
Appendix

A Parameter estimators derivation and analyses

Parameters α1, α2, β, γ introduced in Eqs. 1, 6, 4 are crucial to replicate the AD progression observed
in real data. However, the appropriate values of the parameter are not known a priori and have to be
estimated from the data. Below, we derive optimal estimators for each of the parameters. For the
following derivations, we assumed that longitudinal features Xi(t), Y i(t), ϕi(t), Di(t), Ci(t) ∀ t ∈
{0, 1, 2...,K} are available for individual i ∈ {1, ..., N}. Estimators are derived for a general setting
of "same parameter for a group of individuals" but the estimators are also applicable per-individual.

A.1 Estimation of γ

Parameter γ in Eq. 4 relates activity, size, and information processed by a region. Since I(t) is not
measured physically, we rearranged the equation to express it in terms of γ, Y i

v (t), X
i
v(t). We then

used Eq. 3 and setup an L2 minimization problem on the available data.
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A.2 Estimator for β

β can be estimated by setting up an L2 optimization problem using Eq. 1. Di(t) and H are available
from measurements. We approximate dDv(t)

dt ≈ ∆Dv(t)
∆t ∀v ∈ V , the RHS of which is available from

longitudinal measurements of D(t).
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dL(β)
dβ

= 2
∑
i

∑
t

(HDi(t))T
(
∆Di(t)

∆t
+ βHDi(t)

)
0 =

∑
i

∑
t

(Di(t))THT ∆Di(t)

∆t
+ β

∑
i

∑
t

(Di(t))THTHDi(t)

β = −
∑

i

∑
t(D

i(t))THT ∆Di(t)
∆t∑

i

∑
t(D

i(t))THTHDi(t)

14



A.3 Estimators for α1, α2

α1 and α2 can be estimated using L2 norm optimization and Eq. 6. Rearranging terms in Eq. 6, we
get:

∆Xi
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∆t
= −[Di

v(t) Y i
v (t)]

[
α1

α2

]
∀v ∈ V

Stacking all the nodes together gives the following matrix notations, with Q(t) = [Di(t)Y i(t)] is a
matrix with D(t) and Y (t) as its columns, and α = [α1 α2]

T ,
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The optimization problem is as follows:
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Setting the derivative to 0 and simplifying, we get:
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A.4 Estimating parameters when Y (t) is unavailable

New parameter estimators that leverage only the available data need to be derived when Y (t) is
unavailable. The derivation goes as follows: first, we eliminate Y (t) from the model equations.
Second, we set up an L2 optimization problem involving the parameters and measured variables in
the updated equation. Finally, we optimize the L2 objection function to derive optimal parameters.

Substituting Eq. 4 in Eq. 6 and expressing Iv(t) in terms of the remaining variables, we get:

dXv(t)

dt
= −α1Dv(t)− α2γ

Iv(t)

Xv(t)

Xv(t)
dXv(t)

dt
= −α1Xv(t)Dv(t)− α2γIv(t)

Iv(t) = − 1

α2γ

(
Xv(t)

dXv(t)

dt
+ α1Xv(t)Dv(t)

)
Substituting the above expression in Eq. 3, denoting θ = (α1, α2γ), and setting up an L2 optimization
problem based on it, we get:
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To simplify notation, we replace δ1 = 1
α2γ

, δ2 = α1, ai1(t) = (Xi(t))T ∆Xi(t)
∆t , and ai2(t) =

(Xi(t))TDi(t).
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δ1 and δ2 are coupled in the above optimization problem. We compute the partial derivative with
respect to each variable and simply the resulting set of equations. First, computing the derivative with
respect to δ2.
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Now, computing partial derivative wrt δ1 and substituting its values from the Eq. 10, we get
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Considering the RHS in the above equation separately for simplification, we get,
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We equate LHS=RHS. That gives:

(K4 + δ2K5)(K3 + δ2K2) = K5(K1 + 2δ2K3 + δ22K2)

∴ K3K4 + δ2K2K4 + δ2K3K5 + δ22K2K5 = K1K5 + 2δ2K3K5 + δ22K2K5

∴ K3K4 + δ2K2K4 + δ2K3K5 = K1K5 + 2δ2K3K5

∴ δ2K2K4 + δ2K3K5 − 2δ2K3K5 = K1K5 −K3K4

∴ δ2(K2K4 +K3K5 − 2K3K5) = K1K5 −K3K4

δ2 =
K1K5 −K3K4

K2K4 −K3K5

Substituting δ2 back in Eq. 10 and simplifying, we get:
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3 −K1K2

Rewriting in terms of the parameters,
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K2K4 −K3K5

1
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=
K2K4 −K3K5

K2
3 −K1K2

A.5 Effect of missing values on parameter estimation

Figure 6: Effect of missing values on parameter es-
timation. Analysis was performed for the synthetic
data.

