
Figure A.1: Our learned visually adaptive pronk is deployed successfully on the MIT Mini Cheetah.

A Low-Level Controller Details

Complete information about the Model-Predictive Controller and Whole-Body Impulse Controller
used in this work may be found in [21]. A simplified description of the control loop is given in
Algorithm 2. The convex Model-Predictive Controller solves for target ground reaction forces over
the planning horizon given the target whole-body trajectory and current state. The whole-body
impulse controller then tracks these ground reaction forces at high frequency.

Algorithm 2 Trajectory Tracking Control Loop

1: function TRACK-TRAJECTORY(st, Xt:t+H)
2: f target

r = MPC(st, Xt:t+H)
3: for i ∈ [1..NWBIC] do
4: qdes, q̇des, τff = WBIC(st, Xt, f

target
r)

5: SET-PD-TORQUE(qdes, q̇des, q̈ff)
6: STEP-SYSTEM
7: end for
8: end function

B Training Environment Details

Initialization and Termination For each training episode, the robot is initialized in a standing pose
on flat ground. The locations of gaps and their widths are randomized. An episode terminates if any
of three terminal conditions are met: (1) the body height is less than 20 centimeters; (2) body roll
or pitch exceeds 0.7 radians; or (3) a foot is placed in a gap. The maximum episode length is 500
steps, equivalent to 25 seconds of simulated locomotion.

Reward Function The reward rt at time t is defined as:

rt =c1(pbt,x − pbt−1,x)− c2 max(0, ||vbt ||2 − Vthresh)− c3|αbt | − c4|βbt | − c5|γbt | − c6|q̇|

The first term rewards forward progress pbt,x−pbt−1,x, where pbt,x is the projection of the body frame
position at time t onto the x-axis in the world frame. The second term applies a soft safety constraint
by penalizing when the body velocity vbt exceeds Vthresh. The third, fourth, and fifth terms incen-
tivize stability by penalizing the roll, pitch, and yaw of the body, denoted as αbt , β

b
t , γbt . The sixth

term rewards smooth motion by minimizing q̇. In training with variable and unconstrained gaits,
we found this term critical to promote exploration of lower-frequency gaits. The parameters in the
reward term are set to: c1 = 1.0, c2 = 0.5, c3 = 0.02, c4 = 0.05, c5 = 0.15, c6 = 0.03, Vthresh =
1.0m/s.

C Derivation of Theoretical Gap-Crossing Limits

C.1 Raibert Heuristic

Given the velocity of the base and the duration of the next contact, the Raibert Heuristic selects
foot placements such that each leg’s lever angle of incidence on the ground is equal to its angle of

11

departure. This foot placement follows the formula

psymmetry =
∆tlid

2
v + k(v − vcmd)

where ∆tlid is the duration of the next placement of foot i, v is the estimated robot body velocity,
vcmd is the commanded robot velocity, and k is a tunable gain term.

C.2 Theoretical Limit on Fixed-Gait Gap Crossing

A quadruped stepping at a fixed cycle frequency f and moving at velocity v = vcmd will locomote a
distance of vf each gait cycle, and so the nominal foot placement for any given foot under the Raibert
heuristic will advance by a distance of v

f . In the pronking gait, wherein all legs contact the ground
simultaneously, this places the upper limit on gap crossing at vf . For a trotting gait, wherein pairs
of diagonal legs meet the ground in alternating timing, this limit is reduced by half to v

2f . The Mini
Cheetah nominally trots at a frequency of f = 3Hz, theoretically limiting its maximal gap crossing
at a velocity of v = 1m/s to 33cm in the pronking case, or 17cm in the trotting case. Table C.1 lists
derived limits for a few example gait frequencies, body velocities, and gaits. In practice, the popular
ANYmal C by ANYbiotics, over twice as long and 5 times as massive as the Mini Cheetah, is rated
by its manufacturers to cross gaps of up to 25cm.

Gait Cycle Frequency Body Velocity Trotting Pronking

3Hz 0.5m/s 8.3cm 16.7cm

3Hz 1.0m/s 16.7cm 33.3cm

4Hz 0.5m/s 6.3cm 12.5cm

4Hz 1.0m/s 12.5m 25.0cm

Table C.1: Theoretical upper limits on the longitudinal distance between foot placements for trotting,
pronking, and bounding gaits.

