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Abstract
In this document, we first introduce the notations, preliminaries, and models
in Section 1. Next, we provide the proofs of the exact recoverability theories
for Tensor Robust Principal Component Analysis (TRPCA) (i.e., Theorem 2) and
Tensor Completion (TC) (i.e., Theorem 3) in Sections 2 and 3, respectively. Section
4 presents detailed information about Algorithm 1 and Algorithm 2 mentioned in
the manuscript. Finally, in Section 5, we provide additional experimental evidence
to further validate the effectiveness of our proposed models.
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1 Notations and Preliminaries

1.1 Notations

Before completing the proofs, it is necessary to introduce some symbols that will be used throughout
the document. In this paper, we denote tensors by boldface Euler script letters, e.g., A. Matrices
are denoted by boldface capital letters, e.g., A; vectors are denoted by boldface lowercase letters,
e.g., a, and scalars are denoted by lowercase letters, e.g., a. We denote I,, as the n X n identity
matrix. For a 3-order tensor A € R™**"2*"3_we denote its (¢, j, k)-th entry as A, 5, or a;;; and use
Ali,:, 1), A, 4,:) and A(:, 1, i) to denote respectively the i-th horizontal, lateral and frontal slice
(see definition in [1]). More often, the frontal slice \A(:, :, i) is denoted compactly as A(*). The tube
is denoted as A(i, /, :). The mode-n unfolding matrix of \A is denoted as A (,,) = unfold,,(.A), and
fold,, (A ()) = A, where fold,, is the inverse of unfolding operator. The mode-n product of a tensor
X € RIx12xIs apd a matrix A € R7»*I» is denoted as YV := X X,, A (see definition in [2]). The
inner product of between A and B is denoted as (A, B) = Tr(A”B). The inner product between A
and BB is denoted as (A, B) = > (AW B®).

Some norms of vector, matrix and tensor are used. We denote the [ A|[1 = >, |a;;x|, the infinity
norm as || Al|cc = max;j |a;;,| and the Frobenius norm as || Al p = , /Zijk la;jx|?, respectively.
The spectral norm of a matrix A is denoted as ||A| = max; o;(A), where o;(A) is the i-th largest
singular values of A. The matrix nuclear norm s ||All, =), 0;(A).

For a given scalar x, we denote by sgn(x) the sign of z, which we take to be zero if z = 0.
By extension, sgn(€) is the matrix whose entries are the signs of those of £. We recall that any
subgradient of the /1 norm at £ supported on €2, is of the form

sgn(€o) + F, (1)
where F vanishes on €2, i.e. PoF = 0, and obeys || F||loo < 1.
Let A = USV7 be the skinny SVD of A. It is known that any subgradient of the nuclear norm at A
is of the form UVT + W, where UTW =0, WV = 0 and |[W|| < 1[3].
Similarly, for A € R™*"2X"s with tubal rank R, we also have the skinny t-SVD, i.e., A =
Uxp S VT, whereUd € R *Exrs § ¢ REXEx7s gnd Y e R™2XBx7s jn whichd” s, U =T
and V? x V = T, where L € R"3%"3_ The skinny t-SVD will be used throughout this paper. With

skinny t-SVD, we introduce the subgradient of the tensor nuclear norm, which plays an important
role in the proofs.

1.2 Subgradient of Tensor Nuclear Norm

Theorem 1 (Subgradient of tensor nuclear norm) Let A € R™*"2%"3 with rank,(A) = R and
its skinny t-SVD be A = U 1, 8 1, V' under the COM L € R™*"3_ The subdifferential (the set of
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subgradients) of || Al|« is:
A = UL VI + WU s, W=0W=x,V=0,|W| <1}. 2)
Proof The proof is by construction. According to t-product definition in the manuscript, we have
A=Ux, S+, VT < A=TSV, 3)
where U = bdiag(U), v o= bdiag(VT) and S = bdiag(8S). According to Eq. (11) in the
manuscript, i.e., the following equation:

1Al = ISl = IS] = [[A]l. = Al @

we have 0| Al = 9||A|.. Since ||A||. is diagonal block matrix, we have ||A||, =372, |X(i)||*.
Performing matrix singular vector decomposition (SVD) operation on each frontal slice K(Z), we
have K(Z) = U(i)S(i)Vz;), where U, Vg;) are orthogonal matrix and S;y is a diagonal matrix.
Merge the SVD of each frontal slice together, we can set

Y S Vo

Ugry) S(rs) Vir)

this gives the proof of the Theorem I in the manuscript.
Next, we prove the form of subgradient of 0| A|..

