
Published as a conference paper at ICLR 2021

APPENDIX

A METHODOLOGY

In this section we provide a more rigorous description of PSRO and our two proposed algorithms. We
will begin by explaining the details of PSRO, and then explain where each of the proposed algorithms
deviate from PSRO’s implementation. Finally, we will discuss how Q-Mixing is leveraged as both a
Transfer-Oracle and Opponent-Oracle.

A.1 POLICY-SPACE RESPONSE ORACLES

PSRO starts from an initial set of policies for each player Π0. Commonly, the initial strategy-sets contain
only a single random policy for each player. An empirical game is initialized Γ̃0 that contains the initial
strategy sets with an undefined payoff function. The algorithm then proceeds by iteratively performing
a two step process: (1) complete and solve the empirical game, and (2) grow the strategy-sets.

First, the algorithm checks its progress towards a solution via solving the empirical game. All
policy-profiles with missing entries, an undefined payoff, are simulated for a fixed number of episodes
specified by a hyperparameter.4 The average return experienced by each player in this profile is then filled
into the appropriate game-cell. This is what is captured by the psuedocode:

Algorithm 4: Simulate and Expand the ENFG Pseudocode

Simulate missing entries in ŨΠe

from Πe.

Enumerating and checking each profile can become computationally expensive as a result of the
combinatorial explosion of the profile space. However, each player only adds one new policy to their
strategy-set each epoch. Therefore, we know that we need only check profiles containing at least one
of the player’s new policies. Our more efficient method for completing the ENFG is as follows:

Algorithm 5: Efficient Expansion of the ENFG (ExpandENFG)

Input: ŨΠe

, Πe, e
for player i∈ [[n]] do

for opponent profile in Πe−i do
Skip profiles that have already been simulated.
profile←(πei ,opponent profile)

if profile∈Ũ then
skip

Build an estimate of the payoff by simulating the profile.
episodes← []
for many episodes do

τ∼profile
episodes.append(τ)

Ũ(profile)=mean return(episodes)

Output: ŨΠe

For example, if we were on epoch two of a two-player game then the ExpandENFG call would simulate
the cells highlighted in Table 1.

Now with a complete payoff function ŨΠe

, the empirical-game is solved using a MSS to produce a
solution σ∗,e. Recall that the MSS is a function that solves the ENFG for a game-theoretic solution concept
(e.g., Nash equilibrium). Therefore, when choosing a MSS it is important to decide what your solution
concept will be and the computational limitations surrounding the MSS implementation.5

4In our work this is typically set to 30.
5In our work we utilized linear complementarity to solve for Nash equilibrium.

11

Published as a conference paper at ICLR 2021

π0
−i π1

−i π2
−i

π0
i

π1
i

π2
i

Table 1: The cells highlighted represent the profiles simulated for a two-player game on epoch two.

The second portion of the epoch concerns growing each player’s strategy set. The strategy-exploration
method employed by PSRO is to add one policy to each player’s strategy-set that is the best-response
to the opponent’s current solution profile. In psuedo-code this best-response training is denoted:

Algorithm 6: Best-Response to the ENFG solution
for many episodes do

π−i∼σ∗,e−1
−i

Train πei over τ∼(πei ,π−i)

In this code-snippet we are training a best-response policy for player i. This policy is trained until a
maximum training budget is hit – in our experiments this limit is specified by a cumulative number of
simulator steps, and could trained using any RL algorithm. The authors of PSRO have chosen to write
the RL training section of the pseudo-code this way to highlight an important implementation detail. At the
beginning of each episode, the opponents’ policies are drawn from their mixed strategies π−i∼σ−i. The
opponent policies are then kept fixed for an entire episode τ∼(πei ,π−i). The policy that is being trained
may be updated at any point through an episode according to the RL algorithm’s specification. Once
training has completed for the new policy, it is then added to the player’s strategy set Πei =Πe−1

i ∪{πei }.
These two steps repeat for either a fixed number of iterations, or until a convergence condition is met
(e.g., stable solution, or zero-regret).