C.3 Upper Bound on Gap Crossing Probability for Fixed Gait

Adhering to the Raibert heuristic with constant velocity and gait yields a distance d between foot-
steps of d = v

2f for trotting and d = v
f for pronking, as the analysis above shows. If we assume that

a gap of width h is randomly positioned in the robot’s path, the probability that any single foot steps
into the gap is h

d . The probability that a single foot avoids the gap is then 1− h
d . The probability that

none of the four feet step into the gap is less than or equal to the probability that any one foot avoids
the gap. Thus, the probability of avoiding a randomly placed gap of width h for a blind controller at
constant velocity is upper bounded at 1− 2fh

v for trotting and 1− fh
v for pronking. Intuitively, the

upper bound gap crossing probability decays linearly from one for a gap of width 0 to zero for a gap
of width d.

C.4 Upper Bound on Gap Crossing Probability with Local Foothold Adaptation

The baseline controller of [3] performs locomotion with fixed gait at fixed velocity. However, if
a foothold is detected to be unsafe, a local grid search is performed for the nearest safe foothold
within some maximum displacement. Assume the maximum displacement ∆. Then, the probability
of failure to cross a gap is the probability that a foot steps in the gap at least distance ∆ from
the edge. This results in single foot failure probability of h−2∆

d for gap of width h and distance
between footsteps d. The probability of avoiding a randomly placed gap of width h with maximum
foot adaptation ∆ is therefore upper bounded at 1 − 2f(h−2∆)

v for trotting and 1 − 2f(h−2∆)
v for

pronking. Intuitively, the upper bound gap crossing probability decays linearly from one for a gap
of width 2∆ to zero for a gap of width d+ 2∆.

12

2 4 6 8 10 12 14 16 18 20
Gap Width (cm)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
p

Cr
os

sin
g

Su
cc

es
s R

at
e

Jumping with Pixels Trot
Blind Trot
Blind Trot (Upper Bound)
FPA Trot, fmax=2cm (Upper Bound)
FPA Trot, fmax=4cm (Upper Bound)
FPA Trot, fmax=6cm (Upper Bound)

(a)

6 8 10 12 14 16 18 20 22 24 26 28 30
Gap Width (cm)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
p

Cr
os

sin
g

Su
cc

es
s R

at
e

Jumping with Pixels Pronk
Blind Pronk
Blind Pronk (Upper Bound)
FPA Pronk, fmax=2cm (Upper Bound)
FPA Pronk, fmax=4cm (Upper Bound)
FPA Pronk, fmax=6cm (Upper Bound)

(b)

Figure D.2: Performance comparison to the local foot placement adaptation (FPA) baseline [3]. Our
method outperforms the best possible baseline performance across the feasible range of gap sizes
for trotting (a) and pronking (b).

D Local Foothold Adaptation Baseline

Local Foothold Adaptation Baseline [3] commands a constant velocity and contact pattern to a
whole-body impulse controller, and adjusts foot placement locations locally by applying a safety
heuristic to a terrain heightmap and searching for the nearest safe location to the nominal foothold.
In our evaluation, we assume that this method has privileged access to the true terrain heightmap.

Figure D.2 presents a comparison between the performance achieved by our method (Jumping
with Pixels) and the theoretical performance limits derived for rule-based foot placement adapta-
tion (FPA) [3, 11] as described in C.4. Our method outperforms FPA across a range of maximum
foot displacement values fmax ∈ [2cm, 4cm, 6cm]. Performance improvement is greater for wide
gaps. Prior work [3] which implemented FPA on the same robot we use applied a maximum foothold
adaptation of 4cm. We additionally note that foot placement adaptation is complementary to the ve-
locity and contact schedule adaptation of our approach. We expect that future work combining these
techniques will combine the performance improvement of each.

E PMTG Baseline

Policies Modulating Trajectory Generators (PMTG) [23] Baseline augments the action space
of model-free RL using a parametric trajectory generator (TG) capable of producing cyclic leg
motions. Given a timing parameter (t) that cycles between 0 and 1 and trajectory parameters (a)
– stride frequency, length etc., TG outputs joint position targets qdes = TG(t, a). The policy also
directly predicts residuals (∆qdes). The output command is therefore qdes + ∆qdes.

