
A Clarification of Notation

In this section, we provide a comprehensive clarification on the use of notation in this paper.

Throughout the paper, we use O(·) to hide problem-independent constants and use (·)[a,b] to denote
the truncation into the range [a, b]. I and J denote the sets of all side-1 and side-2 agents respectively.
Further, we use I 2 2I and J 2 2J to denote any set of participating agents, which are the subsets of
I and J .

For any given stage h 2 [H], we use sh and (Ch, Ih, Jh) interchangeably when describing any state
sh 2 S where S = C ⇥ 2I ⇥ 2J . Analogously, we also use ah and (eh, Xh, ⌧h) interchangeably for
the action ah 2 A where A = ⌥⇥ X ⇥ T

We use ⇡ = {⇡h}
H

h=1 to denote a policy, where each ⇡h is defined to be a mapping from S to a
distribution �A on A. Therefore, for any h 2 [H] and sh 2 S, ⇡h(·|sh) denotes a probability
distribution on A. Note that because A = ⌥⇥X ⇥ T , the policy ⇡ is a joint policy. We may slightly
abuse the notation in the paper and refer to ⇡ as the policy restricted on ⌥ only, whenever it is clear
from the context. In such case, we refer to ⇡h(·|sh) as a distribution on ⌥ only.

We also present the following table of notations. The ⇡ in the superscript can be replaced by ⇡k or
⇡?, where the former refers to the policy in episode k, and the latter refers to the optimal policy.

Table 1: Notation

Notation Meaning

C, I,J set of contexts, side-1 agents, side-2 agents

⌥,X , T
set of planner’s actions, all matchings and transfers over all possible subsets of

I ⇥ J

rh, rh reward, pseudo-reward functions

V
⇡

h
, Q

⇡

h
, V

?

h

value, Q functions under ⇡, optimal value functions w.r.t. the transition
functions {Ph}

H

h=1 and reward functions {rh}Hh=1

V
⇡

h
, Q

⇡

h
, V

?

h

pseudo-value, pseudo-Q functions under ⇡, optimal pseudo-value functions w.r.t.
the transition functions {Ph}

H

h=1 and reward functions {rh}Hh=1

V
k

h
, Q

k

h
estimated value, Q functions for stage h in episode k in Algorithm 1

⇡k the policy followed by Algorithm 1 in episode k, where ⇡k = {⇡k,h}
H

h=1

⇡k,h the policy followed by Algorithm 1 at stage h in episode k

B Supplementary Information on Matching and Stability

In this section, we review some basics on the matching problem. We first introduce the classic
problem of (static) matching with transfers and the notion of stability. We then recap the primal-dual
formulation that provides an efficient way to solve a stable matching (Shapley and Shubik, 1971).
Finally, we give more details about Subset Instability and its properties.

B.1 Matching with Transferable Utilities

This section is a supplementary to Section 3.1 in the main text. We introduce the two-sided static
matching with transferable utilities.

Denote the sets of participating agents by I and J for two sides respectively. A matching X ✓ I ⇥ J

is a set of pairs of agents, and (i, j) 2 X means i 2 I is matched to j 2 J . Each agent is matched at
most once. We denote by X(i) = j and X(j) = i for any matched pair (i, j) 2 X , while for any
unmatched agent a 2 I [ J , we write X(a) = a.

Matched agents receive utilities, denoted by u : I ⇥ J ! R for agents in I and v : I ⇥ J ! R for
agents in J . Specifically, if (i, j) 2 X , then agent i receives an utility u(i, j) and agent j receives an
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utility v(i, j). Remaining unmatched agents receive zero utility. With a slight abuse of notation, we
overwrite u(i, i) = 0 and v(j, j) = 0 for any i 2 I and j 2 J .

In addition, there are utility transfers between (and only between) agents. We denote the transfer
function by ⌧ : I ⇥ J ! R such that for any agent a 2 I [ J , ⌧(a) is the transfer received by agent
a. Since the transfers are within agents, we have

X

a2I[J

⌧(a) = 0.

We denote the market outcome by (X, ⌧), under which the net utility received by an agent i 2 I is
u(i, j) + ⌧(i) if (i, j) 2 X , and similarly for agents in J .

The notion of stable matching is as follows.
Definition B.1 (Stable matching). A matching-transfer pair (X, ⌧) on I, J is stable if:

1. The net utility of of any agent is non-negative, i.e.

u(i,X(i)) + ⌧(i) � 0,

v(X(j), j) + ⌧(j) � 0,

for all i 2 I and j 2 J .

2. There are no blocking pairs, i.e.

[u(i,X(i)) + ⌧(i)] + [v(X(j), j) + ⌧(j)] � u(i, j) + v(i, j),

for all pairs (i, j) 2 I ⇥ J .

Stable matching implies that no matched agents would rather be unmatched and no pair of agents
can find a transfer between themselves so that both would rather match with each other than follow
(X, ⌧). The following proposition provides a fundamental and important max-weight interpretation
for stable matchings.
Proposition B.2 (Shapley and Shubik 1971). For the matching with transfer problem, if (X, ⌧) is a

stable matching under Definition B.1, then X must be the max-weight matching, i.e.,

X = argmax
X0

X

i2I,j2J

u(i,X 0(i)) + v(X 0(j), j)

where the maximum is over all matchings on I ⇥ J .