In the ADNI data in this study, data is available
only for 31% of all possible visits (11 in total)
for an individual on average – there are a large
number of missing values. To assess the effect
of missing values on parameter estimation, we
performed parameter estimation on the synthetic
data by artificially removing measurements from
its samples’ trajectories. In the synthetic data,
visits from a given year were randomly removed
across the population so as to match the per-
centage of samples missing for that visit year
in the real data. Data was removed in this way
to ensure that the follow-up years data availabil-
ity in the synthetic data matched the real data.
On this synthetic data with missing values, we
estimated the parameters for each individual sep-
arately and for a groups of individuals based on
their demographics. The squared error of the
estimated parameters are shown in Fig. 6. Al-
though the estimation error was higher compared to the case when all the data was available (Fig. 4),
estimating parameters for group of individuals achieved lower error than individualized estimation.
The ground truth parameter values are of the order of 10−2 to 100. Therefore, estimation errors for
groups are tolerable.

A.6 ADNI - Selection of demographic variables and parameter estimates

To identify the demographic variables Z0 and their relation to parameters, f(Z0) (Eq. 7), we followed
a two step procedure. First, we estimated the parameters separately for each individual. Second,
we performed statistical analysis to find associations between the estimated parameters and the
demographic variables. The distribution of individualized parameter estimates are shown in Figure
7. During statistical analysis, we tested for association between each parameter and demographic
variable pair. For discrete demographic variables, statistical association was tested with a Wilcoxon
ranksum test. For continuous demographic variables, we fit a line with the demographic variable
as the independent and the parameter as the dependent variable, and evaluated the p-value of the
slope. Baseline age, education, APOE-ϵ4 genotype, and gender were the demographic variables we
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Figure 7: Individualized parameter estimation for split #3 in ADNI. For visual clarity, only values
between 5-95%ile are plotted for each parameter.

considered. Parameter estimation and statistical analysis was done separately for each training split
in the 5-fold cross-validation. The results of the statistical analysis are shown in Table 2. Gender and
genetic risk are the only demographic variables that are associated with some parameter in at least
one split. Therefore, we chose those two to represent Z0.

Parameter Demographic ft. p-value
Split 0 Split 1 Split 2 Split 3 Split 4

β̂ Age 0.472 0.669 0.796 0.79 0.557
β̂ Education 0.589 0.61 0.591 0.378 0.947
β̂ Gender 0.381 0.802 0.708 0.766 0.879
β̂ APOE-ϵ4 0.003 0.312 0.402 0.026 0.076
α̂1 AGE 0.224 0.47 0.331 0.499 0.238
α̂1 Education 0.227 0.915 0.331 0.114 0.951
α̂1 Gender 0.583 0.359 0.392 0.373 0.937
α̂1 APOE-ϵ4 0.596 0.316 0.523 0.115 0.197
ˆα2γ Age 0.799 0.798 0.253 0.77 0.718
ˆα2γ Education 0.904 0.133 0.821 0.244 0.079
ˆα2γ Gender 0.276 0.102 0.049 0.0005 0.056
ˆα2γ APOE-ϵ4 0.884 0.492 0.357 0.234 0.915

Table 2: Associations between individualized parameter estimates and demographic features. Cases
where p < 0.05 are highlighted.

There are a large number of missing values in the ADNI data in our study. Estimating parameters
based on groups mitigates the effect of missing values. Therefore, we estimated parameters for groups
based on the gender and APOE-ϵ4 status. This resulted in 4 groups. Parameter estimates for groups
for ADNI data are shown in Figure 8.