The policy of our baseline controller [23] given by Algorithm 3 has identical neural network archi-
tecture, proprioceptive inputs st and high-dimensional terrain observation ot as described in Section
3.1. As in [1], we modeled the trajectory generator (TG) for each leg in the Cartesian space instead
in the joint space. The frame of reference of the TG is attached to the hip joint of each leg with
z-axis and x-axis of the frame in parallel with the base frame. The policy regulates the frequency
f of the TG and outputs target foot position residuals ∆pf,t ∈ R12 at every time step t = 0.025s.
These residuals are then added to the output of TG given by Algorithm 4 to calculate target foot
positions pf,t ∈ R12. The initial phases φ0 for each leg is decided w.r.t. type of gait. Finally, the
target joint positions qdes are computed from pf,t using an analytical inverse kinematics (IK) and
tracked using a PD controller.

13

Algorithm 3 PMTG Controller

1: t← 0; at−1 ← 0; φ0 ← [0, π, 0, π]
2: observe s0, o0

3: while not IS-TERMINAL(st) do
4: sample at ∼ πθ(at|st, ot, at−1, φt)
5: ∆pf,t ← at[0 : 12]; f ← at[12];
6: pf,t ← TG(φt) + ∆pf,t
7: qdes ← IK(pf,t)
8: SET-PD-TORQUE(qdes, qt, 0, q̇t)
9: t← t+ 1

10: φt ← (φ0 + 2πf ∗ t)(mod2π)
11: observe st, ot
12: end while

Algorithm 4 Trajectory Generator TG(φ)

1: i← 0; h← 0.17; d← 0.08; pf ← {}
2: while i < 4 do
3: k ← 2(φ[i]− π)/π
4: px ← d ∗ cos(φi); py ← 0
5: if k ∈ [0, 1] then
6: pz ← h(−2k3 + 3k2)− 0.28
7: else if k ∈ (1, 2] then
8: pz ← h(2k3− 9k2 + 12k− 4)− 0.28
9: else

10: pz ← −0.28
11: end if
12: pf.APPEND(px, py, pz)
13: i← i+ 1
14: end while
15: return pf

The reward function for training the baseline controller is defined as rt = c1 ∗ rdx + c2 ∗ rvthres
+

c3 ∗ rr + c4 ∗ rp + c5 ∗ ry + c6 ∗ rGC − c7 ∗ pGA, where c1,2,3...7 are the coefficients of each reward
terms respectively. The individual terms are defined as follows:

• Forward Distance Reward (rdx) : This term maximizes the forward distance moved by the
robot in x-direction. rdx = pbt,x − pbt−1,x

• Velocity Threshold Reward (rvthres
): This term penalizes if the robot body velocity ||vbt ||2

exceeds threshold velocity Vthresh.

rvthres
=

{
−1 + exp(−8(||vbt ||2 − Vthresh)2) ||vbt ||2 > Vthresh
0 otherwise,

• Orientation Reward (rr, rp, ry) : This term incentivizes stability of the robot, maintaining
zero roll, pitch and yaw.

rr,p,y = exp(−40(αbt , β
b
t , γ

b
t)

2)

• Gap Crossing Reward (rGC): Unlike [4], which intensively shape the reward near the gap,
we considered a binary reward(0/500) which incentivizes if the robot body successfully
reaches the other side of the gap.

• Gap Avoidance Penalty (pGA): This term penalizes and terminates the environment when
number of gaps crossed is 0 after 180 time-steps.

We found that Gap Crossing Reward (rGC) and Gap Avoidance Penalty (pGA) were critical for
baseline policy as opposed to our proposed controller. Figure E.3 shows that the PMTG baseline
without these reward terms learns to trot in place and avoids crossing any gaps of width 10cm, while
the PMTG baseline with reward shaping is able to demonstrate a gap crossing behaviour. We find
that learning with our method of whole-body trajectory modulation achieves higher performance in
this environment and converges more rapidly than the baseline.

F PMTG Sim-to-Real Results

To verify our implementation of PMTG used for baseline comparison, we trained and deployed a
simple forward walking policy on flat ground. The results of deployment are illustrated in Figure
F.6.

We trained trotting and pronking policies in simulation to cross gaps of different width. We found
that parameters such as TG frequency f and residual ∆px are mainly responsible for exploration
over large gaps. We performed an experiment with policies trained over different range of these
parameters as follow:

14

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Steps 1e7

0

2

4

6

8

10

Ep
iso

de
 F

or
wa

rd
 D

ist
an

ce

Whole-Body Trajectory Modulation (Ours)
PMTG without Reward Shaping, 5cm(Baseline)
PMTG without Reward Shaping, 10cm (Baseline)
PMTG with Reward Shaping, 10cm (Baseline)

Figure E.3: PMTG does not learn to trot across 10cm gaps without shaped reward. Our method with
whole-body low-level controller converges rapidly without shaped reward for gap crossing.