Therefore, by Proposition B.2, to maximize the total social welfare (i.e. sum of utilities), it suffices to
find a stable matching. But how? This is answered in the next subsection.

B.2 The Linear Program and Dual Program

In this subsection, we explain how to find a stable matching (X, ⌧) given input I, J, u, v, which gives
rise to the algorithm OM (i.e. Algorithm 3) in the main text.

Shapley and Shubik (1971) showed that, assuming the utility functions are known, the stable (X, ⌧)
can be found by solving the following linear program and its dual program (recapped from Section
4.1 in the main text):

LP(I, J, u, v) : max
w2R|I|⇥|J|

X

(i,j)2I⇥J

wi,j [u(i, j) + v(i, j)]

s.t.
X

j2Jh

wi,j  1, 8 i 2 I,

X

i2Ih

wi,j  1, 8 j 2 J,

wi,j � 0, 8 (i, j) 2 I ⇥ J,

(14)
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and its dual program:

DP(I, J, u, v) : min
p:I[J!R+

X

a2I[J

p(a) (15)

s.t. p(i) + p(j) � u(i, j) + v(i, j), 8(i, j) 2 I ⇥ J.

Denote the solution pair to the primal-dual problems by (w, p). Shapley and Shubik (1971) proved
that (w, p) leads to a max-weight stable matching-transfer pair (X, ⌧). Specifically, it is proved that
the vector w must have integer entries, i.e., wi,j = 0 or 1, which naturally induces a matching X such
that (i, j) 2 X if and only if wi,j = 1. Correspondingly, the transfers are ⌧(i) = p(i)� u(i,X(i))
for i 2 I , and similarly for j 2 J .

The above procedure constitutes the subroutine oracle OM as displayed in Algorithm 3. It takes as
input the sets of participating agents and estimated utility functions, then outputs the stable matching
(X, ⌧) by solving the primal-dual linear program described above. Note that the matching is only
stable with respect to the estimated utility functions.

B.3 Details about Subset Instability

Next, we review the notion of Subset Instability and its properties. We refer the interested reader to
(Jagadeesan et al., 2021) for the full details.

Given a matching-pair (X, ⌧), define its utility difference as

max
X0

X

i2I,j2J

u(i,X 0(i)) + v(X 0(j), j)

�
�

 X

i2I,j2J

u(i,X(i)) + v(X(j), j)

�
. (16)

Recall the definition of Subset Instability:
Definition 4.1 (Subset Instability, Jagadeesan et al. 2021). Given any agent sets I, J and utility

functions u, v : I ⇥ J ! R, the Subset Instability SI(X, ⌧ ; I, J, u, v) of the matching and transfer

(X, ⌧) is defined as

max
I0⇥J 0✓I⇥J

⇣
max
X0

X

i2I0

u(i,X 0(i)) +
X

j2J 0

v(X 0(j), j)
⌘

�

⇣X

i2I0

(u(i,X(j)) + ⌧(i))
⌘
�

⇣X

j2J 0

(v(X(j), j) + ⌧(j))
⌘�

where X(·) and X
0(·) denotes the matched agent in matching X and X

0
respectively.

By definition, Subset Instability indicates whether there exists any subset I 0 ⇥ J
0 of agents who can

achieve a higher total utility by taking some alternative matching X
0 among themselves other than the

current matching-transfer pair (X, ⌧). Thus, Subset Instability is an upper bound of the total utility
difference, and quantifies the distance from a proposed matching to the optimal stable matching, as
summarized in the following proposition.
Proposition B.3 (Proposition 4.4 in Jagadeesan et al. 2021). The following holds for Subset Instability

1. Subset Instability is always nonnegative and is zero if and only if (X, ⌧) is stable matching.

2. Subset Instability is Lipschitz continuous with respect to the `1 norm of the utility functions.

|SI(X, ⌧ ; I, J, u, v)� SI(X, ⌧ ; I, J, eu, ev)|

 2

✓X

i2I

ku(i, ·)� eu(i, ·)k1 �
X

j2J

kv(·, j)� ev(·, j)k1
◆
.

3. Subset Instability is always at least the utility difference (16).

In our problem, this allows us to bound the total regret of the agents by the sum of Subset Instability
of matchings across all episodes, as reflected in Proposition 4.2.
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C Proof Sketch

C.1 Optimistic Utility and Reward Estimates

The key step in our analysis is to show that the estimated pseudo-reward function r
k

h
satisfies optimism,

i.e., rk
h
� rh, and we need to ensure that rk

h
is not too far away from rh. The lemma below justifies

the optimism of utility estimates.
Lemma C.1 (UCB for Utility Estimates; proof in E.1). For any 0 < � < 1, set �u as �u =p
d2 log[2(1 + d2Kmaxh min{|Ih|, |Jh|})/(��)] +

p
�d. Then with probability at least 1� �, u

k

h

and v
k

h
in Algorithm 1 satisfy u

k

h
� uh and v

k

h
� vh. Furthermore, |u

k

h
(·)�uh(·)| and |v

k

h
(·)�vh(·)|

are bounded by 2�u k�(·)k(⌃k

h
)�1 .