B Data generation and pre-processing

B.1 Synthetic data

We generated synthetic data of 200 samples (individuals) to validate the model’s ability to model
AD progression and predict long-term cognition trajectories. We set |V | = 2 and generated lon-
gitudinal trajectories of X(t), Y (t), D(t), ϕ(t), I(t), and C(t) for K = 10 time points (+base-
line). The baseline value of brain region size X(0) and amyloid D(0) were generated randomly;
X(0) ∼ N (µ = [3.5, 3.4],Σ = [[0.49, 0.20], [0.20, 0.64]]) and D1(0), D2(0) ∼ Uniform(0, 0.2).
Each individual also had two discrete demographic features, which were randomly sampled with
equal probability from four and two possible values, respectively. This resulted in eight groups of
individuals based on their demographic features. The parameters α1, α2, β were computed from
a predetermined linear combination of the demographic features. We set γ = 1 to be the same
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Figure 8: Group-wise parameter estimation for split #3 in ADNI.

for all the individuals and Ctask = 10. Finally, we set I1(t) = min(YmaxX1(t)/γ,Ctask) and
I2(t) = min(YmaxX2(t)/γ,Ctask − I1(t)) where Ymax = 2.5. Based on the above and Eqs.
1, 2, 3, 4, 6, we generated the longitudinal trajectories of C(t), X(t), D(t), ϕ(t), Y (t), I(t) for
t ∈ {1, 2, .., 15} and stored the last 11 time points to get trajectories that were heterogeneous.

B.2 ADNI data

We used the ADNI dataset to evaluate the model on real-world data for Alzheimer’s disease. For
this study, we only included individuals who had (i) baseline (0th year) measurements of cognition,
demographics, MRI, and florbetapir PET scans; (ii) longitudinal measurements of cognition; and
(iii) at least 2 follow-up measurements (after baseline) that contain both PET and MRI scans along
with cognitive assessment at those visits. Visits were not required to be successive, and only 10
years of assessments after baseline were retained for individuals with longer follow-ups. Note that
cognitive assessments were retained for all available points upto and including year 10 irrespective
of the availability of MRI/PET from those visits. These constraints were chosen to have sufficient
measurements for (per-individual) parameter estimation. This resulted in data from 160 participants
out of which 52 were cognitively normal (CN), 23 had significant memory concern (SMC), 58 had
early mild cognitive impairment (EMCI), and 27 were diagnosed with late MCI (LMCI).

Age, gender, education, and presence of APOE-ϵ4 genotype were the demographic features. We
considered a |V | = 2 node graph GS with nodes representing the hippocampus (HC) and the
prefrontal cortex (PFC) due to their importance in supporting cognition and their role in AD [12,
11, 13]. AD pathology primarily targets the hippocampus, a region that plays an important role in
memory and cognition, and propagates to other areas of the brain. PFC is involved in executive
function in healthy individuals and shows increased activation in older adults and AD patients during
cognitive tasks [13]. Volume of the hippocampus (HC) and prefrontal cortex (PFC) were used to
represent brain structure (X(t)). Raw values of hippocampal volume were divided by 2 × 103 to
be close to 3. To account for the larger size of the PFC in the brain compared to the hippocampus,
PFC volumes were normalized by the median ratio of PFC to hippocampus ×2× 103. Median ratio
was computed only on the training data. PET-scan derived SUVR values for PFC and hippocampus
were used as a measure of Aβ deposition (ϕ(t)). Pre-processed files for MRI and PET available on
LONI website were used. We used the score on the Mini Mental State Examination (MMSE) for as a
measure of cognition. We scaled MMSE score by 3 such that 10 represented perfect cognition and 0
represented no cognition so as to match the choice of Ctask = 10. Although ADNI also contains
functional MRI scans, we did not include them in our analysis, since very few individuals had that
information along with the rest of the variables.

C Model design choices and training

C.1 Effect of γ on the model

γ parameter appears at two places in our model. In Eq. 6 through Y (t) and in the reward function Eq.
8. From the parameter estimators in Eq. 9, it is clear that the effect of γ on brain size occurs through
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Figure 9: Predicted (proposed model with RL) vs ground truth size of PFC for ADNI data.

the term α2γ which can be estimated from the data. We can rewrite the reward function as:

R(t) = − [λ(Ctask − C(t)) +M(t)]

= −

[
λ(Ctask −

∑
v∈V

Iv(t)) +
∑
v∈V

γIv(t)

Xv(t)

]

= −γ

[
λ

γ
(Ctask −

∑
v∈V

Iv(t)) +
∑
v∈V

Iv(t)

Xv(t)

]
Since the optimization of the reward is performed over I(t), γ influences the optimization only
through λ/γ. Therefore, we set γ = 1 and varied λ in our experiments.