« Its subgradient is: GHK(i)H* = U(i)VT + Wy, where W ;)

For each frontal slice ||K(i) (1)

satisfies UZ)W@) =0,Wy V) =0and ||[W ;)| < 1. Defining

W
W= , (6)
W(?”s)

we can easily obtain that W satisfies U W= 0,WV =0and |W| < 1. Then, we have
73
J— — T —
oAl = 0[All. =) {UGVH+ Wi} =TUV +W=Ux, V' +W, (7
i=1

withU' x, W = 0, WLV = 0, |W)|| < 1, whereU = bfold(U) € R™*1x"s Y = bfold(V) €
R2XFX03 and W) = bfold(W) € R Xnaxna,

This completes the proof. |

Furthermore, we define the £, 2-norm of the tensor A as

1A oo, 2 = max {max || A(,:, )|, max [ AC, ;) [ 7} ®)

Define the projection P (Z) = >, ik dijkZijkCijk> Where d;6 = 1(; jx)eq, Where 1 is the
indicator function. Also £2¢ denotes the complement of €2 and P is the projection onto €.
Denote T by the set

T={Ux, Y + W, VI, Y, W e R}, )
and by T+ its orthogonal complement. Then the projections onto T and T are respectively
Pr(Z2)=Us UT s, Z+ Zx U UT —Us U 5 Zx U, UT,

T T (10)

'PTJ.(Z> = Z—PT(Z) = (Inl —U*LU )*LZ*L (Inz _V*Lv )
We denote ¢; as the tensor column basis, which is a tensor of size ny x 1 x ng with its (z,1, 1)-th
entry equaling 1 and the rest equaling O [1, 4]. We also define the tensor tube basis ¢;, which is a
tensor of size 1 x 1 x n3 with its (1, 1, k)-th entry equaling 1 and the rest equaling 0.
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Fori =1,---,n1,j = 1,---,ngand k = 1,--- ,n3, we define the random variable J;;, =
L(i,j,k)eq- Then the projection R is given by

R = 7,PQ Z 57]kz7jk91]k; (11)

zgk

where ¢;;;, = ¢;¢;¢; is an n X n x ng sized tensor with (i, 7, k)-th entry equaling 1 and the rest
equaling 0, . Also €2¢ denotes the complement of €2 and P is the projection onto 2¢. Then we
can get

uR(ny +ng)  2uR

1P (eiji)llF < = n ,if ny =ny =n, (12)

by using the Definition 1, i.e., the following tensor incoherence condition (13).

Definition 1 (Tensor Incoherence Conditions) For Xy € R"1*"2X"s with t-SVD rank R, it has
the skinny -SVD X o = U x1, 8 1, VT. Then X is said to satisfy the tensor incoherence conditions
with parameter | if

R
max U xp &|p < \/M—, max ||V *1, ¢|lp < q/ ||L{ s, V1 ||p < ,/ . (13)
i€[1,n1] ny jelln nine

1.3 Models

Two types of models are given in this paper, i.e.,

(TRPCA) :max | & x3 LY. + \|E]1, st. Y =X + &,

(14
(TC) Lmax X x5 LT[, s.t. Pa(Y) = Pa(X),

(TRPCA) : max |[M|. +N|E|1, st. Y =M x3L+ELTL=1,
M,S,L

8, 15)
(TC) :max | M., s.t. Po(Y) =Pa(M x3L),L'L =1. (
ML

The former model (i.e., model (14)) represents the case where the COM L is known, while the latter
model (i.e., model (15)) represents the case where the COM L is unknown. For model (15), we assume

that the optimal solution of the TRPCA model and the TC model are given by (X™* = M xsL* € )

and X* = M x3L*, respectively. The following theorem demonstrates that the representation of
the ground-truth tensor X' under the learned COM L* preserves information.

