŷ
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= v, (26)

Let ` = 1
2 (ŷ � y)2. Then @`/@ŷ = (ŷ � y). By chain rule, we have
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@ŷ

@u

@`

@ŷ
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=

@ŷ
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By using equation 24-equation 25 and chain rule, we obtain
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and
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(ŷ � y)[xT

⌦E]T
⇥
D

T (Im � �̃DA)�T
u+ v

⇤
. (30)

Since L =
Pn

i=1 `i with `i = `(ŷi, yi), we have dL =
Pn

i=1 d`i and @L/@`i = 1. Therefore,
we obtain
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A.3 PROOF OF LEMMA 3.4

Proof. Let zi denote the i-th equilibrium point of xi. By using equation 24, 25, 31 and 32, we
obtain the dynamics of the equilibrium point zi as follows
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By using equation 23 and 32, we obtain the dynamics of the feature vector �i
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By chain rule, the dynamics of the prediction ŷi is given by
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Define the matrices M(t) 2 Rn⇥n and Q(t) 2 Rn⇥n as follows

M(t)ij ,
1

m
u
T (Im � �̃DiA)�1

DiD
T
j (Im � �̃DjA)�T

u,

Q(t)ij ,
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u+ v
�T

EiE
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�
D
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j (Im � �̃DjA)�T
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�
.

Let X 2 Rn⇥d, �(t) 2 Rn⇥m, and Z(t) 2 Rn⇥m be the matrices whose rows are the training
data xi, feature vectors �i, and equilibrium points zi at time t, respectively. The dynamics of the
prediction vector ŷ is given by

dŷ

dt
= �

⇥�
�
2
M(t) + In

�
�Z(t)Z(t)T +Q(t) �XX

T +�(t)�(t)T
⇤
(ŷ(t)� y).

A.4 PROOF OF LEMMA 3.5

A.4.1 REVIEW OF HERMITE EXPANSIONS

To make the paper self-contained, we review the necessary background about the Hermite polyno-
mials in this section. One can find each result in this section from any standard textbooks about
functional analysis such as MacCluer (2008); Kreyszig (1978), or most recent literature (Nguyen &
Mondelli, 2020, Appendix D) and (Oymak & Soltanolkotabi, 2020, Appendix H).

We consider an L
2-space defined by L

2(R, dP ), where dP is the Gaussian measure, that is,

dP = p(x)dx, where p(x) =
1

p
2⇡

e
� x2

2 .

Thus, L2(R, dP ) is a collection of functions f for which
Z 1

�1
|f(x)|2 dP (x) =

Z 1

�1
|f(x)|2 p(x)dx = Ex⇠N(0,1) |f(x)|

2
< 1.

14



Under review as a conference paper at ICLR 2022

Lemma A.1. The relu activation � 2 L
2(R, dP ).

Proof. Note that
Z 1

�1
|�(x)|2 p(x)dx 

Z 1

�1
|x|

2
p(x)dx = Ex⇠N(0,1) |x|

2 = Var(x) = 1.

For any functions f, g 2 L
2(R, dP ), we define an inner product

hf, gi :=

Z 1

�1
f(x)g(x)dP (x) =

Z 1

�1
f(x)g(x)p(x)dx = Ex⇠N(0,1)[f(x)g(x)].

Furthermore, the induced norm k · k is given by

kfk
2 = hf, fi =

Z 1

�1
|f(x)|2 dP (x) = Ex⇠N(0,1) |f(x)|

2
.

This L
2 space has an orthonormal basis with respect to the inner product defined above, called

normalized probabilist’s Hermite polynomials {hn(x)}1n=0 that are given by

hn(x) =
1

p
n!
(�1)nex

2/2
D

n(e�x2/2), where D
n(e�x2/2) =

d
n

dxn
e
�x2/2

.

Lemma A.2. The normalized probabilist’s Hermite polynomials is an orthonormal basis of
L
2(R, dP ): hhm, hni = �mn.

Proof. Note that Dn(e�x2/2) = e
�x2/2

Pn(x) for a polynomial with degree of n and leading term
is (�1)nxn. Thus, we can consider hn(x) =

1p
n!
(�1)nPn(x).

