
Under review as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIAL FOR:
CHOPPING FORMERS IS WHAT YOU NEED IN VISION.

Anonymous authors
Paper under double-blind review

1 EINSTEIN NOTATION FOR NEURAL NETWORKS

We defined a neural network layer as a function f that takes as input a tensor Xmc composed of
m ∈ [1,M ] spatial positions (or tokens) with c ∈ [1, C] features (or channels) and produces as
output a tensor Ynd composed of n ∈ [1, N ] tokens with d ∈ [1, D] channels:

Ynd = f(Xmc).

We then defined the fully-connected layer (FC) as the most general instantiation of a linear neural
network layer, parametrized by a 4-dimensional weight tensor Wmncd such that:

Ynd = XmcWmncd.

And we defined the dynamic fully-connected layer (DFC) as a non-linear generalization of the FC
layer where the weight tensor is computed dynamically as a function g of the input: Wmncd =
g(Xmc), with the instance dimension indexed by i ∈ [1, I]:

Yind = XimcWimncd with Wimncd = [g(X1
mc), . . . , g(X

I
mc)].

We show below using the Einsum notation that a number of well-known neural network layers are
special cases of the FC or DFC layers.

1.1 LINEAR LAYERS

The Convolutional layer (Conv) significantly reduces the complexity of the FC layer by making use
of a local receptive field with shared weights. More specifically, the convolutional layer is obtained
from the FC layer by applying the following three steps, where steps 1) and 2) together correspond
to the process of ”patch extraction”.

1) explicitly broadcast the input tensor along the n dimension: Ynd = Xmnc Wmncd

2) shrink the receptive field to k ∈ [1,K] local tokens: Ynd = Xknc Wkncd

3) share the weights spatially: Ynd = Xknc Wkcd

The Depthwise Convolutional layer (DW-Conv) reduces complexity further by dropping the chan-
nel mixing part, focusing on spatial mixing only: Ync = XkncWkc .

The Pointwise Convolutional layer (Point-Conv) is orthogonal to the DW-Conv layer: it drops the
spatial mixing part and focuses on the channel mixing part only: Ymd = XmcWcd .

The Average Pooling layer (Avg-Pool) can simply be seen as a special case of the DW-Conv layer
where the weights are constant: Ync = XkncPkc with pkc = 1/K.

1.2 DYNAMIC LAYERS

The Self-Attention layer (SA) used in transformer architectures (Vaswani et al., 2017) reduces the
complexity of the DFC layer by turning off channel mixing while using multiple heads.

1) turn off the channel mixing part: Yinc = Ximc Wimn

2) split the processing into h ∈ [1, H] heads with c ∈ [1, C/H]: Yinch = Ximch Wimnh

Ignoring the query, key, value embeddings for simplicity, the self-attention weight construction
mechanism is a dot product of X with itself:

Yinch = Ximch Wimnh with Wimnh = softmax(Ximch Xinch).

1



Under review as a conference paper at ICLR 2023

The Dynamic Convolutional layer (Dyn-Conv) is a Conv layer where the kernels are computed
dynamically (Jia et al., 2016; Mildenhall et al., 2018). It is often used 1) without the shared weights
constraint, to allow the weights to adapt spatially to their inputs, and 2) as a depthwise variant,
to keep the complexity manageable. In general, the weight construction mechanism gcnn simply
consists of a stack of a few standard convolutional layers:

Yinc = Xiknc Wiknc with Wiknc = gcnn(Xiknc).

The Deformable Convolutional layer (Def-Conv) is a variant of the Dyn-Conv where not only the
weights but also the locations where they are applied, are dynamically computed (Dai et al., 2017;
Zhu et al., 2019). The patch extraction process can be understood as a multiplication with a dynamic
mask M implementing an interpolation with offsets, followed by a dynamic convolution:

Yinc = (Ximnc Mimkc)iknc Wiknc with Mimkc,Wiknc = gcnn(Xiknc).

Squeeze and Excitation Convolutional layer (S&E) is a variant of the Dyn-Conv where a standard
convolution is followed by a dynamic channel modulation M (Hu et al., 2018). The construction
mechanism gcnn usually starts with a global average pooling generating channel-wise statistics:

Yind = (Xiknc Wkcd)ind Mid with Mid = gcnn(Xiknc).

The Max Pooling layer (Max-Pool) is similar to the Avg-Pool layer, but the weights are not constant
anymore and depend on the input:

Yinc = XikncPikc with pikc =

1 if argmax
l∈[1,K]

(xilc) = k ,

0 otherwise .

2 IMPLEMENTATION DETAILS

Here we report implementation details for the experiments in the main paper. We use the same
setup for all the evaluated methods and do not ablate training setup in our experiments. We leave
the exploration of the ideal training setup to future work.

Puzzle Reconstruction
We used a two-layer encoder composed of two convolutions with kernel size 5x5 followed
by ReLU non-linearities. We used a two-layer decoder consisting of two transposed convolu-
tions. After the decoder, one final residual convolution is used to map the features directly into
the predicted output image. We used the MNIST dataset and divided each input image into
pieces of size 7x7. We train all variants end-to-end for 500 epochs with a batch size of 128 on
one GPU, minimizing the mean square error and using Adam optimizer with a learning rate of 1e−3.