Our more expanded version of PSRO is as follows:

Algorithm 7: Policy-Space Response Oracles (Lanctot et al., 2017)

Input: Initial policy sets for all players Π0, MSS

Initialize the ENFG.
ŨΠ0←ExpandENFG(ŨΠ0

,Π0,0)

Simulate utilities ŨΠ0

for each joint π0∈Π0

Initialize solution σ∗,0i =Uniform(Π0
i)

while epoch e in {1,2,...} do
Strategy-set expansion.
for player i∈ [[n]] do

Generate new policies – best-responses to the current solution.
for many episodes do

π−i∼σ∗,e−1
−i

Train πei over τ∼(πei ,π−i)

Πei =Πe−1
i ∪{πei }

Simulate missing entries in ŨΠe

from Πe.
ŨΠe←ExpandENFG(ŨΠe

,Πe,e)

Compute a solution to the current ENFG.
Γ̃e←(ŨΠe

,Πe,||Πe||)
σ∗,e←MSS(Γ̃e)

Output: Current solution σ∗,ei for player i

12

Published as a conference paper at ICLR 2021

A.2 MIXED-ORACLES

Mixed-Oracles differs from PSRO in the way it generates new policies for each player.

Instead of training directly against the opponent solution σ∗,e−i during each epoch, we will instead train a best-
response to only the new opponent policy πe−i. The RL training proceeds in the same manner as in PSRO;
however, the opponent does not need to sample a new policy at each episode due to their pure-strategy. We
denote this best-response policy as λei , and each agent collects a set of these pure-strategy best-responses

in the set Λei =
{
λji

}e
j=0

. This set is meant to hold the best-response to each of the opponent’s policies.

However, Mixed-Oracles, much like PSRO, still expands each player’s strategy-set with the best-response
to the opponent’s solution σ∗,e−1

−i . To accomplish this we employ a new function entitled TransferOracle
that will take in a set of policies and a distribution, and return a policy that represents an aggregation
of the input policies weighted by the distribution. This function is provided as an additional input to the
Mixed-Oracles algorithm. Finally, we can construct our best-response to the opponent’s solution σ∗,e−1

−i
by calling TransferOracle with our agent’s best-responses to the opponent’s policies Λi and the opponent’s
mixture σ∗,e−1

−i . The TransferOracle can then aggregate our best-response behaviour based on how likely
the opponent is to play their respective policies (that we are best-responding to). The policy is then added
to the player’s strategy-set and the algorithm carries forward much like PSRO.

Algorithm 8: Expanded Mixed-Oracles

Input: Initial policy sets for all players Π0, TransferOracle function, MSS

Initialize the ENFG.
ŨΠ0←ExpandENFG(ŨΠ0

,Π0,0)

Simulate utilities ŨΠ0

for each joint π0∈Π0

Initialize solution σ∗,0i =Uniform(Π0
i)

Each player maintains a set of opponent pure-strategy (policy) best responses.
Initialize pure-strategy best-responses Λ0

i =∅

while epoch e in {1,2,...} do
Train best-responses to each new opponent policy.
for player i∈ [[n]] do

for many episodes do
Train λei over τ∼(λei ,π

e−1
−i)

Λei =Λe−1
i ∪{λei}

Generate new policies – best-responses to the current solution.
for player i∈ [[n]] do

πei←TransferOracle(Λi,σ
∗,e−1
−i)

Πei =Πe−1
i ∪{πei }

Simulate missing entries in ŨΠe

from Πe.
ŨΠe←ExpandENFG(ŨΠe

,Πe,e)

Compute a solution to the current ENFG.
Γ̃e←(ŨΠe

,Πe,||Πe||)
σ∗,e←MSS(Γ̃e)

Output: Current solution strategy σ∗,ei for player i.

13

Published as a conference paper at ICLR 2021

A.3 MIXED-OPPONENTS

Mixed-Opponents operates the same as PSRO, except that instead of training against σ∗,e−1
−i we will

create a new policy π−i representing an aggregate of the mixture. To construct the new policy we leverage
an OpponentOracle that takes in a set of policies and a distribution and aggregates them into a single
representative policy. Here, we aggregate all of the opponent’s policies Πe−1

−i by their solution σ∗,e−1
−i . This

removes the need to sample a new policy during each episode, and eliminates any variance encountered
during learning that was a result of playing against an unobserved distribution of opponents. The new
best-response also serves as a best-response to the objective specified by the MSS, so the policy is simply
added to the player’s strategy-set and the algorithm continues similar to PSRO.

Algorithm 9: Expanded Mixed-Opponents

Input: Initial policies sets for all players Π0, OpponentOracle function, MSS

Initialize the ENFG.
ŨΠ0←ExpandENFG(ŨΠ0

,Π0,0)

Simulate utilities ŨΠ0

for each joint π0∈Π0

Initialize solution σ∗,0i =Uniform(Π0
i)

while epoch e in {1,2,...} do
for player i∈ [[n]] do

Aggregate the opponent mixture into a single representative policy.
π−i←OpponentOracle(Πe−1

−i ,σ
∗,e−1
−i)

Generate new policies – best-responses to the current solution.
for many episodes do

Train πei over τ∼(πei ,π−i)

Πei =Πe−1
i ∪{πei }

Simulate missing entries in ŨΠe

from Πe.
ŨΠe←ExpandENFG(ŨΠe

,Πe,e)

Compute a solution to the current ENFG.
Γ̃e←(ŨΠe

,Πe,||Πe||)
σ∗,e←MSS(Γ̃e)

Output: Current solution σ∗,ei for player i.