Theorem 2 Suppose X € R™M*"2X"3 s the ground-truth tensor, it can be decomposed as X =
My x3 Lo, where Ly € R"*73(r3 < ng) is the column-orthogonal matrix. Then, for any column-
orthogonal matrix L of the same size as Lo, X can be represented exactly.

Proof Since both Ly € R™3*"3 and L € R"#*"3(r5 < n3) are column-orthogonal matrices, there
exists an orthogonal matrix Q € R™*"s that satisfies Lo = LQ. Then we have

XO :ﬂo ><3L0 :HO X3 (LQ):HO ><3Q><3L. (16)
———
M
This completes the proof. |

Once we get the optimal COM L*, the model (15) becomes model (14), so next, we prove the exact
recoverability theory of model (15).

2 The Proof of Exact Recovery Theorem about TRPCA Model

In this section, we first introduce conditions for (X, €g) to be the unique solution to TRPCA model
(14). Then we construct a dual certificate in subsection 2.2 which satisfies the conditions in subsection
2.1, and thus our main results in Theorem 2 in our paper are proved.
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2.1 Dual Certificates

Lemma 1 Assume that ||PoPr| < 5 and A < \/% Then (Lo, So) is the unique solution to the

TRPCA problem if there is a pair (W, F) obeying
U VT + W = \sgn(So) + F + PaD), (17)
with PeW =0, [W| < 1, PoF =0and | F|| < 5 and |PaD|r < ;.

Proof Forany H # 0,(Xo+ H,E9 — H) is also a feasible solution. We show that its objective
is larger than that at (X, Eg), hence proving that (X, E) is the unique solution. To do this, let
U, VT + Wy bean arbitrary subgradient of the tensor nuclear norm at X o under the COM L,
and sgn(€o) + Fo be an arbitrary subgradient of the ¢1-norm at €. Then we have

|0+ Hl|+ M€= Hl = X0l + A€ol + (U 2 VT +Wo, H) = A (sgn(Eo) + Fo, H)
Now pick Wy such that (W, H) = ||PrrH|« and (Fo, H) = | P H|. We have
[ X0+ Hlls + A€o = Hlr = [Xoll« + A€ol + 1P H« + A|ParHl
+ <U wp VI — sgn(g())77{> .
By assumption, we have

[(Uorr VT = sen(E0). M )| < |(W. H1) |+ A|(F.H)| + A [(PaD. 7)
18)

A (

< B(IProH. + MPasHl) + 71 PaH]r.

where 8 = max(|[W]||, || F o) < &. Thus we have

1 A
|Xo+H|«+A[Eo—H| 1 = [|Xoll« + A€ol + 3 (1P H|« + M|ParHl|1)— ZHPQHHF
On the other hand,

1
IPeBlr < [PaPrH|r + [PaPrHlr < SlH|r + [Pr-Hir

IN

IN

SIPaH|r + 5 [Pau s+ [PraHr
Thus we can obtain
[PeH|lr < [PorHlr +2(Pr Hlr < [ParH|:1 + 2v/ns]|ProH..
In conclusion,
1260+ H. + A€o — Hly > [Xoll + Moy + 3 (1~ M) [Pro ] + 5P,
and the last two terms are strictly positive when H £ 0. Thus, the proof is completed. |

Lemma 1 implies that it is suffices to produce a dual certificate V¥ obeying

WeT+,

W] <4,

[Pa 1 VI + W — Asgn(So)||r < %,
[Por UL VT + W < 3.

19)

2.2 Dual Certification via The Golfing Scheme

The remaining work is to construct the aforementioned dual certificates. Before introducing our
construction, we first assume that Q ~ Ber (p), or equivalently that Q¢ ~ Ber (1 — p). Now the
distribution of €2¢ is the same as that of ¢ = Q; U Qy U --- U Q;,, where each £2; follows the
Bernoulli model with parameter ¢, that is,

P ((i,5,k) € ) = P(Bin(j", ¢) = 0) = (1 - ¢)"",



1 so that the two models are the same if p = (1 — q)j °. Note that because of overlaps between the (2;’s,
q > (1 — p) /jo. Now, we construct a dual certificate

W =W+ wS,

1
14,

>
o

143 where each component is as follows:

144 1) Construction of W* via the Golfing scheme. Let jo > 1, and let 2;,1 < 5 < jo, be
145 defined as aforementioned so that 2¢ = U;<;j<;,€2;. Then define
WE=Pr. Y, (20)
146 where
Vi =Yi1+0 Pa,Pr (U VT = Y,1) . Yo = 0. @D
147 2) Construction of W¥ via the Method of Least Squares. Assume that |PoPr| < L. Then,
148 IPaPrPal < % and thus, the operator P — PoPrPgq mapping €2 onto itself is
149 invertible, and its inverse is denoted by (P — ’PQ’PT’PQ)il. We then set
W = \Pr. (Pa — PaPrPa)  sen(€). (22)
150 This is equivalent to
W? = APz, Y (PaPrPa)'sgn(£o). (23)
k>0

151 Since both W& WS € T+ and PoW?S = APo(Z — Pr) (Pa — PaPrn,Pa) 'sgn(&y) =
Asgn(&p), we shall establish that W~ + WS is a valid dual certificate if it obeys

IWE+ W3 < 3,
Py ) <
|Pas (U VI +WE+Wo)|| <3,

153 This can be done by using the following two lemmas.

1

0
N

154 Lemma 2 Assume that  ~ Ber(p) with p < p for some ps > 0. Set jo = 2[logn] (use logn i)
155  for rectangular matrices ). Then, the WE in Eq. (20) obeys

(@) [WE| < 1/4,

1

o
<

1

o
J

0 [Pa (v swe) | <4

158 (c) H’PQL (L{ wr VT —i—Wﬁ)HOO < %.

159 Lemma 3 Assume Q@ ~ Ber(ps), and the sign of Sy are independent and identically distributed
160 symmetric (and independent of S2). Then, the tensor WS with Eq. (22) obeys

(@) |IW?|| <1/4,
(b) |ParW?|le < A4

1

2

16

N

163 2.3 Proofs of Dual Certification

164 Before proving Lemma 2 and 3, we shall list the following five useful lemmas. The proofs of these
165 lemmas are presented in the next chapter.

166 Lemma 4 For the Bernoulli sign variable M € R™*™*"3 defined as

1,  wp.  p/2,
Wik =4 0, wp. 1-p, (25)
-1, wp.  p/2,

167 where p > 0, there exists a function ¢(p) satisfying lim,_,o+ ¢(p) = 0, such that the following
168 statement holds with large probability

M| < o(p)y/nns. (26)
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Lemma 5 Suppose Q ~ Ber(p). Then with high probability,
|Pr — p~ ' PrPaPr| <e 27)

provided that p > Coe=2BuR1og(n)/(n) for some numerical constant Cy > 0. For the tensor of rect-
angular frontal slice, we need p > Coe 2R log(n))/(n)), where n1y = max{ni,na}, nwoy =
min{ni, no}.

Lemma 6 Assume that Q@ ~ Ber(p), then |[PoPr|®> < p + € provided that 1 — p >
Ce 2(uRlog(n)/n), where C is as in Lemma 5. For the tensor with frontal slice, the modification is
as in Lemma 5.

Lemma 7 Suppose Z € T is a fixed tensor, and Q ~ Ber(py). Then with high probability,
IZ = p'"PrPaZ|x < €| 2], (28)

provided that p > Coe=2BuR1og(n)/(n) for some numerical constant Co > 0. For the tensor of
rectangular frontal slice, we need p > Coe?BuRlog(n(1))/(n(2)).

Lemma 8 Suppose Z is fixed, and Q2 ~ Ber(pg). Then with high probability,

1(Z-p'Pa) Z| <

nle®) g, 29)

provided that p > Cylog(n)/(n) for some small numerical constant Cy > 0. For the tensor of
rectangular frontal slice, we need p > Colog(n(1y)/(n(2))-

2.3.1 Proof of Lemma 2
Proof We first introduce some notations. Setting
Z;=Ux, V' —PrY;,
thus Z; € T for all j > 0. From the definition of Y (21), and Y; € 2+, we have
Z;=(Pr—q '"PrPa,Pr)Z;-1,
YVi=Yj-1+ qflpnjzj—y