Assume m < n

hhn, hmi =Ex⇠N(0,1)[hn(x)hm(x)]

=

Z 1

�1
hn(x)hm(x)

1
p
2⇡

e
�x2/2

dx,

=
1

p
2⇡

p
n!
(�1)n

Z 1

�1
D

n(e�x2/2)hm(x)dx, rewrite hn(x) by its definition

=
1

p
2⇡

p
n!
p
m!

(�1)n+m

Z 1

�1
D

n(e�x2/2)Pm(x)dx, rewrite hm by the polynomial form

=
1

p
2⇡

p
n!
p
m!

(�1)2n+m

Z 1

�1
e
�x2/2

Dn[Pm(x)]dx, integration by parts n times

There is no boundary terms because the super exponential decay of e�x2/2 at infinity. Since m < n,
then Dn(Pm) = 0 so that hhm, hni=0. If m = n, then Dn(Pm) = (�1)nn!. Thus, hhn, hni =
1.

Remark: Since {hn} is an orthonormal basis, for every f 2 L
2(R, dP ), we have

f(x) =
1X

n=0

hf, hnihn(x)

in the sense that

lim
N!1

�����f(x)�
NX

n=0

hf, hnihn(x)

�����

2

= lim
N!1

Ex⇠N(0,1)

�����f(x)�
NX

n=0

hf, hnihn(x)

�����

2

= 0

Lemma A.3. f 2 L
2(R, dP ) if and only if

P1
n=0 |hf, hni|

2
< 1.
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Proof. Note that

hf, fi =

Z 1

�1
|f(x)|2 dP (x)

=

Z 1

�1

 1X

i=0

hf, hiihi(x)

!0

@
1X

j=0

hf, hjihj(x)

1

A dP (x)

=
1X

i,j=0

hf, hii hf, hji

Z 1

�1
hi(x)hj(x)dP (x)

=
1X

i=1

|hf, hii|
2
.

Lemma A.4. Consider a Hilbert space H with inner product h·, ·i. If kfn�fk ! 0 and kgn�gk !

0, then hf, gi = limn!1 hfn, gni.

Proof. Observe that

|hf, gi � hfn, gni|  |hf, gi � hfn, gi|+ |hfn, gi � hfn, gni|

kfkkg � gnk+ kfnkkg � gnk.

Let n ! 1, then the continuity of k · k implies the desired result.

Lemma A.5. Let {hn(x)} be the normalized probabilist’s Hermite polynomials. For any fixed
number t, we have

e
xt�t2/2 =

1X

n=0

t
n

p
n!
hn(x). (35)

Proof. First show f(x) = e
xt�t2/t

2 H , L
2(R, dP ).

hf, fi =Ex⇠N(0,1) |f(x)|
2

=

Z 1

�1
e
2xt�t2 1

p
2⇡

e
�x2/2

dx

=e
t2
Z 1

�1

1
p
2⇡

exp

⇢
�
(x� 2t)2

2

�
dx, x ⇠ N(2t, 1)

=e
t2

< 1.

Thus f(x) 2 H . Then f(x) =
P1

n=0 hf, hnihn(x). Note that

hf, hni =Ex⇠N(0,1)[f(x)hn(x)]

=

Z 1

�1
e
xt�t2/2

·
1

p
n!
(�1)nex

2/2
Dn(e

�x2/2) ·
1

p
2⇡

e
�x2/2

dx

=
1

p
n!
(�1)n

1
p
2⇡

Z 1

�1
e
xt�t2/2

·Dn(e
�x2/2)dx, integration by parts n times

=
1

p
n!
(�1)2n

1
p
2⇡

Z 1

�1
e
xt�t2/2

t
n
· e

�x2/2
dx

=
t
n

p
n!

Z 1

�1

1
p
2⇡

e
�(x�t)2/2

dx, x ⇠ N(t, 1)

=
t
n

p
n!
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Lemma A.6. Let a, b 2 Rd with kak = kbk = 1, then

Ew⇠N(0,Id)[hn(ha,wi)hm(hb,wi)] = ha, bi
n
�mn.