Classification
We follow the experimental setup of Yu et al. (2022) for training and testing. We used the Imagenet
1K datasets as input images of size 224x224. We train each model for 300 epochs using AdamW
optimizer cosine schedule and learning rate of 1e−3. We used the standard data augmentations
strategies of CutMix, MixUP, CutOut, and RandAugment. For all our experiments, we used 8 GPUs
and an effective batch size of 1024. We refer to the original paper for more in-depth details.

Detection and Segmentation
For training and testing, we follow the experimental setup of Yu et al. (2022). We use the models
trained on Imagenet 1K as backbones for the detection and segmentation task. We use the COCO
dataset, specifically we train on the train2017 and test on the 5K validation images of val2017. We
report performance for the best epoch. We use the Mask R-CNN models and trained with AdamW
and a learning rate of 1e−4 on 8 GPUS and 12 epochs (1x training schedule). We refer to the original
paper for more in-depth details.

2



Under review as a conference paper at ICLR 2023

3 ABLATIONS

3.1 SIZE

We scale the Chop’D-Former architecture and design networks with various sizes, namely Nano N,
Tiny T, Small S, and Medium M. In all cases we use the same backbone as explained in the main
paper. In Table 1 we summarize our design choices by specifying for each of the four stages the
number of the R channels, the number of spatial positions, and the number of blocks used. In our
implementation, we assume C=D and R=C/4 at all depth. Obviously, increasing parameters and
Flops results in better accuracy, however, even for very small sizes, Chop’D Former performance
remains competitive.

In Figure 1 we continue our analysis by providing an overview of the trade-off between performance
and size from two different perspectives. Figure 1 (a) compares Chop’D Former against methods
built as a stack of dynamic layers like ours, but trained using different setups and macro-design (Rao
et al., 2021; Touvron et al., 2022; Liu et al., 2021b; Touvron et al., 2021; Han et al., 2021; Wang
et al., 2021; Liu et al., 2021a). This figure shows that Chop’D Former design can be used as a solid
backbone for CV tasks. As apparent from the plot, Chop’D Former scales well across various sizes,
and its performance is even comparable to models having larger parameter counts. For example,
Chop’D Former performance is comparable with a large dynamic DWNet (83.2 vs 82.8) which
uses almost 4 times its amount of parameters (162 vs 42). When compared with the strong Swin-
Transformer baseline, it reaches a performance of 82.0 points for 28 million parameters, stacking
well against the 81.3 T1 of a Swin model of similar complexity (29 million).

Figure 1 (b) completes our analysis by comparing different classes of architecture under controlled
training setup and network design. Using this figure, we provide evidence of how DFC layers
represent, by design, a stronger alternative to the rest of neural networks layers.

Architecture Spatial Positions Channels (R) Depth Param M FLOPS G T1 T5

Chop’D Former - N [56, 28, 14, 7] [32, 63, 160, 256] [2, 2, 6, 2] 6 1.0 76.6 93.4
Chop’D Former - T [56, 28, 14, 7] [64, 128, 320, 512] [2, 2, 6, 2] 15 2.4 80.9 95.4
Chop’D Former - S [56, 28, 14, 7] [64, 128, 320, 512] [4, 4, 12, 4] 28 4.5 82.0 95.6
Chop’D Former - M [56, 28, 14, 7] [64, 128, 320, 512] [6, 6, 18, 6] 42 6.8 82.8 95.9

Table 1: Ablation on Architecture sizes Chop’D-Former is a hierarchical architecture with four
stages. We ablate design choices and report performance together with size.

0 20 40 60 80 100 120 140 160
Parameters [M]

72

74

76

78

80

82

84

A
cc

u
ra

cy
 [
T

1]

ResMLP

GFNet

Swin

dynamic DWNet

gMLP

Deit

PVT

Chop’D Former 

(a) Architectures deploying dynamic layers

5 10 15 20 25 30 35 40
Parameters [M]

74

75

76

77

78

79

80

81

82

83

A
cc

u
ra

cy
 [
T

1]

Former(Chop’D)

MLP

CNN(Dw-Conv)

CNN(Pool)

(b) Architectures classes under fair comparison

Figure 1: ImageNet-1K validation accuracy vs. Model Size. (a) Comparison of different models
using dynamic layers (i.e. DFC variants ) independently from their architecture design. (b) Com-
parison of different classes of architectures under the same macro design choices and training setup.
Chop’D Former stacks favorably against similar methods using dynamic layers, and maintains a
stable gap when compared with other classes of architectures in a controlled training setup.

3



Under review as a conference paper at ICLR 2023

In the figure, the performances of Chop’D Former models of various sizes are plotted next to com-
parable CP decomposed CNN and MLP networks. As one can clearly see, Chop’D Former keeps
a steady advantage against these two families of networks. For example, the DFC layers used in
Chop’D Former allow for a dynamic and global response, outperforming by a large margin a fully
connected network (MLP) across the different compared sizes (+1.6,+1.3 for models of sizes 42, 28
M of parameters). Against a Convolutional Network, the performance gap is similar (+1,+1.1 on
42, 28 M), thus confirming the clear advantage in using a dynamic, spatially adaptive, and global
reasoning component when building neural network architectures.