Next, we explain why the optimism of utility estimates implies that of reward estimates. By Lemma
C.1, we can write u

k

h
= uh + bu,h and v

k

h
= vh + bv,h where bu,h and bv,h are bonus functions

satisfying

bu,h(C, e, i, j), bv,h(C, e, i, j) 2
h
0, 2�u k�(C, e, i, j)k(⌃k

h
)�1

i
.

Lemma C.2 (Planner’s Optimism; proof in E.2). Under the event of Lemma C.1, it holds that for

any (C, e) 2 C ⇥⌥,

0  r
k

h
(C, e, Ih, Jh)� rh(C, e, Ih, Jh) 

X
(i,j)2X

k

h

(bu,h(C, e, i, j) + bv,h(C, e, i, j)).

In the sequel, we denote by ⇡k the policy whose market making part is greedy w.r.t. Q
k

h
and whose

matching part chooses the max-weight stable matching given u
k

h
and v

k

h
.

C.2 Proof Sketch of Theorem 5.4

By definition (9), the agents’ regret can be interpreted as the expected sum of total SI across all time
steps, where the expectation is over the trajectory induced by ⇡k for k 2 [K].

To bound the regret, we relate the expected SI in (9) with the realized SI via a martingale difference
sequence. Specifically, writing SIh = SI(sh, ah, uh, vh) and SIk

h
= SI(sk

h
, a

k

h
, uh, vh), we define the

sum of differences as
XK

k=1

⇢
E⇡k

XH

h=1
SIh

�
�

XH

h=1
SIk

h

�
. (17)

We bound the difference (17) and the sum of realized SI
P

K

k=1

P
H

h=1 SIk
h

separately, where the
former is a sum of martingale difference sequences that concentrates and the latter can be bounded
using the following lemma.
Lemma C.3 (Lemma 5.4 in Jagadeesan et al. 2021; proof in E.3). Under the event of Lemma C.1,

we have

SIk
h


X
(i,j)2X

k

h

(bu,h(C
k

h
, e

k

h
, i, j) + bv,h(C

k

h
, e

k

h
, i, j)).

Remark C.4. Note that each implemented matching induces several utility observations at a time, so
bounding the bonus sum for utilities has a resemblance to lazy policy updates in the online learning
literature (Abbasi-Yadkori et al., 2011). It particularly is similar to techniques used in the low
switching cost problem in RL (Bai et al., 2019; Wang et al., 2021; Gao et al., 2021). This will be
clear in the proof of Theorem 5.4 in Appendix D.3.

C.3 Proof Sketch of Theorem 5.5

Define the following functions �k
h

and terms ⇣1
k,h

, ⇣
2
k,h

:

�
k

h
(C, e, I, J) := [rh + PhV

k

h+1 �Q
k

h
](C, e, I, J) ,

⇣
1
k,h

:= (V
k

h
� V

⇡k

h
)(Ck

h
, Ih, Jh)� (Q

k

h
�Q

⇡k

h
)(Ck

h
, e

k

h
, Ih, Jh) , (18)

⇣
2
k,h

:= Ph(V
k

h+1 � V
⇡k

h+1)(C
k

h
, e

k

h
, Ih, Jh)� (V

k

h+1 � V
⇡k

h+1)(C
k

h+1, Ih+1, Jh+1).
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To simplify the notation, in the following, we omit Ih, Jh from the arguments of the functions since
we are conditioning on {Ih, Jh}

H

h=1 being fixed.
Lemma C.5 (Regret Decomposition of Planner; proof in E.4). The planner’s regret defined by (8)
satisfies

R
P (K) =

KX

k=1

HX

h=1

�
⇣
1
k,h

+ ⇣
2
k,h

�

| {z }
E1

+
KX

k=1

HX

h=1

⇥
E⇡?

⇥
�
k

h
(Ch, eh)|C

k

1

⇤
� �

k

h
(Ck

h
, e

k

h
)
⇤

| {z }
E2

(19)

+
KX

k=1

HX

h=1

E⇡?

h
hQ

k

h
(Ch, ·),⇡

?

h
(·|Ch)� ⇡k,h(·|Ch)i⌥

���Ck

1

i

| {z }
E3

,

where the expectation E⇡? [·|Ck

1 ] is with respect to the trajectory {Ch, eh}
H

h=1 induced by the policy

⇡
?

conditioning on C1 = C
k

1 and h·, ·i⌥ means sum over all e 2 ⌥.

In decomposition (19), term E1 is controlled using a standard martingale concentration. Next,
to bound E2, we show that �

k

h
 0 with high probability, which implies that E1 P

K

k=1

P
H

h=1

���k
h
(Ck

h
, e

k

h
)
��. Bounding each |�

k

h
(Ck

h
, e

k

h
)| by the corresponding optimistic bonus

k (Ck

h
, e

k

h
)k(⇤k+1

h
)�1 , we then apply Elliptical Potential lemma to get

E1  2�V

XH

h=1

XK

k=1

p
2
�� (Ck

h
, e

k

h
)
��
(⇤k+1

h
)
�1  2

p
2�V H

p
Kd log ((K + d)/d).