Proof. Given fixed numbers s and t, we define two functions f(w) = e
ha,wit�t2/2 and g(w) =

e
hb,wis�s2/2. Let x = ha,wi and y = hb, wi. Then we have

f(w) =e
ha,wit�t2/2 = e

xt�t2/2 =
1X

n=0

t
n

p
n!
hn(x) =

1X

n=0

t
n

p
n!
hn(ha,wi),

g(w) =e
hb,wis�s2/2 = e

ys�s2/2 =
1X

n=0

s
n

p
n!
hn(y) =

1X

n=0

s
n

p
n!
hn(hb,wi).

Define a Hilbert space Hd = L
2(Rd

, dP ), where dP is the multivariate Gaussian measure,
equipped with inner product hf, gi , Ew⇠N(0,Id)[f(w)g(w)]. Clearly, f, g 2 Hd. Define se-
quences {fN} and {gN} as follows

fN (w) =
NX

n=0

t
n

p
n!
hn(ha,wi) and gN (w) =

NX

n=0

s
n

p
n!
hn(hb,wi).

Since kf � fNk ! 0 and kg � gNk ! 0, we have

Ew⇠N(0,Id)[f(w)g(w)] = hf, gi

= lim
N!1

hfN , gN i

= lim
N!1

Ew⇠N(0,Id)[fN (w)gN (w)]

= lim
N!1

NX

n,m=0

t
n
s
m

p
n!
p
m!

Ew⇠N(0,Id)[hn(ha,wi)gn(hb,wi)]

Note that the LHS is also given by

Ew⇠N(0,Id)[f(w)g(w)] =e
�t2/2�s2/2Ew⇠N(0,Id)[e

ha,wit+hb,wis]

=e
�t2/2�s2/2Ew⇠N(0,Id)[e

Pd
i=1 wi(ait+bis)]

=e
�t2/2�s2/2

dY

i=1

Ewi⇠N(0,1)[e
wi(ait+bis)]

=e
�t2/2�s2/2

dY

i=1

Mwi(ait+ bis)

=e
ha,bist

=
1X

n=0

ha, bi
n (st)n

n!
.

Since s and t are arbitrary numbers, matching the coefficients yields

Ew⇠N(0,Id)[hn(ha,wi)hm(hb,wi)] = ha, bi
n
�mn.
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A.4.2 LOWER BOUND THE SMALLEST EIGENVALUES OF G
1

The result in this subsection is similar to the results in (Nguyen & Mondelli, 2020, Appendix D) and
(Oymak & Soltanolkotabi, 2020, Appendix H). The key difference is the assumptions made on the
training data. In particular, Oymak & Soltanolkotabi (2020) assumes the training data is �-separable,
i.e., min{kxi � xjk, kxi + xjk} � � > 0 for all i 6= j, and Nguyen & Mondelli (2020) assumes
the data xi follows some sub-Gaussian random variable, while we assume no two data are parallel
to each other, i.e., xi 6k xj for all i 6= j.
Lemma A.7. Given an activation function �, if � 2 L

2(R, dP ) and kxik = 1 for all i 2 [n], then

G
1 =

1X

k=0

|h�, hki|
2 �

XX
T
� · · · �XX

T
�

| {z }
k times

(36)

where � is elementwise product.

Proof. Observe
G

1
ij =Ew⇠N(0,Id) [�(hw,xii)�(hw,xji)]

=
1X

k,`=0

h�, hki h�, h`iEw⇠N(0,Id) [hk(hw,xii)h`(hw,xji)]

=
1X

k,`=0

h�, hki h�, h`i · hxi,xji
k
�k`

=
1X

k=0

h�, hki
2
hxi,xji

k

Note that the tensor product of xi and xi is xi ⌦ xi 2 Rd2⇥1, so that

hxi,xji
k =

*
xi ⌦ · · ·⌦ xi| {z }

k times

,xj ⌦ · · ·⌦ xj| {z }
k times

+

Here we introduce the (row-wise) Khatri–Rao product of two matrices A 2 Rk⇥m, B 2 Rk⇥n.
Then

A ⇤B =

2

64
A1⇤ ⌦B1⇤

...
Ak⇤ ⌦Bk⇤

3

75 2 Rk⇥mn

where Ai⇤ indicates the i-th row of matrix A. Therefore, the i-th row of X ⇤ · · · ⇤ X , X
⇤n is

xi ⌦ · · ·⌦ xi. As a result, we obtain a more compact form of equation 36 as follows

G
1 =

1X

k=0

|h�, hki|
2 (X⇤k)(X⇤k)T . (37)

Lemma A.8. If �(x) is a nonlinear function and |�(x)|  |x| and , then
sup{n : h�, hni > 0} = 1.