3.2 ISOTROPIC ARCHITECTURE

In the main paper, we focus on computer vision networks with a hierarchical structure (that is with
a multi-scale representation of the input obtained with subsequent downsampling stages). In this
ablation, we examine if our DFC block design can generalize to isotropic architectures, where no
downsampling layers are used across the model. In our experiments, features are kept at the same 14
× 14 resolutions throughout the entire network and, similarly, the dimensionality of the layers is kept
the same at all depths. We construct two isotropic models using 192 and 384 feature dimensions.
Depths are set at 12 to match the number of layers in the hierarchical version of our model. To
provide evidence that DFC layers are beneficial independently from the hierarchical or isotropic
variant of the network, we compare these two types of architectures side-by-side by progressively
silencing various characteristics of the DFC layer. To ease comparison with the main paper, we
replicate the same training setup and arrange results in Table 2 accordingly. Results for ImageNet-
1K show how DFC layers are able to outperform FC layers (non-dynamic) and Convolutional layers
(non-dynamic, local) by a large margin, replicating a trend observed in the hierarchical case. For
example, replacing an FC layer with its non-linear dynamic extension (i.e. DFC) for a network
of 20 M parameters brings more than +2 points boost in performance, even higher than the +1.6
registered for the hierachical models of 15 M parameters. Similarly it outperforms convolution by a
large margin (+2.5, +2.7), providing further evidence that DFC design is competitive when used in
non-hierarchical models.

Layer Architecture Complexity Classification

Type Weights P(M) F(G) T1 T5 v2 Real

DFC-CP ≈ Wimncd Former (Chop’D) 5 1.0 71.9 90.9 59.7 79.9
20 3.8 79.7 95.0 68.8 86.0

FC -CP ≈ Wmncd MLP 5 1.0 68.8 89.2 56.6 76.9
20 3.8 77.2 93.5 64.8 83.6

Conv-CP ≈ Wkcd CNN (Dw-Conv) 5 1.0 69.4 89.5 56.7 77.5
20 3.8 77.0 93.3 65.4 83.7

Conv-CP ≈ Pkcd CNN (Pool) 5 1.0 63.5 85.6 50.6 71.3
20 3.8 73.0 91.1 59.3 80.1

Table 2: Isotropic Architecture. Comparisons among CP decomposition for different Class of
Architectures on Large scale classification on Imagenet. All the architecture share the same macro-
design and training procedure, processing input of size 14x14 with no extra pooling stages. Similarly
to what observed on a hierarchical architecture, The Chop’D Former approximates via CP decom-
position DFC layers reaching best performance.

3.3 RANK R

We recall that our Chop’D Former uses CP-decomposed DFC layers, which act as approximations
for the non-linear extension of FC layers. In our implementation, the DFC weight tensor Winmcd

has the same number of input and output channels C = D, and the rank of the CP decomposition
(R) is assumed to be a quarter of the original dimensionality. However, a natural question is to assess
the change in the performance of our network when a different fraction of the original channel is
used as R.

In this ablation, we follow the same setup used for classification experiments in the main paper, and
train the same Chop’D Former network allowing a higher or lower number of channels in the latent
space. We used an Isotropic version of Chop’D Former since in this case, the number of channels

4



Under review as a conference paper at ICLR 2023

is the same for every layer of the network. Table 3 illustrates the performance of the same model
with different R and the same C = D. It is evident that, as R decreases, the performance degrades.
In fact, in these cases, the decomposition is not able to approximate properly the weight tensor, and
thus converges to a suboptimal solution.

Architecture C,D R T1 T5

Iso Chop’D Former 768 384 77.7 93.8
Iso Chop’D Former 768 192 71.9 90.9
Iso Chop’D Former 768 96 62.6 83.7
Iso Chop’D Former 768 48 47.5 73.5

Table 3: Ablation on the CP decomposition rank R for a Chop’D Former Isotropic architecture.
In an isotropic architecture, all the layer have the same values for C,D and R. Decreasing the rank
R results in higher approximation error and lower performance.

3.4 SPATIAL REASONING MODULE

We provide two extra ablations on the Chop’D Former architecture. For all our experiments, we use
Chop’D Former of size Tiny (Chop’D Former-T), which approximately corresponds to 2.4 GFlops,
trained for the classification task on ImageNet. We left the training procedure unchanged and inves-
tigate the different number of groups for the dynamic pooling module and the different number of
spatial positions for the gating module. Results are shown in Table 4 and 5, respectively. As seen
from Table 4, increasing the number of learnable pooling modules steadily increases performance
until it saturates at a value of 12. Therefore we use this value as the default setting in all our exper-
iments. Then, referring to Table 5, we observe that leveraging all available information results in
the best overall performance. Interestingly, Chop’D-Former can perform reasonably well even when
ignoring 60% of all the available pixels in its spatial adaptive module (Gating positions N*40%).

Architecture SAT groups T1 T5

Chop’D Former-T 1 80.6 95.2
Chop’D Former-T 4 80.6 95.3
Chop’D Former-T 8 80.7 95.2
Chop’D Former-T 12 80.9 95.4
Chop’D Former-T 24 80.5 95.2

Table 4: Ablations on number of groups G for Chop’D Former-Tiny. A group composed of 12
pooling layer achieves best performance.