For a similar reason, we modeled M(t) =
∑

v∈V Yv(t) instead of adding a proportionality constant.
If there were a proportionality constant µ such that M(t) = µ

∑
v∈V Yv(t), the effect of µ on the

overall optimization would only occur through the term λ/µγ.

C.2 Brain activity related degeneration

Although the effect of brain activity on neurodegeneration could be mediated through amyloid
[44, 11, 15], we have included activity-based degeneration as a separate term in Eq. 6. This allows us
to account for other pathways via which brain activity could lead to atrophy, e.g., oxidative stress
and tauopathy. We also developed an alternate version of the proposed model that included an
activity-related amyloid deposition term in Eq. 1 instead of the term in Eq. 6:

dD(t)

dt
= −β1HD(T ) + β2Y (t);

dXv(t)

dt
= −αD(t)

The model with the above equations could not be trained on real data due to insufficient number
of followups for parameter estimation of an individual. Due to the unavailability of Y (t) and
the second order dependence of dD(t)

dt on ϕ(t), parameter estimators for β1, β2 required at least 4
measurements of X(t), ϕ(t), C(t) for estimation. Majority of the individuals (>100) in our data only
had 3 measurements of X(t), ϕ(t). Nevertheless, we plan to appropriately include the effect of brain
activity on degeneration via amyloid in future work.

C.3 Modified relationship between Y (t), X(t), I(t)

In Eq 4, we used an inverse relationship between Y (t) and X(t) to capture the increase in activity
for reduced region sizes. To assess the model’s sensitivity to the form of the equations, we replaced
Eq 4 with a squared inverse relationship between Y (t) and X(t), as follows:

Yv(t) = γ
Iv(t)

X2
v (t)

∀v ∈ V. (12)

For this modified model, we derived the parameter estimators following the procedure in Appendix
A; computed the parameters for each participant and group of participants; trained the RL agent with
Eq 12 in the simulator instead of Eq 4; and evaluated cognition trajectory prediction performance
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Figure 10: Modified model with inverse squared relationship between Y (t) and X(t) applied to
ADNI data. (A) Cognition trajectories from ground truth and model. (B) Information processed in
HC (Hippocampus) and PFC (Frontal) averaged across individuals. (C) Brain activity in HC and PFC
averaged across individuals.

and trends in information processing with disease progression. The modified model predicted
cognitive trajectories with a performance comparable to other models presented in Table 1 (MAE
= 0.539(0.087) and MSE = 0.786(0.218)) and demonstrated recovery/compensatory processes (Fig.
10).

C.4 RL agent

The agent determines the change in information processing in each region. Our simulator consisting
of DEs (Eqs. 1, 2, 3, 4, 5, 6, 8) allows us to use model-free RL with on-policy learning. During
preliminary analysis (data not shown), we compared two of the most popular deep policy-gradient
methods: TRPO [23] and PPO [45]. For both methods, we set the discount factor for generalized
advantage estimates to be 0.97. For PPO, we clipped the likelihood ratio at 0.2 and used a minibatch
size of 10. For TRPO, we imposed a constrain of 0.01 on the KL-divergence. We used the default
values for the remaining hyperparameters. We compared the reward achieved by agents trained using
TRPO and PPO and observed that TRPO outperformed PPO, for both synthetic and ADNI data (data
now shown).

In our work, the policy agent is parameterized by a multilayer, feedforward neural network. We
implemented the environment and the agent’s interaction using OpenAI’s Gym framework [24]. We
used a stochastic two-hidden-layer Gaussian MLP with 32 neurons as the policy network, which
we trained using the Garage Framework [46] (available under MIT License). During each epoch,
the policy sampled 1000 trajectories from the simulator. An individual’s trajectory consists of 11
time points including baseline. To stabilize learning, we imposed a minimum constraint of ‘-2000’
on the reward and constrained the continuous action space in the range [-2,2]. The constraints on
the action space were also motivated by the change in MMSE scores between subsequent years
in ADNI data, > 95% of which lie in the range [-2, 2]. To constrain the agent from assigning
C(t) > 10 to an individual, we incorporated a penalty factor in the reward function, based on
the mismatch between Ctask and C(t): 100[max(C(t)−Ctask,0)]. Therefore, effectively, R(t) =
−[λ|Ctask − C(t)| × 100[max(C(t)−Ctask,0)] +M(t)]. The model was trained on an internal multi-
node compute cluster with two 20-core IBM POWER9 CPUs at 2.4GHz and 256 GB RAM.