Proof. It is equivalent to show �(x) is not a finite linear combination of polynomials. We prove
by contradiction. Suppose �(x) = a0 + a1x + · · · + anx

n. Since �(0) = 0 = a0, then �(x) =
a1x+ · · ·+ anx

n. Observe that

lim
x!1

|�(x)|

|x|
= lim

x!1

|a1x+ · · ·+ anx
n
|

|x|

= lim
x!1

��a1 + · · ·+ anx
n�1
�� ,

=1

which contradicts |�(x)|
|x|  1 for all x 6= 0.
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Lemma A.9. If xi 6k xj for all i 6= j, then there exists k0 > 0 such that �min

⇥
(X⇤k)(X⇤k)T

⇤
> 0

for all k � k0. Therefore, �min(G1) > 0.

Proof. To simplify the notation, denote K = (X⇤k)T 2 Rkd⇥n. Since xi 6k xj and kxik = 1, then
let � , max{|hxi,xji|} = max{|cos ✓ij |} and � 2 (0, 1), where ✓ij is the angle between xi and
xj . For any unit vector v 2 Rn, we have

v
T (X⇤k)(X⇤k)Tv =kKvk

2

=

�����

nX

i=1

viK⇤i

�����

2

=
nX

i=1

nX

j=1

vivj hK⇤i,K⇤ji

=
nX

i=1

nX

j=1

vivj hxi,xji
k

=
nX

i=1

v
2
i kxik

2k +
X

i 6=j

vivj hxi,xji
k

=1 +
X

i 6=j

vivj hxi,xji
k
,

where the last equality is because kxik = 1 and kvk = 1. Note that

������

X

i 6=j

vivj hxi,xji
k

������


X

i 6=j

|vi| |vj | |hxi,xji|
k

�
k
X

i 6=j

|vi| |vj | , by |hxi,xji|  �

�
k

 
nX

i=1

|vi|

!2

n�
k
, by Cauchy-Schwart inequlity.

By inverse triangle inequality, we have

kKvk
2
� 1� n�

k
.

Choose k0 � log n/ log(1/�), then �min{(X⇤k)(X⇤k)T } > 0 for all k � k0.
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A.5 PROOF OF LEMMA 3.6

Proof. By using the concentration inequality for standard Gaussian random variables, we have

P
⇢
kG(0)�G

1
k2 �

�0

4

�
P
⇢
kG(0)�G

1
kF �

�0

4

�

=P
(
kG(0)�G

1
k
2
F �

✓
�0

4

◆2
)

=P

8
<

:

nX

i,j=1

��Gij(0)�G
1
ij

��2 �

✓
�0

4

◆2
9
=

;



nX

i,j=1

P
(
��Gij(0)�G

1
ij

��2 �

✓
�0

4n

◆2
)

=
nX

i,j=1

P
⇢��Gij(0)�G

1
ij

�� � �0

4n

�

n
22 exp

⇢
�
2m(�0/4n)2

22

�

�,

where we use the fact kXk2  kXkF , and P{
Pn

i=1 xi � "} 
Pn

i=1 P{xi � "/n}.

A.6 PROOF OF LEMMA 3.7

Proof. By using the 1-Lipschitz continuity of �(x), we have

kG�G(0)k =
1

m
k�(XW

T )�(XW
T )T � �(XW (0)T )�(XW (0)T )T k


1

m
k�(XW

T )�(XW
T )T � �(XW

T )�(XW (0)T )T k

+
1

m
k�(XW

T )�(XW (0)T )T � �(XW (0)T )�(XW (0)T )T k

=
1

m
k�(XW

T )kk�(XW
T )� �(XW (0)T )k

+
1

m
k�(XW

T )� �(XW (0)T )kk�(XW (0)T )k


1

m
kXkkW kkXkkW �W (0)k+

1

m
kXkkW �W (0)kkXkkW (0)k


4c
p
m
kXk

2
kW �W (0)k


�0

4
.