Finally, for E3, note that by Algorithm 1, the market-making part of the policy ⇡k,h is the greedy
policy with respect to Q

k

h
. Based on this observation, it follows that

P
e2⌥ Q

k

h
(Ch, e)(⇡?

h
(e|Ch)�

⇡k,h(e|Ch)) =
P

e2⌥ Q
k

h
(Ch, e)⇡?

h
(e|Ch) � maxe2⌥ Q

k

h
(Ch, e)  0, so E3  0. Combining

yields the bound in Theorem 5.5. Full details are presented in Appendix C.4. Note that our notion of
meta algorithm for Algorithm 1 is different from that of meta learning (Finn et al., 2017; Xu et al.,
2021).

C.4 Proof of Theorem 5.5

To prove Theorem 5.5, we need the following two lemmas which is helpful for bounding E1 and E2.
Lemma C.6 (Proof in Section E.5). Under the setting of Theorem 5.5, with probability at least 1� �,

for all (h, k) 2 [H]⇥ [K] and (C, e) 2 C ⇥⌥, it holds that

�2�V · k (C, e)k(⇤k

h
)�1  �

k

h
(C, e)  0.

Lemma C.7 (Proof in Section E.6). For any � > 0, with probability at least 1� �, it holds that

XK

k=1

XH

h=1

�
⇣
1
k,h

+ ⇣
2
k,h

�
 3

⇣XH

h=1
Wh

⌘p
K log 2/�.

We are now ready to prove Theorem 5.5.

Proof of Theorem 5.5. By Lemma C.5, we bound the three terms separately.

Bound on E3. According to Algorithm 1, the planner’s policy ⇡k,h is the greedy policy with respect
to Q

k

h
. It follows that

hQ
k

h
(Ch, Ih, Jh·),⇡

?

h
(·|Ch, Ih, Jh)� ⇡k,h(·|Ch, Ih, Jh)i⌥

= hQ
k

h
(Ch, Ih, Jh, ·),⇡

?

h
(·|Ch, Ih, Jh)i⌥ �max

e2⌥
Q

k

h
(Ch, Ih, Jh, e)  0.

Therefore, we have E3  0.
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Bound on E1. We apply Lemma C.6. The E1 term can be bounded as

E1 

KX

k=1

HX

h=1

��
k

h
(Ck

h
, e

k

h
)  2�V ·

KX

k=1

HX

h=1

�� (Ck

h
, e

k

h
)
��
(⇤k

h
)�1 .

Note that ⇤k

h
= �I+

P
k�1
t=1  (C

t

h
, e

t

h
) (Ct

h
, e

t

h
)> by definition, where k k2  1 by Assumption

5.2 and � = 1 by our choice. Thus we have ⇤k+1
h

= ⇤k

h
+  (Ct

h
, e

t

h
) (Ct

h
, e

t

h
)> 4 2⇤k

h
, or

equivalently, (⇤k

h
)�1 4 2(⇤k+1

h
)�1, for all k. Applying this to the above inequality, we get the final

bound for E1:

E1  2�V ·

HX

h=1

KX

k=1

p
2
�� (Ck

h
, e

k

h
)
��
(⇤k+1

h
)
�1  2

p
2�V H ·

s

Kd · log

✓
K + d

d

◆
, (20)

where the second step is by the Elliptical Potential Lemma (Lemma G.2).

Bound on E2. By Lemma C.7, we have

E2  3

✓ HX

h=1

Wh

◆
·

r
K · log

2

�
. (21)

Combining Lemma C.5, (20), (21) and E3  0, we get that, with probability at least 1� 3�,

R
P (K)  6⌘d5/2H

✓ HX

h=1

Wh

◆
·

p

K · log

✓
dKHmin{|I|, |J |}

�

◆
,

where the 1� 3� probability is from the union bound on the events of Lemma C.1, Lemma C.6 and
Lemma C.7. Since dKHmin{|I|, |J |}/� > 3, replacing � with �/3 and absorbing the constant into
the big-O notation, we finish the proof.

D Proof of the Main Theory

D.1 Proof of Proposition 4.2

Proof of Proposition 4.2. By (3), the total regret can be written as

R(K) =
KX

k=1

[V ?

1 (s)� V
⇡k

1 (s)] =
KX

k=1

h
V

?

1 (s)� V
⇡k

1 (s)
i
+

KX

k=1

h
V

⇡k

1 (s)� V
⇡k

1 (s)
i
,

where V
⇡k

1 is the pseudo-value function defined by (7) corresponding to the pseudo-reward rh

(defined by (6)) and induced by the policy ⇡k. Note that here we only care about the ⌥ part of ⇡k

since matching-transfer has been maximized out by the definition of rh.

Now for any policy ⇡ 2 ⇧ where ⇡ = {⇡h}h2[H], there exists a counterpart ⇡0 = {⇡
0
h
}h2[H], such

that ⇡h(C|s) = ⇡
0
h
(C|s) for all C 2 ⌥ and s 2 S , whereas for the matching part ⇡0 always chooses

the stable matching w.r.t. the true and unknown utility functions uh(Ch, eh, ·, ·) and vh(Ch, eh, ·, ·).
Since ⇡

0 can be viewed as a function of ⇡, we write ⇡
0 = ⇡

0(⇡). Since the matching does not affect
the context transition by assumption, and the stable matching maximizes total utility by Proposition
B.2, we then have that
V

?