The model requires D(t) for the simulation although only ϕ(0) is available from baseline data. D(1)
is computed from ϕ(0) separately for each individual using the relationship between them provided
in [5]:

dϕ(tpo)

dtpo
= βH̃(βtpo)ϕ(tpo), (13)

H̃(βtpo) = Udiag

({ 1
βtpo

if j = 0
νje

−νjβtpo

1−e−νjβtpo
if j > 0

})
UT ,

where νj are the eigenvalues and U contains the corresponding eigenvectors of H , and tpo denotes
the time post onset of amyloid deposition. We approximate Eq. 13 to calculate D(1) =

∆ϕ(tpo)
∆tpo

=

ϕ(tpo + 1)− ϕ(tpo), and set ϕ(tpo) = ϕ(0) (amyloid deposition at baseline) and tpo = individual’s
age at baseline −50.
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We follow a two step procedure to determine I(0) for an individual. First, we determine the best I(0)
for the entire population by using grid search as described in Section C.5. Second, we fine-tuned the
Ii(0) for an individual i using the policy agent based on (i) their brain regions size Xi(0), and (ii)
the population I(0) found from grid search. We observed that this two step procedure of selecting a
population based I(0) and then fine-tuning it for an individual allowed us to account for the variability
in baseline cognition across individuals.

C.5 Grid search for choosing λ and I(0)

λ and I(0) must be specified for training the model and for predicting disease progression for an
individual. We performed a grid search for λ and I(0) and chose the optimal value based on the
average validation set error from cross validation. Grid search was performed independently for
the synthetic data and for the ADNI data. We varied λ ∈ {2−1, 20, 21, 22, 23} for the synthetic
data and λ ∈ {2−2, 2−1, 20, 21} for the ADNI data based on preliminary analysis. I(0) was
chosen from the set {[10, 0], [9, 1], [8, 2], [7, 3], [6, 4]} for both datasets, with the representation
I(0) = [IHC(0), IPFC(0)] for ADNI data. Based on the validation MSE (Table 3), we chose
λ = 2.0 for synthetic data and λ = 1.0 for ADNI data. The optimal validation set error was achieved
by I(0) = [7, 3] for ADNI and I(0) = [9, 1] for synthetic data (Table 3). The value of λ and I(0)
identified during training was used while testing.

MAE ADNI Synthetic
0.25 0.5 1 2 0.5 1 2 4 8

6,4 7.730 (0.261) 0.705 (0.180) 0.499 (0.059) 0.520 (0.093) 2.230 (0.225) 0.806 (0.069) 0.711 (0.032) 0.699 (0.116) 0.754 (0.204)
7,3 7.457 (0.255) 0.724 (0.191) 0.485 (0.087) 0.492 (0.091) 2.292 (0.249) 0.741 (0.115) 0.766 (0.215) 0.713 (0.084) 0.700 (0.050)
8,2 7.264 (0.274) 0.732 (0.174) 0.516 (0.072) 0.495 (0.071) 2.296 (0.094) 0.764 (0.070) 0.698 (0.112) 0.739 (0.138) 0.690 (0.163)
9,1 6.805 (0.283) 0.824 (0.178) 0.529 (0.076) 0.522 (0.093) 2.166 (0.221) 0.892 (0.206) 0.670 (0.053) 0.781 (0.230) 0.808 (0.228)
10,0 6.348 (0.227) 0.822 (0.346) 0.527 (0.075) 0.497 (0.099) 2.057 (0.188) 0.834 (0.130) 0.904 (0.376) 0.885 (0.321) 0.891 (0.168)

Table 3: Average validation MAE for different values of λ and I(0) for ADNI and synthetic data.
Standard deviation is provided in parentheses. The lowest MAE for each dataset is highlighted.