A.7 PROOF OF LEMMA 3.8

Proof. It suffices to show the result hold for � = min{�0, �0/2c}, where �0 = 1/2. We prove by
the induction. Suppose that for 0  s  t, the followings hold

(i) �min(G(s)) � �0
2 ,

(ii) ku(s)k 
16c

p
n

�0
kŷ(0)� yk,

(iii) kv(s)k 
8c

p
n

�0
kŷ(0)� yk,
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(iv) kW (s)k  2c
p
m,

(v) kA(s)k  2c
p
m,

(vi) kŷ(s)� yk
2
 exp{��0s}kŷ(0)� yk

2,

Since �min(G(s)) � �0
2 , we have

d

dt
kŷ(t)� yk

2 =� 2(ŷ(t)� y)TH(t)(ŷ(t)� y)

� �0kŷ(t)� yk
2

Solving the ordinary differential equation yields

kŷ(t)� yk
2
 exp{��0t}kŷ(0)� yk

2
.

By using the inductive hypothesis kW (s)k  2c
p
m, we have

k�i(s)k =

����
1

p
m
�(W (s)xi)

���� 
1

p
m
kW (s)kkxik  2c.

It follows from Lemma 3.2 with �0 = 1/2 that

kz
⇤
i (s)k  2k�i(s)k  4c.

Note that

krvL(s)k 

nX

i=1

|ŷi(s)� yi| k�i(s)k

2c
nX

i=1

|ŷi(s)� yi|

2c
p
nkŷ(s)� yk

2c
p
n exp{��0s/2}ky(0)� yk

and so

kv(t)� v(0)k 

Z t

0
krvL(s)kds

2c
p
nky(0)� yk

Z t

0
exp{��0s/2}ds


4c
p
n

�0
kŷ(0)� yk.

Since vi(0) follows symmetric Bernoulli distribution with ±1/
p
m, then kv(0)k2 = 1 and we

obtain

kv(t)k  kv(t)� v(0)k+ kv(0)k 
8c
p
n

�0
kŷ(0)� yk.

Note that

kruL(s)k 

nX

i=1

|ŷi(s)� yi| kz
⇤
i k

4c
p
nkŷ(s)� yk

4c
p
n exp{��0s/2}kŷ(0)� yk

so that

ku(t)� u(0)k 

Z t

0
kruL(s)kds 

8c
p
n

�0
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Since ui(0) follows symmetric Bernoulli distribution with ±1/
p
m, then ku(0)k2 = 1 and we

obtain

ku(t)k  ku(t)� u(0)k+ ku(0)k 
16c

p
n

�0
kŷ(0)� yk

Note that

krWL(s)k 

nX

i=1

1
p
m

|ŷi(s)� yi| kEi(s)k
�
kUi(s)

�1
u(s)k+ kv(s)k

�
kxik


64c

p
n

�0
p
m

kŷ(0)� yk

nX

i=1

|ŷi(s)� yi|


64cn

�0
p
m
kŷ(0)� yk · kŷ(s)� yk


64cn

�0
p
m
kŷ(0)� yk

2
· exp{��0s/2}

so that

kW (t)�W (0)k 

Z t

0
krWL(s)kds


128cn

�
2
0

p
m
kŷ(0)� yk

2



p
m�0

16ckXk2

R.

so that we obtain

kW (t)k  kW (t)�W (0)k+ kW (0)k  2c
p
m,

provided c > 0 is chosen to be large enough, i.e., c %
p
�0/kXk. Moreover, it follows from

Lemma 3.7 that �min{G(t)} �
�0
2 .

Note that

krAL(s)k 

nX

i=1

�
p
m

|ŷi(s)� yi| kDikkUi(s)
�1

kku(s)kkz⇤
i k


32c

p
n

�0
p
m

kŷ(0)� yk ·

nX

i=1

|ŷi(s)� yi|


32cn

�0
p
m
kŷ(0)� yk · kŷ(s)� yk


32cn

�0
p
m
kŷ(0)� yk

2
· exp{��0s/2},

so that

kA(t)�A(0)k 

Z t

0
krAL(s)kds


64cn

�
2
0

p
m
kŷ(0)� yk

2

Then

kA(t)k  kA(t)�A(0)k+ kA(0)k  2c
p
m.
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A.8 DISCRETE TIME ANALYSIS