Therefore, when

q > CocuRlog(n(w))/(n(z), (30)
we have .
1Z5ll00 < €l Zj-1lloo < €U 5L Voo 31
by Lemma 7. When q obeys Eq. (30), we have
1Zillr < el Zj-1llr < U+ VT |r < VR (32)

by Lemma 5. We assume € < e L.

proof of (a). Since Y;, = Zj qil’ng Z;_1, we have

IWEN = [Predilloe < la PraPa, 25|

J

<Y MPr(a ' Pa, 25— 2, 01 <D lla P, 250 — 25|

J J

1
< n(l)oj(n(l)) Z (=2
J

/ 1 :
<Cy n(l)oqg(n(l))ZéU*LvToo
J

. G n(1) log(n())
T (1= q

(33)

U 51 V|
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The fourth step is according to Lemma 8 and the fifth step can be directly obtained from Eq. (31).
Now by using Eq. (30) and tensor incoherence condition, we get

IWEIl < Cae
for some numerical constant Cs.
proof of (b). Since PaY;, =0,
Pal s, VI + W5) = PaUU s, VT +Pr. V)
=Palx, V! +PrY;) = PalZ;).
By using Egs. (30), we can get
1Pa(Zi)llr < 1Zj)lr < VR
Since € < e, jo > 2log(n()) and €° < 1/(n(1))?, and this proves the claim.

proof of (c). We have U x;, VT + W¥E = Z;, + Y, and know that Y ;, is supported on Q.
Z{"h;refore, since || Zy|loe < | Z50llr < A8, it suffices to show that | Y;, || < 3. To this end, we
educe

Piolloe < a7 D MPa; Zjolloo a7 D1 Z50llee < a7 Y U+ VT e
i i i

Since |U 1, V||oo < \/un=2r, this gives

€2

olloe < ¢ ———— 34
il < € e (34

for some numerical constant C' whenever q obeys Eq. (30). By setting \ = /) Vol < A/8

if
1
c<C (/M“(log(n(l)))2> * .
n(2)
We have seen that (a) and (b) are satisfied if € is sufficiently small and jo > 2log(n()). For (c),

1
we can take € on the order of (ur(log(n(1)))?/(n()))*, which could be sufficiently small as well
provided that p, in Eq. (30) in the manuscript is sufficiently small. Note that everything is consistent,
since Coe 2 prlog(n(yy)/(ne)) < L [ ]

2.3.2 Proof of Lemma 3

Proof We denote M = sgn(&,) distributed as
1,  wp.  p/2,
Mijk = 07 w.p. 1- Ps (35)
-1, wop.  p/2.
Note that for any o > 0, {||PaP|| < o} holds with high probability provided that p is sufficiently
small, see Lemma 5.
1. Proof of (a). By construction,
WS = AP M+ AP Y (PaPrPo) M = Pr W§ + Pr W5, (36)

k>1
Note that [P WG || < WG| = MM and [|[Pr-WE | < WP = A|R(M)|, where
R = Ek21(,PQPTPQ)k. Now, we will respectively show that \||M|| and \||R(M)|| are small
enough when p is sufficiently small for X = 1/+/n. Therefore, |[W?|| < 1/4.

1) Bound )\|| M ||. By using Lemma 4 directly, we have that M| M|| < ¢(p) is sufficiently small given
A = 1/sqrtn and p is sufficiently small.
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2) Bound |R(M)|\. For simplicity, let Z = R(M.), we have
IZI=1Zll = sup |Zz|2. 37

xesSnT3—

The optimal @ to Eq. (37) is an eigenvector of Z x Z. Since Z is a block diagonal matrix, the optimal x
has a block sparse structure, i.e., x € B ={w € R"3|¢ =[] ,--- @] ,--- &l ], withxz; € R",
and there exist j such that x; # 0 and x; # 0,1 # j}. Note that || x| 2 = ||z |2 = 1. Let N be the
1/2-net for S~ of size at most 5" (see Lemma 5.2 in [5]). Then the 1/2-net, denote as N', for B

has the size at most r3.5™. We have

|bdiag(RTM))| = sup (. bdiag(R(AM))y )

xz,yeB

IR(M)]