D Benchmark and control models

D.1 minimalRNN

Minimal recurrent neural network is a state-of-the-art model to predict cognition trajectories [10].
The model predicts AD progression up to 6 years into the future using data from one (baseline) or
more time points. We used the open-source implementation of minimalRNN (GitHub link; available
under MIT License). To maintain consistency of experiments across different models, only data at
year 0 was input into the model. "Model filling" was used to infer values of brain region size (X(t)),
amyloid pathology (ϕ(t)), and age in subsequent years (see [10] for details). With the inferred X(t),
ϕ(t), and age along with other demographics (genetics and gender; Z0), the minimalRNN model
predicted cognition (C(t)) at each year. In this study, minimalRNN was trained for 100 epochs with
a learning rate of 5 × 10−4 and batch size of 128. The model is optimized by an Adam optimizer
with weight decay set to 5× 10−7.

D.2 SVR

Kernel support vector regression has been used as a benchmark model for cognition trajectory
prediction [10]. It is a suitable learning based model in scenarios where the available data is limited.
In our experimental settings, baseline brain region size (X(0)); amyloid pathology (ϕ(0)); and
demographics gender, genetic risk (Z0), and age were input to the SVR model. SVR was implemented
with the RBF kernel (with hyper-parameters: C = 1, epsilon = 0.1 and gamma = 0.01).

D.3 Proposed model without RL

To assess the value of RL in our framework, we implemented our DE-based model and optimized
R(t) (Sec. C.4) at each time point using standard optimization instead of RL. Optimization of R(t)
was done independently at each time point. For each time point t, we performed a grid search by
varying Iv(t) ∈ {0, 0.1, 0.2, ..., 10.4} ∀v ∈ V and chose the value of I(t) that maximized R(t). λ
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Figure 11: Cognition trajectories for two individuals. Ground truth trajectory and predicted trajecto-
ries (from proposed model with RL and proposed model without RL) are shown.

was the same as in the best performing proposed model reported in Table 1. The proposed model w/o
RL as described above typically resulted in I(t) ∈ {[10, 0], [0, 10], [0, 0]} ∀t (Fig. 11).

D.4 Control model for recovery

We implemented control models to evaluate the effect of the reward function on the recovery like
behavior observed in Sec. 4. Specifically, we hypothesized that the shift in information processing
observed in the proposed model was due to the form of the reward function R(t) which consisted of
a (i) cognitive mismatch term, and an (ii) energetic cost of cognition term. To test this hypothesis, we
implemented two variants of the proposed model as control models with modified reward functions
R′(t) = −(Ctask − C(t)) and R′′(t) = M(t), respectively. The modified reward functions only
consisted of one term each from R(t). Note that, unlike R(t) (Eq. 8), the modified reward functions
did not need a λ parameter. I(0) for the control model was the same as in the best model from Table 1.
Information processing plots for the control models trained on ADNI data are shown in Figs. 12, 13.

The control model with reward R′(t) roughly maintains the initial information processing distribution
over regions, I(0), throughout the entire 10 years (Fig. 12). Maintaining I1(t) at a high value leads
to increased degeneration of the HC, which consequently increases M(t). Since increased M(t) does
not penalize the reward, the control model approximately maintains I(0) throughout. This suggests
that M(t) plays a role in demonstrating recovery in the proposed model.

The control model with reward R′′(t) pushes information processing in both regions to 0, i.e.,
I(t) = [0, 0], t ≥ 1 (Fig. 13). As expected, this model minimizes the energetic cost, i.e., M(t) = 0.
This results in C(t) = 0, t ≥ 3.

In summary, neither control model with the modified reward functions demonstrated recovery.
Moreover, they highlighted the value of the two competing terms of (i) cognitive mismatch, and (ii)
energetic cost in the reward function in demonstrating recovery in the proposed model.
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Figure 12: Control model with reward R′(t) for ADNI. (A) Cognition trajectories from ground truth
and model. (B) Information processed in HC (Hippocampus) and PFC (Frontal) averaged across
individuals. (C) Brain activity in HC and PFC averaged across individuals.
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Figure 13: Control model with reward R′′(t) for ADNI. (A) Cognition trajectories from ground truth
and model. (B) Information processed in HC (Hippocampus) and PFC (Frontal) averaged across
individuals. (C) Brain activity in HC and PFC averaged across individuals.
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