1 = max
⇡2⇧

V
⇡

1

= max
⇡2⇧

E⇡

 HX

h=1

rh(sh, ah)

���� s1 = s; ah ⇠ ⇡h(·|sh), sh+1 ⇠ Ph(·|sh, ah), 8 h 2 [H]

�

= max
⇡0(⇡):⇡2⇧

E⇡0

 HX

h=1

rh(sh, ah)

���� s1 = s; ah ⇠ ⇡
0
h
(·|sh), sh+1 ⇠ Ph(·|sh, ah), 8 h 2 [H]

�

= max
⇡0(⇡):⇡2⇧

E⇡0

 HX

h=1

rh(sh, eh)

���� s1 = s; eh ⇠ ⇡
0
h
(·|sh), sh+1 ⇠ Ph(·|sh, eh), 8 h 2 [H]

�
= V

?

1,
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where the fourth step is by definition of rh. It follows that

R(K) =
KX

k=1

h
V

?

1(s)� V
⇡k

1 (s)
i
+

KX

k=1

h
V

⇡k

1 (s)� V
⇡k

1 (s)
i
= R

P (K) +
KX

k=1

h
V

⇡k

1 (s)� V
⇡k

1 (s)
i
.

(22)
The second term in the R.H.S. can be written as
KX

k=1

h
V

⇡k

1 (s)� V
⇡k

1 (s)
i

= E⇡k

 HX

h=1

rh(sh, eh)� rh(sh, ah)

���� s1 = s; ah ⇠ ⇡k,h(·|sh), sh+1 ⇠ Ph(·|sh, ah), 8 h 2 [H]

�
.

Note that rh(sh, eh) � rh(sh, ah) is exactly the utility difference defined by (16). Since Subset
Instability is at least the utility difference by Proposition B.3, it follows that
KX

k=1

h
V

⇡k

1 (s)� V
⇡k

1 (s)
i



KX

k=1

E⇡k

 HX

h=1

SI(sh, ah, uh, vh)

���� s1 = s; ah ⇠ ⇡k,h(·|sh), sh+1 ⇠ Ph(·|sh, ah), 8 h 2 [H]

�

= R
M (K),

where the last step is by the definition of RM (K) in (9). Plugging into (22), we get

R(K)  R
P (K) +R

M (K).

This completes the proof.

D.2 Bounds for Regression Estimators

We first bound the norm of the regression estimators in the algorithm.
Lemma D.1. The regression estimators wk
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where the first inequality holds because of the truncation of Q
k

h
and V
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h
(C, I, J) =

maxe Q
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(C, e, I, J), the second inequality is by the Cauchy-Schwarz inequality, and the last inequal-
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The same holds for �k

h
.

D.3 Proof of Theorem 5.4

We present the complete proof of Theorem 5.4.

Proof of Theorem 5.4. Recall from Proposition B.3 that Subset Instability is at least the utility differ-
ence. We thus have
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To bound the second term
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, note that by Lemma C.1 and Lemma C.3, we have
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Note that by definition, we have
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where the second step is by min(|Ih|, |Jh|) � 1. To bound the summation in the bracket, we seek
to use the elliptical potential lemma. However, note tat the telescoping sum involves several utility
observations (i.e. all (i, j) 2 X

k

h
) at one time, instead of a single observation. To address this issue,
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(m)�1, and the second inequality is by Lemma
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The final bound follows by plugging in the expression of �u, and using the fact that Wh 

min{|Ih|, |Jh|}. The 1 � 2� probability comes from the union bound of the event of Lemma
C.1 and the event of (23).
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E Proof of Lemmas

E.1 Proof of Lemma C.1

Proof of Lemma C.1. Fix arbitrary h. Since by Assumption 5.2, the noises in the observed utilities
are independent and 1-sub-Gaussian, we can apply Theorem 2 in (Abbasi-Yadkori et al., 2011). We
then have that, with probability at least 1� �/2, for any k 2 [K],
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where the first inequality follows from the Cauchy-Schwarz inequality and the second in equality is
my the choice of �u. Similarly, we have
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The same argument holds for vk
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� vh with probability at least 1� �/2.

Finally, we take a union bound and conclude that the event holds with probability at least 1� �.

E.2 Proof of Lemma C.2

Proof of Lemma C.2. Note that rh is the maximum value of the linear program (4) with
(Ih, Jh, uh, vh), and r
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and rearranging the terms. This completes the proof.

E.3 Proof of Lemma C.3

Lemma C.3 is a restatement of Lemma 5.4 in Jagadeesan et al. (2021). For completeness, we present
the proof here. Specifically, we prove a general version of Lemma C.3, which is Lemma E.1 below.
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Lemma E.1. Let (u, v) and (bu, bv) be two pairs of utility functions on the agents set I, J , such that

each of u, v, bu, bv maps from I ⇥ J to R. Let ( bX, b⌧) be a stable matching on (I, J) w.r.t. the utility
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Term I is nonpositive. To see this, note that by assumption u  bu and v  bv. Thus the max-weight
matching on I

0
⇥ J

0 w.r.t. the utility functions (u, v) cannot exceed the max-weight matching on
I
0
⇥ J

0 w.r.t. (bu, bv).
To bound term II, note that all the transfers b⌧(i) and b⌧(j) in the expression cancel out, and it follows
that
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finishes the proof.