(38)
= sup <a:y*7 bdiag(R(M))> = sup <bdiag*(my*), ’R(M)> ,

x,yeB xz,yeB
where bdiag™, the joint operator of bdiag (see definition in the manuscript), maps the block diagonal

matrix xy* to a tensor of size n X n X ng. Let z = bdiag* (xy*) and Z = z x 3 L. We have
[RM)| = sup (2 R(M)) = suwp (2 R(M))
x,yeB x,yeB (39)
= sup <R(Z)v M> = sup 4 <R(Z)a M> .
z,yeB z,ycN’

For a fixed pair (x,y) of unit-normed vectors, define the random variable
X(z,y) =4(R(Z),M). (40)

Conditional on Q@ = supp(M.), the sign of M are independent and identically distributed symmetric
and Hoeffding’s inequality gives

—2t?

B(1X (2, )| > ) < 2exp (HWZHJ . (1)

Note that |[AR(Z)|% < 4| R|||Z|F = 4||’R||HZ lF = 4||R||. Therefore, we have
( sup (z,y)| > t|Q> < 2|N/|Qexp <_1€2) . (42)

@yeN’ 8[IR|?
Hence, 2

PURM| > 1) < 2 Poxp (s ) @)

k= T2 02, therefore, unconditionally,
P(IR(M)] > 1) < 2N |2exp( P(PaPrl > 0).7 = =1

2 (44)

= 27“(3 52" exp ( ) +P(||PaPrl| > o).

Let t = c+/n, where c can be a small absolute constant. Then the above inequality implies that
|[R(M)|| < t with high probability.

2. Proof of (b). Observe that
Pao WS = - A\Pq.Pr(Pa—PaPrPa) M. (45)

Note for (i,j, k) € QF W”k = (W, 1), and we have W ok = MQ(i, 4, k), W), where
Q(i, j, k) is the tensor —(Pga — PaPrPa) ' PaPr(eijk). Condmonal on Q@ = supp(M),
the signs of M are independent and identically distributed symmetric, and the Hoeffding’s inequality
gives

(HW ol > t/\|Q> < 2exp (—2t2> (46)
9 B 19,4, k)% )’
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and

2t?
P | sup [WS,|| > tA/ns|Q | < 2nngexp < — ), 47)
(mk” gll = 02/ ) SO\ a2 1067 BT
By using Eq. (12), we have
2uR
IPaPr(eiji)llr < [PaPrllIPrein)lr < oyf= =, (48)

on the event {||PaPr| < c}. On the same event, we have ||(Pa — PaPrPa) *||(1 —0o?)7!
and thus | Q(i, j,k)||% < %% Then, unconditionally,

2t2
P (sup Wil > tA) < 2nng exp (— R ) +P(|PaPr| > o), (49)
i,5,k

702)

where v? = % This proves the claim when R < p;n log(n)~! and p;n is sufficiently small.

2.4 Proof of Some Lemmas

Before the proof, we introduce a theorem.

Theorem 3 (Noncommutative Bernstein Inequality) Let X, X5, -+ , X, be independent zero-
mean random matrices of dimension d; x d3. Suppose || Xy || < M and
pi = max{[|E[Xu X ]|, [|E[X X ||} (50)

almost surely for all k. Then for any 7 > 0,
L 2
—72/2
P Xl > T] < (dy + d2)exp ( T > (51)
l kZ:l D1 i+ MT/3

This theorem is a corollary of a Chernoff bound for finite dimension operators developed by [6]. An
extension of this theorem [7] states that if

L L
max{||zxkxgu,||zxgxk||} < o -

k=1 k=1

and let

T= \/4(:02 log(dy + do) + cM log(dy + da) (53)
for any ¢ > 0. Then Eq. (51) becomes

L
P [ > Xl > T] < (dy+dy) 7Y, (54)
k=1

2.4.1 Proof of Lemma 4

Proof The proof has three steps.

Step 1: Approximation. We first introduce some notations. Let F* be the i-th row of LT € R"%7s,
and MH = [MH, M ;... ;MH] € R"3%" be a matrix unfolded by M, where M ¢ R"s*"
is the i-th horizontal slice of M, i.e., [MlH]kj = M. Consider that M = M x3 LT, we have
M, = [fMH; fr«MHE; ... ; frMH] where M; € R"*" is the i-th frontal slice of M. Note
that

M| = [IM]| = max [|M]. (55)

i=1,-,r3

Let N be the 1/2-net for S*=1 of size at most 5™ (see Lemma 5.2 in [5]). Then Lemma 5.3 in [5]
gives L L
[|IM;]] < 2max | M;z||2. (56)
xeN

So we consider to bound | M;x||z.