In this section, we prove the result for discrete time analysis or result for gradient descent. Assume
kA(0)k  c

p
m and kW (0)k  c

p
m. Further, we assume �min(G(0)) �

3
4�0 and we assume

m = ⌦
⇣

c2nkXk2

�3
0

kŷ(0)� yk
2
⌘

and choose 0 < �  min{1/2, 1/4c}. Moreover, we assume the

stepsize ↵ = O
�
�0/n

2
�
. We make the inductive hypothesis as follows for all 0  s  k

(i) �min(G(s)) � �0
2 ,

(ii) ku(s)k 
32c

p
n

�0
kŷ(0)� yk,

(iii) kv(s)k 
16c

p
n

�0
kŷ(0)� yk,

(iv) kW (s)k  2c
p
m,

(v) kA(s)k  2c
p
m,

(vi) kŷ(s)� yk
2
 (1� ↵�0/2)skŷ(0)� yk

2.

Proof. By using the inductive hypothesis, we have for any 0  s  k

k�i(s)k = k
1

p
m
�(W (s)xi)k 

1
p
m
kW (s)k  2c

and

k�(s)k  k�(s)kF =

 
nX

i=1

k�i(s)k
2

!1/2

 2c
p
n. (38)

By using Lemma 3.2, we obtain the upper bound for the equilibrium point zi(s) for any 0  s  k

as follows

kzi(s)k 
1

1� �0
k�i(s)k = 2k�i(s)k  4c,

where the last inequality is because we choose �0 = 1/2, and

kZ(s)k  kZ(s)kF =

 
nX

i=1

kzi(s)k
2

!1/2

= 4c
p
n. (39)

By using the upper bound of �i(s), we obtain for any 0  s  k

krvL(s)k 

nX

i=1

|ŷi(s)� yi| k�i(s)k

2c
nX

i=1

|ŷi(s)� yi|

2c
p
nkŷ(s)� yk

2c
p
n(1� ↵�0/2)

s/2
kŷ(0)� yk.

Let � :=
p

1� ↵�0/2. Then the upper bound of krvL(s)k can be written as
krvL(s)k  2c

p
n�

s
kŷ(0)� yk, (40)

and

kv(k + 1)� v(0)k 

kX

s=0

kv(s+ 1)� v(s)k = ↵

kX

s=0

krvL(s)k

↵ · 2c
p
nkŷ(0)� yk ·

kX

s=0

�
s

=
2(1� �

2)

�0
· 2c

p
nkŷ(0)� yk

1� �
k+1

1� �


8c
p
n

�0
kŷ(0)� yk,
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where the last inequality we use the facts � < 1. By triangle inequality, we obtain

kv(k + 1)k  kv(k + 1)� v(0)k+ kv(0)k 
16c

p
n

�0
kŷ(0)� yk,

which proves the result (iii). Similarly, we can upper bound the gradient of u

kruL(s)k 

nX

i=1

|ŷi(s)� yi| kzik  4c
p
nkŷ(s)� yk  4c

p
n�

s
kŷ(0)� yk (41)

so that

ku(k + 1)� u(0)k 
16c

p
n

�0
kŷ � yk,

and

ku(k)k  ku(k)� u(0)k+ ku(0)k 
32c

p
n

�0
kŷ(0)� yk.

The result (ii) is also obtained.

By using the inductive hypothesis, we can upper bound the gradient of W as follows

krWL(s)k 

nX

i=1

1
p
m

|ŷi(s)� yi| kEi(s)k
�
kUi(s)

�1
u(s)k+ kv(s)k

�
kxik


128c

p
n

�0
p
m

kŷ(0)� yk

nX

i=1

|ŷi(s)� yi|


128cn

�0
p
m
kŷ(0)� yk · kŷ(s)� yk


128cn

�0
p
m
kŷ(0)� yk

2
· �

s (42)

so that

kW (k + 1)�W (0)k ↵

kX

s=0

krWL(s)k

↵ ·
128cn

�
2
0

p
m
kŷ(0)� yk

2
·

kX

s=0

�
s


512cn

�
2
0

p
m
kŷ(0)� yk

2



p
m�0

16ckXk2

R,

where the third inequality holds is because m is large, i.e., m = ⇥( c
2nkXk2

�3
0

kŷ(0) � yk
2). To

simplify the notation, we assume

m =
Cc

2
nkXk

2

�
3
0

kŷ(0)� yk
2 (43)

for some large number C > 0. Moreover, we obtain

kW (k + 1)k  kW (k + 1)�W (0)k+ kW (0)k  2c
p
m,

provided c > 0 is chosen to be large enough, i.e., c %
p
�0/kXk. Therefore, it follows from