A.4 Q-MIXING AS A TRANSFERORACLE AND OPPONENTORACLE

Mixed-Oracles and Mixed-Opponents require an additional input of a TransferOracle and OpponentOracle,
respectively. Both of these functions have the same interface:

F :~π,∆(~π)→π.

In this study we leverage the Q-Mixing (Smith et al., 2020) technology as the input for both of these
functions. Q-Mixing is a general method for aggregating value-based policies, following a distribution,
into a single policy. The general form of Q-Mixing is as follows:

Qi(oi,ai |σ−i)=
∑
π−i

ψi(π−i |oi,σ−i)Qi(oi,ai |π−i),

where ψ is a function that determines the relative likelihood of playing an opponent ψi :O→∆(Π−i).
While this form allows for much more expressive methods of fusing policies, we utilize a simple version
of this method. In particular, we the formulation Smith et al. (2020) refers to as Q-Mixing: Prior. In
this version, the opponent weighting does not consider historical observations nor future uncertainty, but

14

Published as a conference paper at ICLR 2021

instead weights each policy directly by the distribution:

Qi(oi,ai |σ−i)=
∑
π−i

σ−i(π−i)Qi(oi,ai |π−i).

We can then define the TransferOracle or OpponentOracle that uses Q-Mixing as follows (we assume
that all policies are value-based and substitute the policies for value-functions):

F : ~Q, (σ=∆(~Q))→QQ-Mixing(oi,ai |σ)=
∑
Qi∈~Q

σ(Qi)Qi(oi,ai),

where notationally σ(Qi) represents the probability associated withQi in σ.

B HYPERPARAMETER SELECTION

In PSRO, we utilize Deep Reinforcment Learning (Deep RL) to compute an approximate best-resposne
policy for each agent during each iteration. Both the convergence and performance of Deep RL algorithms
is highly dependent on the selection of the settings of the algorithms, also known as the hyperparameters (to
distinguish from the parameters being optimized). This presents us with two major issues (1) we need the
hyperparameters for the Deep RL algorithm prior to running PSRO, and (2) any particular hyperparameter
configuration may not necessarily work well against a different opponent’s strategy.

To address both of these issues, we take a two-step approach. First, in order to choose Deep RL parameters
prior to running PSRO, we select the hyperparameters that work best for the Deep RL algorithm when
playing a random opponent. Then we run PSRO with these hyperparameters to generate a static set of
policies for each player.

We now turn to our second issue, we cannot select hyperparameters that work best against each opponent
strategy. However, with the diverse set of policies generated by our initial PSRO run, we have a
representative set of possible opponent strategies. From the resulting PSRO run, we sub-sample a set of
k opponent policies from the solution’s support. We utilize these selected policies to evaluate the quality
of a hyperparameter setting.

In this study, we consider two hyperpameter versions: parameters for training against pure-strategy op-
ponents (hereafter, pure-hparams), and parameters for training against mixed-strategy opponents (hereafter,
mix-hparams). This distinction is drawn, because the more stochastic, or mixed, the opponent’s strategy,
should require more training to cope with the larger variability in experiences. The pure-hparams are the
set of hyperparameters that had the highest average final return when training best-responses independently
against each of the k opponent policies. The mix-hparams are the hyperparameters that had the highest
final return when training a best-response against the uniform-mixed-strategy of the k opponent policies.

All hyperparameter searches are conducted by sampling 300 combinations of hyperparameters. Each
hyperparameter is then either trained against the random-opponent task, or both the mixed-opponent and
pure-opponent tasks. For both the mixed-opponent and pure-opponent tasks we use five opponent policies.

We consider the following hyperparameters:

Batch Size: The number of experiences to utilize in one training step.

Replay Capacity: The maximum number of experiences for an agent to maintain (First-In First-Out
ordering).

Min Replay Size: The minimum number of experiences required in the replay buffer before training
can begin.

Learning Rate: The learning rate of the optimizer (this is Adam in all experiments).

N Exploration Timesteps: The number of of timesteps where the agent is following an exploration
policy. In this study we utilize an ε-greedy exploration policy with a linear decay from 1.0 to 0.03.

N Total Timesteps: The total number of timesteps allowed before training is terminated.