6 8 10 12 14 16 18 20
Gap Width (cm)

2

4

6

8

10

Fo
rw

ar
d

Pr
og

re
ss

 (m
)

Trot Relaxed
Trot Conservative
Trot Conservative (Train on Flat)

6 9 12 15 18 21 24 27 30 33 36
Gap Width (cm)

2

4

6

8

10

Fo
rw

ar
d

Pr
og

re
ss

 (m
)

Pronk Relaxed
Pronk Conservative
Pronk Conservative (Train on Flat)

Figure E.4: A conservative trajectory generator inhibits gap crossing capability in PMTG, particu-
larly for pronking gait. Relaxed trajectory generators are more successful, but Figure E.5 suggests
they tend to exploit the simulator.

• Trot/Pronk Relaxed : Policies trained with ∆px ∈ [0cm, 10cm] and f ∈ [3Hz, 5Hz]

• Trot/Pronk Conservative : Policies trained with ∆px ∈ [0m, 7cm] and f ∈ [3Hz, 4Hz]

• Trot/Pronk Conservative (Train on Flat) : Policies trained with ∆px ∈ [0cm, 4cm] and
f ∈ [2.5Hz, 3.5Hz]. These are the parameter ranges which was used to train a policy
deployed on the flat-ground as shown in Fig. F.6

Figure E.4 shows the performance of policies trained with each parameter range. We note that only
the relaxed policy is able to learn successful gap crossing behavior for large gaps, particularly for
the pronking gait. Figure E.5 illustrates simulated body and foot trajectories of the converged gap-
crossing policies trained with each set of TG parameter ranges. We observe that although policies
trained with relaxed ranges achieve improved gap-crossing performance, their trajectories include
foot dragging, high footswings, and unrealistic velocity changes. The policies with relaxed TG use
larger residual commands than those trained with conservative TG, which enables them to discover
these unrealistic patterns of simulator exploitation.

G Depth Image Preprocessing

The depth images produces by the depth sensor used in this work contain imperfections that are not
modeled in simulation. To mitigate this, we apply standard preprocessing techniques before passing
each depth image to the controller:

1. Downsampling: For computational efficiency, we downsample each image from its origi-
nal resolution of 480× 360 to 160× 120 using nearest-neighbor interpolation.

15

0.5 1.0 1.5 2.0 2.5
World x-axis

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
or

ld
 z-

ax
is

Simulated Deployment: PMTG Trot with Conservative TG
RF Foot
LF Foot
RR Foot
LR Foot
Body

0.5 1.0 1.5 2.0 2.5
World x-axis

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
or

ld
 z-

ax
is

Simulated Deployment: PMTG Trot with Relaxed TG
RF Foot
LF Foot
RR Foot
LR Foot
Body

0.5 1.0 1.5 2.0 2.5
World x-axis

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
or

ld
 z-

ax
is

Simulated Deployment: PMTG Pronk with Conservative TG
RF Foot
LF Foot
RR Foot
LR Foot
Body

0.5 1.0 1.5 2.0 2.5
World x-axis

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
or

ld
 z-

ax
is

Simulated Deployment: PMTG Pronk with Relaxed TG
RF Foot
LF Foot
RR Foot
LR Foot
Body

Figure E.5: Relaxing the ranges of trajectory generator parameters and residuals in PMTG improves
performance, but results in large residual commands and motions unsuitable for sim-to-real.

2. Invalid Band Crop: Since our depth sensor is steroscopic, there is an ”invalid band” of
variable size on one side of the image. In this band, some objects in the scene are only
detected by one camera, preventing their distance from being accurately estimated. In the
case of our system, we found that cropping the left side of the image by 20 pixels (after
downsampling) avoided the invalid band while retaining sufficient terrain information to
perform the task.

3. Depth Filter: We clip the points in the depth image to the range [0.1m, 1.0m].
4. Hole-Filling Filter: We apply a hole-filling filter from the pyrealsense2 package to

generally reduce noise artifacts in the image.

Figure G.7 provides example depth images before and after preprocessing.

16

(a) Three frames of locomotion captured during deployment.

(b) Joint angle tracking in simulation. (c) Joint angle tracking in deployment.

Figure F.6: Baseline deployment of learned forward locomotion policy using PMTG architecture.

(a) (b)

Figure G.7: Example of initial depth image (a) and corresponding image after preprocessing (b).

17