Proof of Lemma C.3. For any fixed k 2 [K] and h 2 [H], replace I, J in Lemma E.1 with Ih, Jh,
and replace u, v, bu, bv in with uh(Ck
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follows from Lemma E.1 that
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where the second step holds because the true utility and the estimated utility are zero for unmatched
agents under Xk

h
, and the last step is by the definition of the bonus function bu,h and bv,h.

E.4 Proof of Planner’s Regret Decomposition

We first restate the lemma in its complete form.
Lemma C.5. The planner’s regret defined by (8) can be decomposed as
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where the expectation is over the trajectory {Ch, eh}h2[H] induced by executing the policy ⇡
?

(on

the choice of e 2 ⌥ only), and conditioning on {Ih, Jh}h2[H] being fixed.

Proof of Lemma C.5. Recall the definition of the planner’s regret from (8). We write
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Combining with (26), we get
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Applying the above equation recursively, we have that for any C1, I1, J1,
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where the second step holds because V
?

H+1 = V
k

H+1 = 0. By definition of the operators, it is clear
that here the expectation E⇡? is over the trajectory {(Ch, eh)}h2[H] induced by the planner executing
the policy ⇡

k to choose actions in ⌥.
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where the last step is by Q
⇡k
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where the second step is by (28). Applying the above equation recursively, we get
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where we use V
?

H+1 = V
k

H+1 = 0 again.
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Combining (27) and (29), we get
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which finishes the proof.

E.5 Proof of Lemma C.6

Proof of Lemma C.6. By the definition of Q
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h
in Algorithm 1, the function �
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We now consider bPhV
k

h+1. Since we are conditioning on {Ih, Jh} which is independent of anything
else, we can essentially treat it as a deterministic sequence. By (10), for any V
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where the first step uses the construction of wk

h
in Algorithm 1 and the last step uses the construction

of ⇤k

h
. For convenience, we write s
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from the Cauchy-Schwarz inequality that the first part on the R.H.S. of (31) satisfies
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In the following, to bound (31), we first bound the self-normalized stochastic process using tools
from self-normalized martingale. The issue is that, according to Algorithm 1, the function V

k

h+1

depends on the first (k � 1) episodes and thus depends on the trajectory {(Ct

h
, e

t

h
, C

t

h+1)}t2[k�1].
We thus adopt a common approach to solve this issue by considering the function class containing
each value function estimator V

k

h+1. The covering trick is a commonly used technique (Ling et al.,
2019), and we will discuss the detail of the construction of the function class and its covering in
Section F. The covering trick allows us to get the following lemma.

Lemma E.2. Under the setting of Theorem 5.5, with probability at least 1 � �, for any (h, k) 2
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Proof of Lemma E.2. See Appendix E.7 for the proof.

For the term
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Combine the above inequality with Lemma E.2 and (32), and we get that
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It remains to show that there exists choice of �V (or equivalently, the constant ⌘ in the description of
Theorem 5.5) such that
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Specifically, we show that we can pick some constant ⌘ and set
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Indeed, plug in the expression of �V and �u and we get
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which finishes the proof.

E.6 Proof of Lemma C.7

Proof of Lemma C.7. The lemma can be proven by standard martingale concentration, similar to the
analysis in (Cai et al., 2020; Yang et al., 2020). Specifically, we define the �-fields as
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By definition, it is clear that these �-fields form a filtration under the dictionary order on the index
tuple (k, h, o) where o 2 {0, 1}.

Note that for any (k, h) 2 [K]⇥ [H], since V
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and the policy ⇡k are all functions of the first
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which finishes the proof.
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E.7 Proof of Lemma E.2

Proof of Lemma E.2. By the analysis in Section F, there exists a function class V containing all V
k

h
,

and the ✏-covering number of V is given by Lemma F.1. Also note that by the truncation, we have
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P
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F Covering Number of Function Classes

In this section, we will construct a function class V that provably contains V
k

h
for all (k, h) 2

[K]⇥ [H]. And we will compute the covering number of V . The result is summarized by Lemma F.1
below.
Lemma F.1. Assume KH > 32. For any ✏ < 1, the ✏-covering number of V is upper bounded by

logNV
✏
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✓
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◆
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To prove Lemma F.1, we will first construct a function class G that contains all bPhV
k

h+1, R that
contains all rk

h
, and Q that contains all Q

k

h
. The formal definition of these classes will be given in the

following.

We also introduce the following technical lemma.
Lemma F.2 (Covering Number of `2 Ball). For any ✏ > 0, the ✏-covering number of the `2 ball in

Rd
with radius L is upper bound by (1 + 2L/✏)d.

The proof of this classical result can be found in, for example, Chapter 5 in (Vershynin, 2010). Now
we prove Lemma F.1.