15

Published as a conference paper at ICLR 2021

C EVALUATION METHODS

C.1 REGRET

The regret of player i in profile σ is given by Πi⊆Πi:

Regreti(σ,Πi)= max
πi∈Πi

ui(πi,σ−i)−ui(σi,σ−i). (2)

C.2 EMPIRICAL PROXY REGRET

To measure the exact regret for a player with respect to a strategy profile equation 2, we would need the
ability to compute the actual best response against the other players. Since this is generally infeasible
and expensive to approximate in an empirical-game setting, we instead evaluate regret with respect to a
static set of policies. Let Π̄i⊆Πi be the static set for player i, and Π̃i⊆Πi by the set of policies generated
by PSRO. The proxy regret for player i in profile σ is given by:

Regreti(σ,Π̃i)=max(0, max
πi∈Π̄i∪Π̃i

ui(πi,σ−i)−ui(σi,σ−i)). (3)

Note: that we clip the minimum of this regret to zero, because all policies in the static-set of policies may
perform worse than the profile σi.

C.2.1 EVALUATING STATIC-SET POLICIES

In this section we validate that our static-set of evaluation policies is diverse. Each pair of policies is
compared by checking their action agreement. Due to computational limitations, we cannot check their
agreement across the complete state-space. So instead, we collect a sub-set of the state-space that is
representative of the strategy-space explored. We simulate each profile of policies for 30 episodes and
collect the states observed by all agents. Next, we remove all duplicate states that will bias any comparisons
(e.g., the behaviour at the beginning of the episode will occur more frequently and be favoured more in
the comparison). Now with our filtered states, we check their average agreement of their greedy actions.

In the Gathering-Small environment, 2,160,000 states were collected and 170,966 states remained after
duplicates were removed. The comparison is shown in Figure 7.

Figure 7: Gathering-Small’s held-out policies similarity.

In the Gathering-Open environment, 4,860,000 states were collected and 585,963 states remained after
duplicates were removed. The comparison is shown in Figure 8.

In the Leduc Poker environment, 4483 states were collected and 282 states remained after duplicates were
removed. The comparison is shown in Figure 9.

16

Published as a conference paper at ICLR 2021

Figure 8: Gathering-Open’s held-out policies similarity.

Figure 9: Leduc-Poker’s held-out policies similarity.

C.3 SUMREGRET

SumRegret(σ,Π)=

n∑
i

Regret(σi,Πi) (4)

D ENVIRONMENTS

D.1 GATHERING

The Gathering environment is a commons game, where the goal of each agent is to collect “apples.” The
apples regrow at a rate dependent upon the configuration of the uncollected nearby apples. In this case,
the more nearby apples, the higher the regrowth rate of the apples. Naturally this presents a dilemma for

17

Published as a conference paper at ICLR 2021

the players: each want to pick as many apples as possible; however, if they over-harvest the throughput
of apples diminishes – potentially falling to zero.

The original designers of this environment wanted it to be able to study similar phenomena present in
human behavioral experiments. An important feature of the human experiments is they often contained
the option for a participant to pay a fee to fine another participant. To this end, they endowed each agent
with a “time-out beam” (hereafter, laser), which serves this purpose. The laser extends 20 tiles in front
of the current agent, and has a width of 5 tiles. If an agent tags another agent with this beam, the taggee
is removed from the game for 25 timesteps.

On their quest to collect apples each agent will simultaneously select one of eight possible actions:

{UP, RIGHT, DOWN, LEFT, ROTATE-RIGHT, ROTATE-LEFT, LASER, and NOOP}.
The first four actions represent moving in the respective cardinal directions from the perspective of the
agent. The second set of two actions – ROTATE-RIGHT and ROTATE-LEFT, adjust the perspective of
the agent by having them turn 90 degrees in the corresponding direction. This is an important capability
of the agent because it allows the agent to aim its laser, which only fires the direction the agent is facing.

The agent’s observe a rectangular window of 10 squares forward (including their position), and 10 to the
left and right (including their position). The result is a [10, 20] window, where each cell contains: food,
agent, opponent, wall, or nothing. This gives our agent an observation shape of [10, 20, 4] which is ravelled
into a single vector of length 80. This is processed by a two-hidden layer fully-connected neural network
with 50 units at each layer and ReLU activations.

Our implementation is based on the the open source implementation: https://github.com/
HumanCompatibleAI/multi-agent. We modified this version of the environment to remove an er-
roneous edge-case where both agents could time-out each other in the same timestep. This led to degenerate
solutions where the agents would effectively stun lock each other, so neither player could obtain any reward.

The hyperparameters are shown in Table 2 for Gathering-Small and Table 3 for Gathering-Open.