Architecture Gating positions T1 T5

Chop’D Former-T N*100% 80.9 95.4
Chop’D Former-T N*80% 80.6 95.2
Chop’D Former-T N*40% 80.4 95.1

Table 5: Ablations on number of spatial positions used to estimate gating module. Even using
40% of all available tokens yields good performance.

4 ADDITIONAL EXPERIMENTS

In the main paper, we fix the choices for the architecture and training procedure to isolate the contri-
bution of spatial reasoning in computer vision tasks. In that context, we have shown strong evidence
that DFC layers are capable to outperform alternative spatial-reasoning layers thanks to the joint
use of a dynamic and spatially adaptive response to the input paired with an adaptive and global
receptive field.

5



Under review as a conference paper at ICLR 2023

In this section, we extend our findings with comparisons against well-established backbones for
computer vision for ImageNet classification, and we showcase that, even without any specialized
macro design choices nor adjustments of the training recipe, Chop’D-Former is capable of reaching
competitive performance against methods highly tuned towards maximizing performance in this
specific classification task.

4.1 IMAGE CLASSIFICATION

In Table 6 we report the performance of Chop’D Former of various sizes and complexities compared
to other established computer-vision architectures on ImageNet. For each of the different methods,
we highlight architectural characteristics and report efficiency metrics as provided by the authors,
namely parameter and Flops count (both measures are independent of hardware and software choices
and thus provide fair grounds for comparison). In terms of performance, we report results on the
original ImageNet-1K validation (T1) as well as two additional test-set as measure of overfitting: the
cleaned-up ReaL validation set (Beyer et al., 2020) and ImageNet-V2 (Recht et al., 2019). As vis-
ible from the table, Chop’D Former outperforms the majority of the considered architectures, thus
demonstrating strong evidence that dynamic and spatially adaptive reasoning is a crucial component
in architecture design, even in the case of a very quickly developing landscape of computer vision
backbones. In particular, our Chop’D Former-S is capable to provide a +0.6 T1 in performance
with a −0.5G Flops decrease in complexity against Poolformer-S36 (Yu et al., 2022), which, we
wish to stress, shares the same training procedure and has a similar amount of parameters. More-
over, when compared against methods that use dynamic layers (i.e. DFC, and DCNN) of similar
Flop count, our Chop’D Former-S is capable to increase performance by +2.2 T1 over Deit-S (Tou-
vron et al., 2021), +2.4 T1 over gMLP-S (Liu et al., 2021a) and +0.7 T1 over Swin-S (Liu et al.,
2021b). The only networks that exhibit performance either use a very large number of parameters,
are extensively finetuned in terms of architectural choices and training strategies, or are based on
hybrid models which explore joint use of different token-mixers modules in the same architecture.
We wish to highlight that all of these are contributions orthogonal to our method. As such, we leave
the investigation of stronger training procedures and enhanced spatial-reasoning strategies to future
work as such investigations geared towards maximizing performance on this classification task are
not in the scope of the present work. Here, we have proven that it is possible to achieve spatially
adaptive dynamic spatial reasoning with complexity comparable to a traditional convolution.

6



Under review as a conference paper at ICLR 2023

Architecture Classification

Name Class Token-Mixer Adaptivity
(i, n)

Receptive
Field

Params
(M)

Flops
(G)

T1 v2 Real

EfficientNetV2-S (Tan & Le, 2021) Hybrid Conv/MBConv/F-MBConv i, n 3x3 22 8.8 83.9 - -
EfficientNetV2-M (Tan & Le, 2021) Hybrid Conv/MBConv/F-MBConv i, n 3x3 54 24.0 85.1 - -
EfficientNetV2-L (Tan & Le, 2021) Hybrid Conv/MBConv/F-MBConv i, n 3x3 120 53.0 85.7 - -

CoAtNet-0 (Dai et al., 2021) Hybrid Conv/MBConv/Global-SA i, n 3x3/Global 25 4.2 81.6 - -
CoAtNet-1 (Dai et al., 2021) Hybrid Conv/MBConv/Global-SA i, n 3x3/Global 42 8.4 83.3 - -
CoAtNet-2 (Dai et al., 2021) Hybrid Conv/MBConv/Global-SA i, n 3x3/Global 75 15.7 84.1 - -
CoAtNet-3 (Dai et al., 2021) Hybrid Conv/MBConv/Global-SA i, n 3x3/Global 168 34.7 84.5 - -

LeViT-128S (Graham et al., 2021) Hybrid Conv/Global-SA i,n 3x3/Global 8 0.3 76.6 64.3 83.1
LeViT-128 (Graham et al., 2021) Hybrid Conv/Global-SA i,n 3x3/Global 9 0.4 78.6 66.6 84.7
LeViT-192 (Graham et al., 2021) Hybrid Conv/Global-SA i,n 3x3/Global 11 0.6 80.0 68.0 85.7
LeViT-256 (Graham et al., 2021) Hybrid Conv/Global-SA i,n 3x3/Global 19 1.1 81.6 70.0 86.8
LeViT-384 (Graham et al., 2021) Hybrid Conv/Global-SA i,n 3x3/Global 39 2.3 82.6 71.3 87.6