Lemma 3.7 that �min{G(k + 1)} �
�0
2 . Thus, the results (i) and (iv) are established.
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By using similar argument, we can upper bound the gradient of A as follows Note that

krAL(s)k 

nX

i=1

�
p
m

|ŷi(s)� yi| kDikkUi(s)
�1

kku(s)kkz⇤
i k


64c

p
n

�0
p
m

kŷ(0)� yk ·

nX

i=1

|ŷi(s)� yi|


64cn

�0
p
m
kŷ(0)� yk · kŷ(s)� yk


64cn

�0
p
m
kŷ(0)� yk

2
· �

s
,

so that

kA(k + 1)�A(0)k ↵

kX

s=0

krAL(s)k

↵ ·
64cn

�0
p
m
kŷ(0)� yk

2
·

kX

s=0

�
s


256cn

�
2
0

p
m
kŷ(0)� yk

2

Since m �
Cc2nkXk2

�3
0

kŷ(0)� yk
2 and c, C > 0 is large enough, we have

kA(k + 1)k  kA(k + 1)�A(0)k+ kA(0)k  2c
p
m.

Therefore, the result (v) is obtained and the equilibrium points zi(k + 1) exists for all i 2 [n].

To establish the result (vi), we need to derive the bounds between equilibrium points and feature
vectors. Next, we will bound the difference between equilibrium points zi(k + 1) and zi(k). For
any ` � 1, we have

kz
`+1
i (k + 1)� z

`
i (k)k =k�

⇥
�̃A(k + 1)z`

i (k + 1) + �i(k + 1)
⇤
� �

⇥
�̃A(k)z`

i (k) + �i(k)
⇤
k

k�̃A(k + 1)z`
i (k + 1) + �i(k + 1)� �̃A(k)z`

i (k)� �i(k)k

�̃kA(k + 1)z`
i (k + 1)�A(k)z`

i (k)k+ k�i(k + 1)� �i(k)k,

where the first term can be bounded as follows
�̃kA(k + 1)�A(k)kkz`

i (k + 1)k+ �̃kA(k)kkz`
i (k + 1)� z

`
i (k)k

�̃↵krAL(k)k(4c) + �̃kA(k)kkz`
i (k + 1)� z

`
i (k)k


64↵cn

�0m
kŷ(0)� yk

2
�
k + (1/2)kz`

i (k + 1)� z
`
i (k)k,

and the second term is bounded as follows
1

p
m
k�[W (k + 1)xi]� �[W (k)xi]k 

1
p
m
kW (k + 1)�W (k)kkxik


↵

p
m
krWL(k)k


128↵cn

�0m
kŷ(0)� yk

2
· �

k
.

Thus, we obtain

kz
`+1
i (k + 1)� z

`
i (k)k (1/2)kz`

i (k + 1)� z
`
i (k)k+

256↵cn

�0m
kŷ(0)� yk

2
· �

k

(1/2)`kz1
i (k + 1)� z

1
i (k)k+

256↵cn

�0m
kŷ(0)� yk

2
· �

k
·

1X

j=0

2�j

(1/2)`kz1
i (k + 1)� z

1
i (k)k+

512↵cn

�0m
kŷ(0)� yk

2
· �

k
.
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Let ` ! 1, then we obtain

kzi(k + 1)� zi(k)k 
512↵cn

�0m
kŷ(0)� yk

2
· �

k
.