F.1 Proof of Lemma F.1

Covering of bPhV
k

h+1. The next lemma is helpful to bound the covering number of the function
class containing the function bPhV

k

h+1. The proof is the same as that of Lemma D.6. in (Jin et al.,
2020).
Lemma F.3. Let G = G(L,B) denote the function class with functions mapping from C ⇥⌥ to R
and of the following parametric form

g(·, ·) =  (·, ·)>w + � · k (·, ·)k⇤�1 ,
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where kwk  L, � 2 [0, B], and �min(⇤) � � > 0. Assume k (·, ·)k2  1. Let N✏ denote the

✏-covering number of G with respect to the `1 distance. Then we have
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✏
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Suppose for now that there exists Lw > 0 such that kwk

h
k2  Lw for all (k, h). The value of Lw

will be determined later. By applying Lemma F.3 with L = Lw and B = �V , we get the following
upper bound on the ✏-covering number of the function class G(lw,�V ) which contains all bPhV
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Covering of r
k

h
. We now define a function class R which provably contains all the pseudo-reward

estimates rk
h

. Formally speaking, by Algorithm 2, the functions in R are parametrized by the utility
function estimates uk

h
and v

k

h
. Denote the functions class containing all these utility function estimates

by U . Then according to Algorithm 4, any function u : C ⇥⌥⇥ I ⇥ J ! R in U can be written as
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. (35)

where � 2 Rd
2

satisfying k�k1  1 by Assumption 5.2, k✓k  Lu for some Lu > 0 to be
determined, and ⌃ 2 Rd

⇥Rd such that �min(⌃) � �. Since the truncation is a contraction mapping,
by Lemma F.3, the ✏-covering number of U is upper bounded by

log (N u

✏
)  d

2 log (1 + 4Lu/✏) + d
4 log

⇥
1 + 8d�2

u
/(�✏2)

⇤
. (36)

We now consider the function class R. We formally define R to be the function class such that any
function r 2 R can be represented by

r(C, e, I, J) = RE(u(C, e, ·, ·), v(C, e, ·, ·), I, J)

for some u, v 2 U . Let functions r1, r2 2 R be parametrized by u1, v1 and u2, v2 respectively, such
that

r1(C, e, I, J) = RE(u1(C, e, ·, ·), v1(C, e, ·, ·), I, J),

r2(C, e, I, J) = RE(u2(C, e, ·, ·), v2(C, e, ·, ·), I, J),

for all C 2 C, e 2 �, I ⇢ I and J ⇢ J . According to the linear program 4, there exist some weights
w1 = {w1,i,j}(i,j)2I⇥J and w2 = {w2,i,j}(i,j)2I⇥J , such that

r1(C, e, I, J) =
X

(i,j)2I⇥J

w1,i,j [u1(C, e, i, j) + v1(C, e, i, j)] ,

r2(C, e, I, J) =
X

(i,j)2I⇥J

w2,i,j [u2(C, e, i, j) + v2(C, e, i, j)] .

It follows that

(r1 � r2)(C, e, I, J) =
X

(i,j)2I⇥J

w1,i,j [u1(C, e, i, j) + v1(C, e, i, j)]

�

X

(i,j)2I⇥J

w2,i,j [u2(C, e, i, j) + v2(C, e, i, j)]



X

(i,j)2I⇥J

w2,i,j [u1(C, e, i, j) + v1(C, e, i, j)]

�

X

(i,j)2I⇥J

w2,i,j [u2(C, e, i, j) + v2(C, e, i, j)]



X

(i,j)2I⇥J

w2,i,j [(u1(C, e, i, j)� u2(C, e, i, j)) + (v1(C, e, i, j)� v2(C, e, i, j))]

 min{|I|, |J |} · (ku1 � u2k1 + kv1 � v2k1) ,
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where the second step holds because w1 is the optimal weight given u1 and v1 and w2 satisfies the
constraint of the linear program with u1 and v1. The same upper bound holds for the difference
(r2 � r1). Therefore, for any I, J , we have

kr1(·, ·, I, J)� r2(·, ·, I, J)k1  min{|I|, |J |} · (ku1 � u2k1 + kv1 � v2k1) .

Since I ⇢ I and J ⇢ J , in order for kr1 � r2k1  ✏ to hold, it suffices to have ku1 � u2k1  ✏
0

and kv1 � v2k1  ✏
0 where ✏0 = ✏/(2min{|I|, |J |}). Therefore, by (36), the ✏-covering number of

R satisfies

logNR
✏
 2 logN u

✏0  2d2 log (1 + 4Lu/✏
0) + 2d4 log

h
1 + 8d�2

u
/(�✏0

2
)
i

 2d2 log

✓
1 +

8Lu min{|I|, |J |}

✏

◆
+ 2d4 log


1 +

32d�2
u
(min{|I|, |J |})2

�✏2

�
.

(37)

In the above we have shown that the function class R contains all rk
h

and G contains all bPhV
k

h+1. We
now define the function class Q := R+ G as

Q :=
n
(r + g)[0,PH

l=h
Wl]

��� r 2 R, g 2 G

o
.

Then it immediately follows from the algorithm that Q contains all Q
k

h
functions. By (34) and (37),

the ✏-covering number of the function class Q can be upper bounded by

logNQ
✏
 d log(1 + 4Lw/✏) + d

2 log
h
1 + 8d1/2�2

V
/(�✏2)

i

+ 2d2 log

✓
1 +

8Lu min{|I|, |J |}

✏

◆

+ 2d4 log


1 +

32d�2
u
(min{|I|, |J |})2

�✏2

�
, (38)

Since by construction, V
k

h
(C, I, J) = maxe Q

k

h
(C, e, I, J) and taking the maximum is a contraction

mapping, the upper bound in (38) also holds for logNV
✏

.