MLP-Mixer-B/16 Tolstikhin et al. (2021) MLP Spatial Layer (SL) n Global 59 12.7 76.4 - 82.4
ResMLP-S12 Touvron et al. (2022) MLP Spatial Layer (SL) n Global 15 3.0 76.6 64.4 83.3
ResMLP-S24 Touvron et al. (2022) MLP Spatial Layer n Global 30 6.0 79.4 67.9 85.3
ResMLP-B24 Touvron et al. (2022) MLP Spatial Layer n Global 116 23 81.0 69.0 86.1

GFNet-H-Ti Rao et al. (2021) MLP FFT (SL) n Global 15 2.1 80.1 - -
GFNet-H-S Rao et al. (2021) MLP FFT n Global 32 4.6 81.5 - -
GFNet-H-B Rao et al. (2021) MLP FFT n Global 54 8.6 82.9 - -

Poolformer-S12 (Yu et al., 2022) CNN Pooling - 3x3 12 1.8 77.2 - -
Poolformer-S24 (Yu et al., 2022) CNN Pooling - 3x3 21 3.4 80.3 - -
Poolformer-S36 (Yu et al., 2022) CNN Pooling - 3x3 31 5.0 81.4 - -
Poolformer-M36 (Yu et al., 2022) CNN Pooling - 3x3 56 8.8 82.1 - -
Poolformer-M48 (Yu et al., 2022) CNN Pooling - 3x3 73 11.6 82.5 - -

RSB-ResNet-18(A1) (Wightman et al., 2021) CNN Convolution - 3x3 12 1.8 71.5 59.4 79.4
RSB-ResNet-34(A1) (Wightman et al., 2021) CNN Convolution - 3x3 22 3.7 76.4 65.1 83.4
RSB-ResNet-50(A1) (Wightman et al., 2021) CNN Convolution - 3x3 26 4.1 80.4 68.7 85.7
RSB-ResNet-101(A1) (Wightman et al., 2021) CNN Convolution - 3x3 45 7.9 81.5 70.3 68.7
RSB-ResNet-152(A1) (Wightman et al., 2021) CNN Convolution - 3x3 60 11.6 82.0 70.6 86.4

ConvNext-T (Liu et al., 2022) CNN Depthwise-Conv - 7x7 29 4.5 82.1 - -
ConvNext-S (Liu et al., 2022) CNN Depthwise-Conv - 7x7 50 8.7 83.1 - -
ConvNext-B (Liu et al., 2022) CNN Depthwise-Conv - 7x7 89 15.4 83.8 - -

Swin-Mixer-B/D24 (Liu et al., 2021b) CNN Local-SL n 7x7 61 10.4 81.3 - -

Swin-T (Liu et al., 2021b) DCNN Local-Self Attention (SA) i,n 7x7 29 4.5 81.3 - -
Swin-S (Liu et al., 2021b) DCNN Local-SA i,n 7x7 50 8.7 83.0 - -
Swin-B (Liu et al., 2021b) DCNN Local-SA i,n 7x7 88 15.4 83.5 - -

dynamic DWNet-T (Han et al., 2021) DCNN Dynamic DW Conv i,n 7x7 51 3.8 81.9 - 87.3
dynamic DWNet-B (Han et al., 2021) DCNN Dynamic DW Conv i,n 7x7 162 12.9 83.2 - 87.9

gMLP-S Liu et al. (2021a) DFC GMLP i,n Global 20 4.5 79.6 - -
gMLP-B Liu et al. (2021a) DFC GMLP i,n Global 73 15.8 81.6 - -

ViT-B/16 (Dosovitskiy et al., 2020)* DFC Global-SA i,n Global 86 17.6 79.7 - 85.0
ViT-L/16 (Dosovitskiy et al., 2020)* DFC Global-SA i,n Global 307 63.6 76.1 - 80.9

Deit-T (Touvron et al., 2021) DFC Global-SA i,n Global 5 1.3 72.2 60.4 80.1
Deit-S (Touvron et al., 2021) DFC Global-SA i,n Global 22 4.6 79.8 68.5 85.7
Deit-B (Touvron et al., 2021) DFC Global-SA i,n Global 86 17.5 81.8 71.5 86.7

PVT-T (Wang et al., 2021) DFC Global-SA i,n Global 13 1.9 75.1 - -
PVT-S (Wang et al., 2021) DFC Global-SA i,n Global 25 3.8 79.8 - -
PVT-M (Wang et al., 2021) DFC Global-SA i,n Global 44 6.7 81.2 - -
PVT-L (Wang et al., 2021) DFC Global-SA i,n Global 61 9.8 81.7 - -

Chop’D Former - N DFC GSAT i,n Global 6 1.0 76.6 64.6 83.8
Chop’D Former - T DFC GSAT i,n Global 15 2.4 80.9 69.6 86.6
Chop’D Former - S DFC GSAT i,n Global 28 4.5 82.0 70.6 86.7
Chop’D Former - M DFC GSAT i,n Global 42 6.8 82.8 72.5 87.2

Table 6: Comparison between architectures on ImageNet classification Trained on Imagenet 1K,
input image size 224 x 224. * results taken from Tolstikhin et al. (2021)

4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

We extend the experimental section by further testing the proposed Chop’D Former as backbone
for downstream dense prediction tasks in computer vision which require pixel-level analysis of the
features, namely object detection and semantic segmentation.