Hyperparameter Values Considered Pure-Hparam Mix-Hparam

Batch Size [32, 64] 64 32
Replay Capacity [3e4, 5e4, 8e5, 1e5] 3e4 8e4
Min Replay Size [1e2, 1e3, 3e3, 1e4, 3e4, 7e4, 1e5] 1e3 1e4
Learning Rate [3e-3, 1e-4, 3e-4, 1e-5, 3e-5] 3e-4 3e-4
N Exploration Timesteps [1e5, 2e5, 3e5, 4e5, 5e5, 7e5] 5e5 3e5
N Total Timesteps [3e5, 5e5, 7e5, 1e6, 1.2e6, 1.5e6, 1.7e6, 2e6,

2.2e6]
1e6 2.2e6

Table 2: Gathering-Small Hyperparameters.

Hyperparameter Values Considered Pure-Hparam Mix-Hparam

Batch Size [32, 64] 64 64
Replay Capacity [3e4, 5e4, 8e4, 1e5] 8e4 8e4
Min Replay Size [1e2, 1e3, 3e3, 1e4, 3e4, 7e4, 1e5] 1e4 1e4
Learning Rate [3e-3, 1e-4, 3e-4, 1e-5, 3e-5] 3e-4 3e-5
N Exploration Timesteps [1e5, 2e5, 3e5, 4e5, 5e5, 7e5] 2e5 1e5
N Total Timesteps [3e5, 5e5, 7e5, 1e6, 1.2e6, 1.5e6, 1.7e6, 2e6,

2.2e6]
7e5 2.2e6

Table 3: Gathering-Open Hyperparameters.

D.2 LEDUC POKER

Leduc hold’em, or Leduc Poker, is a reduced version of poker. In 2-Player Leduc6 there are six cards:
two suits and three ranks. The players go through two rounds of betting where each player can take one

6Extensions exist of Leduc to several players.

18

https://github.com/HumanCompatibleAI/multi-agent
https://github.com/HumanCompatibleAI/multi-agent

Published as a conference paper at ICLR 2021

Figure 10: The Gathering-Small environment. Players randomly spawn in either the red or blue (one
player per spawn).

(a) Player 0’s perspective at the beginning of the episode. (b) Player 0’s perspective after turning right.

Figure 11: Example observation from the Gathering-Default environment. Note that the agents cannot
distinguish between their opponents.

Figure 12: The Gathering-Open environment. Players randomly spawn in one of many locations
throughout the map.

of three actions:

{FOLD, CALL, or RAISE.}

During the first round each player is dealt a single private card, and in the second round a single board
card is revealed. The raise amounts are restricted to 2 or 4, and each player starts the first round with 1
already in the pot.

We utilize a two-hidden layer fully-connected neural network with 30 and 15 units each and ReLU
activations. The network takes as input a vector of size 30 including:

• The player number (size 2).

• One-hot encoding of their private card (6 bits).

• One-hot encoding of the public card (6 bits).

• Sequence of actions taken in the first round (8 bits – 4 maximum actions with 2 bits to represent
each action).

• Sequence of actions taken in the second round (8 bits)

The hyperparameters are shown in Table 4.

19

Published as a conference paper at ICLR 2021

Hyperparameter Values Considered Pure-Hparam Mix-Hparam

Batch Size [32, 64] 32 64
Replay Capacity [3e2, 1e3, 3e3, 1e4] 1e4 3e3
Min Replay Size [1e2, 3e2, 1e3] 1e2 1e2
Learning Rate [1e-3, 3e-3, 1e-4, 3e-4] 1e-3 1e-4
N Exploration Timesteps [3e2, 1e3, 3e3, 1e4, 3e4, 1e5] 3e2 3e2
N Total Timesteps [1e3, 3e3, 1e4, 3e4, 1e5, 3e5] 3e3 1e5

Table 4: Leduc Poker Hyperparameters.

E PRECISE VALUES FOR ROCK-PAPER-SCISSORS EXAMPLE

We give the exact policies and Q-values for the Rock-Paper-Scissor example in section 3.2. Player 1’s
strategies are π1

1 = (0,0.3,0.7) and π2
1 = (0.4,0.6,0). Player 2’s BRs are R and P respectively, induced

by Q-values Q1
2 = (0.7,0.15,0.65) and Q2

2 = (0.2,0.7,0.6). The resulting ENFG has payoffs for player
2 of [[0.7,0.15],[0.2,0.7]]. This is close to the matching-pennies game, and player 2’s Nash equilibrium
is (0.52,0.48), so their meta-strategy plays (0.52,0.48,0.0) in the original game.

20