By using the Cauchy-Schwartz inequality, we have

kZ(k + 1)�Z(k)k  kZ(k + 1)�Z(k)kF 
512↵cn3/2

�0m
kŷ(0)� yk

2
· �

k
. (44)

In addition, we will also bound the difference in �i(k + 1) and �i(k). Note that

k�i(k + 1)� �i(k)k =
1

p
m
k�[W (k + 1)xi]� �[W (k)xi]k 

128↵cn

�0m
kŷ(0)� yk

2
· �

k
,

so that

k�(k + 1)��(k)k  k�(k + 1)��(k)kF 
128↵cn3/2

�0m
kŷ(0)� yk

2
· �

k (45)

Now, we are ready to establish the result (vi). Note that

kŷ(k + 1)� yk
2 =kŷ(k + 1)� ŷ(k) + ŷ(k)� yk

2

=kŷ(k + 1)� ŷ(k)k2 + 2 hŷ(k + 1)� ŷ(k), ŷ(k)� yi+ kŷ(k)� yk
2
.

In the rest of this proof, we will bound each term in the above inequality. By the prediction rule of
ŷ, we can bound the difference between ŷ(k + 1) and ŷ(k) as follows

kŷ(k + 1)� ŷ(k)k =kZ(k + 1)u(k + 1) +�(k + 1)v(k + 1)�Z(k)u(k)��(k)v(k)k

kZ(k + 1)u(k + 1)�Z(k)u(k)k+ k�(k + 1)v(k + 1)��(k)v(k)k,

where the first term can be bounded as follows by using equation 39, 41, 43, 44, hypothesis (ii), and
a large constant C0 > 0

kZ(k + 1)kku(k + 1)� u(k)k+ kZ(k + 1)�Z(k)kku(k)k

=↵kZ(k + 1)kkruL(k)k+ kZ(k + 1)�Z(k)kku(k)k

↵C0c
2
nkŷ(0)� yk · �

k
,

and the second term is bounded as follows by using equation 38, 40, 45, 43, hypothesis (iii), and a
large constant C0 > 0

k�(k + 1)kkv(k + 1)� v(k)k+ k�(k + 1)��(k)kkv(k)k

=↵k�(k + 1)kkrvL(k)k+ k�(k + 1)��(k)kkv(k)k

↵C0c
2
nkŷ(0)� yk · �

k
.

Therefore, we have

kŷ(k + 1)� ŷ(k)k  ↵C0c
2
nkŷ(0)� yk · �

k
, (46)

where the scalar 2 is absorbed in C0 and the constant C0 is difference from C.

Let g := Z(k)u(k + 1) +�(k)v(k + 1). Then we have

hŷ(k + 1)� ŷ(k), ŷ(k)� yi = hŷ(k + 1)� g, ŷ(k)� yi+ hg � ŷ(k), ŷ(k)� yi .

Let us bound each term individually. By using Cauchy-Schwartz inequality, we have

hŷ(k + 1)� g, ŷ(k)� yi

= h(Z(k + 1)�Z(k))u(k + 1), ŷ(k)� yi+ h(�(k + 1)��(k))v(k + 1), ŷ(k)� yi

 (kZ(k + 1)�Z(k)kku(k + 1)k+ k�(k + 1)��(k)kkv(k + 1)k) kŷ(k)� yk

↵C0c
2
nkŷ(0)� yk · �

k
kŷ(k)� yk, by equation 39, 41, 43, 44

↵C0c
2
n · �

2k
kŷ(0)� yk

2
. (47)
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By using ruL(k) = Z(k)T (ŷ(k) � y), rvL(k) = �(k)T (ŷ(k) � y) and �min(G(k)) � �0/2,
we get

hg � ŷ(k), ŷ(k)� yi = �↵(ŷ(k)� y)T
⇥
Z(k)Z(k)T +�(k)�(k)T

⇤
(ŷ(k)� y)

 �
↵�0

2
kŷ(k)� yk

2
. (48)

By combining the inequalities equation 46, 47, 48, we obtain

kŷ(k + 1)� yk
2

�
1� ↵

⇥
�0 � C0c

2
n� ↵C

2
0c

4
n
2
⇤�

�
2k
kŷ(0)� yk

2



✓
1�

↵�0

2

◆
�
2k
kŷ(0)� yk

2

=

✓
1�

↵�0

2

◆k+1

kŷ(0)� yk
2
,

where the second inequality is due to ↵ = O
�
�0
n2

�
. This proves the result (vi) and complete the

whole proof.
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