RetinaNet. In the main paper, we report experiments for Mask R-CNN, a widely used two-stage
detector. In this ablation, we examine if our DFC block design can generalize to other types of de-
tectors. As a first step, we provide additional experimental results with RetinaNet (Lin et al., 2017),
a well-known single-stage detector. We follow Lin et al. (2017); He et al. (2017); Wang et al. (2021);
Yu et al. (2022) and employ 12 epochs training schedule and use ImageNet pre-trained weights as
starting point for the backbone optimization. We use the training setup of Mask R-CNN deploy-

7



Under review as a conference paper at ICLR 2023

Layer Architecture Complexity Detection

Type Weights P(M) F(G) AP AP50 AP75 APS APM APL

DFC-CP ≈ Wimncd Former (Chop’D) 15 2.4 38.8 58.3 41.2 21.9 42.1 51.6
28 4.5 41.2 61.4 44.0 24.1 44.6 55.0

FC -CP ≈ Wmncd MLP 15 2.4 - - - - - -
28 4.5 - - - - - -

Conv-CP ≈ Wkcd CNN (Dw-Conv) 15 2.4 37.3 56.9 39.6 19.9 40.8 49.4
28 4.5 40.5 60.5 43.4 23.3 44.2 53.8

Conv-CP ≈ Pkcd CNN (Pool) 15 2.4 36.7 56.8 39.0 19.8 39.8 49.0
28 4.5 39.0 59.5 41.5 22.8 42.1 51.1

Linear-CP ≈ Wcd Linear 15 2.4 30.7 49.0 31.8 16.5 33.0 40.5
28 4.5 31.9 50.4 33.7 16.9 33.9 42.9

Table 7: Detection and Segmentation using RetinaNet. Under the same complexity and training
strategy, Formers outperform other classes of architecture by a large margin. They deploy DFC
layers that make use of dynamic weights, generate a spatially adaptive response, and leverage a
global receptive field.

Backbone RetinaNet 1× Mask R-CNN 1×
Params (M) AP AP50 AP75 APS APM APL Params (M) APb APb

50 APb
75 APm APm

50 APm
75

ResNet-18 (He et al., 2016) 21.3 31.8 49.6 33.6 16.3 34.3 43.2 31.2 34.0 54.0 36.7 31.2 51.0 32.7
PoolFormer-S12 (Yu et al., 2022) 21.7 36.2 56.2 38.2 20.8 39.1 48.0 31.6 37.3 59.0 40.1 34.6 55.8 36.9
PVT-Tiny (Wang et al., 2021) 23.0 36.7 56.9 38.9 22.6 38.8 50.0 32.9 36.7 59.2 39.3 35.1 56.7 37.3
Chop’D Former-T 27.3 38.8 58.4 41.5 22.3 42.0 51.5 37.3 40.1 61.4 43.8 37.1 58.6 39.6

ResNet-50 (He et al., 2016) 37.7 36.3 55.3 38.6 19.3 40.0 48.8 44.2 38.0 58.6 41.4 34.4 55.1 36.7
PoolFormer-S24 (Yu et al., 2022) 31.1 38.9 59.7 41.3 23.3 42.1 51.8 41.0 40.1 62.2 43.4 37.0 59.1 39.6
PVT-Small (Wang et al., 2021) 34.2 40.4 61.3 43.0 25.0 42.9 55.7 44.1 40.4 62.9 43.8 37.8 60.1 40.3
Chop’D Former-S 40.9 41.2 61.4 44.0 24.1 44.6 55.0 50.8 42.4 63.6 46.7 38.7 60.5 41.6

ResNet-101 (He et al., 2016) 56.7 38.5 57.8 41.2 21.4 42.6 51.1 63.2 40.4 61.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d (Xie et al., 2017) 56.4 39.9 59.6 42.7 22.3 44.2 52.5 62.8 41.9 62.5 45.9 37.5 59.4 40.2
PoolFormer-S36 (Yu et al., 2022) 40.6 39.5 60.5 41.8 22.5 42.9 52.4 50.5 41.0 63.1 44.8 37.7 60.1 40.0
PVT-Medium (Wang et al., 2021) 53.9 41.9 63.1 44.3 25.0 44.9 57.6 63.9 42.0 64.4 45.6 39.0 61.6 42.1
Chop’D Former-M 55.5 42.8 62.8 46.0 25.4 46.9 56.7 65.3 43.8 64.6 48.3 39.5 61.7 42.4

ResNeXt101-64x4d (Xie et al., 2017) 95.5 41.0 60.9 44.0 23.9 45.2 54.0 101.9 42.8 63.8 47.3 38.4 60.6 41.3
PVT-Large (Wang et al., 2021) 71.1 42.6 63.7 45.4 25.8 46.0 58.4 81.0 42.9 65.0 46.6 39.5 61.9 42.5