By Lemma D.1, we can pick

Lw =

✓ HX

h=1

Wh

◆
·

p
dK/� and Lu =

r
d2K ·min{|I|, |J |}

�
.

From the above analysis, we can simplify the R.H.S. of (38) and get the desired bound for the
covering number of V . This finishes the proof of Lemma F.1.

G Auxiliary Lemmas

Lemma G.1 (Lemma D.1 in Jin et al. 2020). For arbitrary d, let ⇤k = �Id +
P

k�1
t=1 xtx>

t
where

xt 2 Rd
and � > 0. Then

k�1X

t=1

x>
t
(⇤k)

�1 xt  d.

Proof of Lemma G.1. We can write
k�1X

t=1

x>
t
(⇤k)

�1 xt =
k�1X

t=1

tr
⇣
x>
t
(⇤k)

�1 xt

⌘
= tr

⇣
(⇤k)

�1
k�1X

t=1

x>
t
xt

⌘
.

Denote the eigenvalue of
P

k�1
t=1 x>

t
xt as {�1, · · · ,�d}, and decompose

P
k�1
t=1 x>

t
x =

Udiag(�1, · · · ,�d)U>. Then we have ⇤k = Udiag(�1 + �, · · · ,�d + �)U>. It follows that
tr((⇤k)�1

P
k�1
t=1 x>

t
xt) =

P
d

j=1 �j/(�j + �)  d.
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The next is the well-known Elliptical Potential Lemma (Cesa-Bianchi and Lugosi, 2006; Abbasi-
Yadkori et al., 2011; Lattimore and Szepesvári, 2020).

Lemma G.2 (Elliptical Potential Lemma). For arbitrary d, let ⇤k = �Id +
P

k�1
t=1 xtx>

t
where

xt 2 Rd
and � > 0. Then

kX

t=1

kxtk(⇤t+1)�1 

s

kd log

✓
k + d�

d�

◆
.

Lemma G.3 (Azuma-Hoeffding inequality (Azuma, 1967)). Let {Xt}
1
t=0 be a real-valued martin-

gale such that for every t � 1, it holds that |Xt �Xt�1|  Bt for some Bt � 0. Then

P (|Xt �X0| � ✏)  2 exp

 
�✏

2

2
P

t

⌧=1 B
2
⌧

!
.

G.1 Concentration Inequalities for Self-normalized Martingales

Theorem G.4 (Hoeffding inequality for Self-normalized martingales (Abbasi-Yadkori et al., 2011)).
Let {⌘t}

1
t=1 be a real-valued stochastic process. Let {Ft}

1
t=0 be a filtration, such that ⌘t is Ft-

measurable. Assume ⌘t | Ft�1 is zero-mean and R-subgaussian for some R > 0, i.e.,

8� 2 R, E
h
e
�⌘t|Ft�1

i
 e

�
2
R

2
/2
.

Let {xt}
1
t=1 be an Rd

-valued stochastic process where xt is Ft�1-measurable. Assume ⇤0 is a d⇥ d

positive definite matrix, and let ⇤t = ⇤0 +
P

t

s=1 xsx>
s

. Then, for any � > 0, with probability at

least 1� �, for all t > 0,

����
tX

s=1

xs⌘s

����
2

⇤�1
t

 2R2 log

✓
det(⇤t)1/2 det(⇤0)�1/2

�

◆
.

Lemma G.5 (Lemma D.4 in Jin et al. 2020). Let V be a function class such that any V 2 V maps

from S ! R and kV k1  R. Let {Ft}
1
t=0 be a filtration. Let {st}

1
t=1 be a stochastic process in

the space S such that st is Ft-measurable. Let {x}1
t=0 be an Rd

-valued stochastic process such

that xt is Ft�1-measurable and kxk2  1. Let ⇤k = �I+
P

k�1
t=1 xtx>

t
. Then for any � > 0, with

probability at least 1� �, for any k, and any V 2 V , we have

����
k�1X

t=1

xt [V (st)� E [V (st) | Ft�1]]

����
2

(⇤k)�1

 4R2


d

2
log

✓
k + �

�

◆
+ log

N
V
✏

�

�
+

8k2✏2

�
,

where N
V
✏

is the ✏-covering number of V with respect to the `1 distance.

Proof of Lemma G.5. For any V 2 V , there exists V 0 in the ✏-covering such that

V = V
0 +�V and k�V k1  ✏.

Then we have
����

k�1X

t=1

xt [V (st)� E [V (st) | Ft�1]]

����
2

(⇤k)�1

 2

����
k�1X

t=1

xt [V
0(st)� E [V 0(st) | Ft�1]]

����
2

(⇤k)�1

+ 2

����
k�1X

t=1

xt [�V (st)� E [�V (st) | Ft�1]]

����
2

(⇤k)�1

.

For the first term on the R.H.S., we apply Theorem G.4 and a union bound to the ✏-covering. The
second term can be bound by 8k2✏2/� by using kxtk2  1, �min(⇤k) � � and k�V k1  ✏.
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