Table 8: Comparison between backbones in object detection and instance segmentation. Meth-
ods use COCO dataset with Mask R-CNN or RetinaNet detectors. Chop’D Former shows a good
trade-off between efficiency and performance, demonstrating its capacity to act as a versatile back-
bone for dense prediction.

ing an AdamW optimizer with an initial learning rate of 1e−4 and weight decay of 1e−4, fixing
the short size of the image to 800 pixels during testing, and using a batch size of 16. In order to
evaluate the ability of the DFC layers (deployed in Chop’D Formers) to work as a generalization of
the FC layer, we compare different classes of architectures under the same training setup, macro de-
sign choices, and computational budget. For each of the evaluated methods, we repeat experiments
with three separate random initialization and report the best performance. Results are reported in
Table 7. Similarly to results found in instance segmentation experiments based on Mask R-CNN
and in classification (Table 1 of the main manuscript), our Former architecture vastly outperforms
its counterparts. Compared with a traditional CP decomposed CNN, Chop’D Former demonstrates
a clear boost in performance with +1.5 AP and +0.7 AP for an architecture of 15 and 28 millions
of parameters respectively. Note that the difference in performance across runs was no bigger than
0.2 AP, further showcasing the significance of our results. We demonstrate that, for the same com-
plexity as a traditional convolution, DFC layers represent a complete alternative capable to reach
better performance, ensuring a dynamic weight generation, a spatially adaptive response, and global
reasoning by design.

Additional Comparisons. Next, we continue our analysis in Table 8 by comparing Chop’D Former
of various sizes against alternative backbones for CV detectors. We extend the experimental results
of Wang et al. (2021); Yu et al. (2022) and verify the effectiveness of Chop’D Former-T, Chop’D
Former-S, and Chop’D Former-M as backbones for RetinaNet and Mask R-CNN. As apparent from
the table, Chop’D Former models show good performance even when compared to larger models.
Under a comparable number of parameters, Chop’D Former-T is 7.0 points better than ResNet18
(38.8 vs. 31.8), 2.6 points better than PoolFormer-S12 (36.2), and 2.1 points better than PVT-
Tiny (36.7). Moreover, Chop’D Former-M is capable to outperform ResNeXt101-64x64 by 2.9
points (42.8 vs. 39.9), and achieving better performance than PVT-Large while using 42% fewer

8



Under review as a conference paper at ICLR 2023

parameters. These results indicate that our Chop’D Former can be a solid choice as a CNN backbone
for object detection. Similar insights can be drawn from instance segmentation experiments based
on Mask R-CNN. In this setup our Chop’D Former-T achieves 37.1 mask AP (APm), which is
2.5 points better than PoolFormer-S12 and even 2.0 points higher than PVT-Tiny. The best APm
obtained by Chop’D Former-M is 43.8 which is 1.0 points higher than PVT-Large (43.8 vs. 42.9)
and ResNetXt101-64x4d (43.8 vs. 42.8), and we are able to obtain this performance with 32% and
46% fewer parameters than these architectures, respectively.

4.3 SEMANTIC SEGMENTATION

Lastly, we evaluate Chop’D Former on the ADE20K semantic segmentation task with FPN (Kirillov
et al., 2019), a simple segmentation head designed to process features extracted from its backbone.
We train for 40K iterations with a bath size of 32, AdamW optimizer with a polynomial decay
schedule, and an initial learning rate of 2e−4. We report validation mIoU as metric of performance.
As for the task of object detection, we initialize the backbone of the architecture with weights pre-
trained on ImageNet and initialize the remaining parameters using Xavier initialization. As visible
from Table 9 Chop’D Former models can achieve competitive performance across different model
capacities, further validating the effectiveness of DFC in various CV tasks. For example, Chop’D
Former-M results are 2.9 points higher than ResNeXt101-64x4d (40.2 vs 43.3) while having 42%
fewer parameters. Similarly, when compared with the competitive Poolformer-M48 its mIoU is
still 0.6 points higher (43.3 vs. 42.7), further demonstrating the capacity of DFC layers to extract
meaningful dense features from the input images.

Backbone Semantic FPN
Params (M) mIoU (%)

ResNet-18 (He et al., 2016) 15.5 32.9
PVT-Tiny (Wang et al., 2021) 17.0 35.7
PoolFormer-S12 (Yu et al., 2022) 15.7 37.2
Chop’D Former-T 21.4 39.0
ResNet-50 (He et al., 2016) 28.5 36.7
PVT-Small (Wang et al., 2021) 28.2 39.8
PoolFormer-S24 (Yu et al., 2022) 23.2 40.3
PoolFormer-S36 (Yu et al., 2022) 34.6 42.0
Chop’D Former-S 35.0 42.2
ResNet-101 (He et al., 2016) 47.5 38.8
ResNeXt-101-32x4d (Xie et al., 2017) 47.1 39.7
PVT-Medium (Wang et al., 2021) 48.0 41.6
PoolFormer-M36 (Yu et al., 2022) 59.8 42.4
PVT-Large (Wang et al., 2021) 65.1 42.1
ResNeXt-101-64x4d (Xie et al., 2017) 86.4 40.2
PoolFormer-M48 (Yu et al., 2022) 77.1 42.7
Chop’D Former-M 49.5 43.3

Table 9: Performance of semantic segmentation on ADE 20k validation set. Models use semantic
FPN model (Kirillov et al., 2019), a simple segmentation head that only minimally processes the
features. Chop’D Former acts as an effective backbone for semantic segmentation.

9



Under review as a conference paper at ICLR 2023

5 VISUAL RESULTS PUZZLE.

We provide additional visual comparisons for the image-to-image translation task of Puzzle recon-
struction. Figure 2 reports extra predicted outputs for all the evaluated layers next to the GT and
Input. As visible, the use of Dynamic fully connected layers yields best performance.

Input Channel
Mix

Pooling Spatial
Mix

Convolu-
tion

FC DFC-CP DFC GT

Figure 2: Visual Comparisons for Shuffle MNIST. Layers with different inductive biases are added
between the encoder and decoder. The image-to-image translation task relies on sound global spatial
reasoning and favors methods that can access the total number of tokens. Interestingly, Our CP-
decomposed DFC layer approximates the results of a heavier DFC.

6 CP-DECOMPOSED FORMERS PSEUDO-CODE

We present pseudo-code for two Former variants presented in the main manuscript. Listing 1
describes implementation for a CP-Decomposed Former described in equation 6 of the main
manuscript and Listing 2 describes the implementation for a Chop’D Former building block. Fol-
lowing notation of the main manuscript, in the pseudo-code N refers to the number of tokens, R the
dimension of CP decomposition, C input channels, D output channels. Chop’D Former also takes
in input the number G of dynamic pooling to learn, and achieves global token-mixing by using the
chop_gate modulation function followed by the dynamic_pool function which is in practice
implemented with sum-area tables (SAT).

10



Under review as a conference paper at ICLR 2023

1 # CP Decomposed Former Eq.6
2 def gate(x):
3 mask = CNN(x)
4 mask = mask.broadcast(inr)
5 return x * mask + x

6 def former_cp_decomposition(x, C, D, R, N):
7 I,N,C = x.shape # X_{inc}
8 x_4 = pw_conv(x, in_ch=C, out_ch=R) # Uˆ{4}_{cr}
9 x_2 = dw_conv(x_4, kernel=N) # Uˆ{2}_{mr}

10 x_3 = x_2 * U3_parameters # Uˆ{3}_{nr}
11 x_1 = gate(x_3) # Uˆ{1}_{ir}
12 x_5 = pw_conv(x_1, in_ch=R, out_ch=D) # Uˆ{5}_{dr}
13 return activation(x_5) + x

Listing 1: Pseudo-code for Former CP Decomposition.

1 # Chop'D Former Eq.10
2 def chop_gate(x):
3 x_downscale = downscale(x)
4 mask = pw_conv(x_downscale, in_ch=R, out_ch=R//4)
5 mask = gelu(mask)
6 mask = pw_conv(mask, in_ch=R//4, out_ch=R)
7 mask = mask.broadcast(inr)
8 return x * upscale(mask) + x

9 def chop_decomposition(x, C, D, R, N, G):
10 I,N,C = x.shape # X_{inc}
11 x_4 = pw_conv(x, in_ch=C, out_ch=R) # Uˆ{4}_{cr}
12 x_13 = chop_gate(x_4) # Uˆ{13}_{inr}
13 x_2 = dynamic_pool(x_13, kernel=N, groups=G) # Uˆ{2}_{mr}
14 x_5 = pw_conv(x_2, in_ch=R, out_ch=D) # Uˆ{5}_{dr}
15 return gelu(x_5) + x

Listing 2: Pseudo-code for Chop’D Former CP Decomposition.

11



Under review as a conference paper at ICLR 2023

REFERENCES

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
we done with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 764–773, 2017.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. Advances in Neural Information Processing Systems, 34:3965–3977,
2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 12259–12269,
2021.

Qi Han, Zejia Fan, Qi Dai, Lei Sun, Ming-Ming Cheng, Jiaying Liu, and Jingdong Wang. On
the connection between local attention and dynamic depth-wise convolution. In International
Conference on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. Advances
in neural information processing systems, 29, 2016.

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid net-
works. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6399–6408, 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204–9215, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Ben Mildenhall, Jonathan T Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, and Robert Carroll. Burst
denoising with kernel prediction networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2502–2510, 2018.

12



Under review as a conference paper at ICLR 2023

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. Advances in Neural Information Processing Systems, 34:980–993, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400.
PMLR, 2019.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, pp. 10096–10106. PMLR, 2021.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:24261–
24272, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard
Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al. Resmlp: Feed-
forward networks for image classification with data-efficient training. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
568–578, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10819–10829, 2022.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More deformable,
better results. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 9308–9316, 2019.

13


	Einstein Notation for Neural Networks
	Linear Layers
	Dynamic Layers

	Implementation Details
	Ablations
	Size
	Isotropic Architecture
	Rank R
	Spatial Reasoning Module

	Additional Experiments
	Image classification
	Object detection and instance segmentation
	Semantic segmentation

	Visual Results Puzzle.
	CP-Decomposed Formers Pseudo-Code