10



261

262
263

264

265
266

267

268

270
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272
273

274

275
276

277

278

279
280

Step 2: Concentration. We can express | M;x||3 as a sum of independent random variables

n

Mz = (FiM]'z) sz, (57)

Jj=1

where z; = <M§'I, fzw*> ,J = 1,--- ,n are independent sub-gaussian random variables with
E(z7) = p||flzc*H§ = prs. Using Eq. (25), we have

1, w.p.p,
HMfMHZ{Q wpffp (58)
Thus, the sub-gaussian norm of [M ]y, denoted as | - ||y, is
IMH i, = sup p~© (B[ [MH ]y )7 = sup p~05p/. (59)
p>1 p>1

Define the function ¢(x) = x~/2p'/* on [1,400). The only stationary point occurs at =* = log p~>
Thus,

6(w) < max{6(1), ¢(c")} = max (p, (log ) O%p! 57 ) = o). (60)

Therefore, ||[[MH ]y, < (p). Consider that z; is a sum of independent centered sub-gaussian

random variables [Mf]kl ’s, bu using Lemma 5.9 in [5], we have HZ]”iZ < c1((p))?r3, where

c1 is an absolute constant. Therefore, by Remark 5.18 and Lemma 5.14 in [5], ZJQ — prs are
independent centered sub-exponential random variables with || 25 — pra||y, < 2||z; ||12p1 < 4z Hiz <

der(¥(p))?rs.

Now, we use an exponential deviation inequality, Corollary 5.17 in [5], to control the sum of Eq. (57).
We have

P(||Miz |} — pnrs| > tn) =P Z 22— pry)
} 61)

. t 2 t
e <_62n o <(4c1<¢<p>>2r3> | 4cl<w<p>>2r3)> |

where ca > 0. Let t = c3(1p(p))?r3 for some absolute constant c3, we have

2
P(|||M1w||§ — pnrs| > 03(1/J(p))2nr3) < 2exp (—02n min ((C‘j) ,Cd>> . (62)
401 401

Step 3: Union bound. Taking the union bound over all x in the Net N of cardinality |[N| < 5", we

obtain
_ s\ e
P < max |M,z||2 — pnrs| > 03(1/)(;)))2”7"3)) <2.5" . exp <c2nmin ((4;) ,4031>> .
(63)
Furthermore, taking the union over alli = 1,--- | r3, we have
P ([N - s > ca(w(p) o))
7 xe

JRNE I (64)
<2-5"-r3-exp | —conmin = ,—3 )
461 401

This implies that, with high probability (when the constant cs is large enough),
max max [Myz||3 < (p + cs(¥(p))?) nrs (65)

Let ¢(p) = 2+/p + c3(¥(p))? and it satisfies lim,,_,o+ ¢(p) = 0 by using Eq. (60). The proof is
completed by further combing Eq. (55), (56) and (65). |
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2.4.2 Proof of Lemma 5

Proof For any tensor Z, we can write
(07" PrPaPr —Pr)Z = (0 0t — 1) (eijn, PrZ) Prlein) = ) Hii(Z)  (66)
ijk ijk
where Hjj, : R — R"X"X"3 s q self-adjoint random operator with E[H ;] = 0. Define

the matrix operator H;ji, : B — B, where B = {B : B € R"*"*"3} denotes the set consists of
block diagonal matrices with the blocks as the frontal slices of B, as

Hiji(Z) = (p7 630 — 1) (eij, Pr(2)) bdiag(Pr(eijn))- (67)
By the above definitions, we have H.;j, = H; ;1 and || Zijk Hijll = || Z”k H,ji||. Also, Hyjy, is
self-adjoint and E[iijk] =0. To pr0ve the result by the non-commutative Bernstein inequality, we

need to bound |H;jx|| and || >, ., E[H ”k]H First, we have

ijk
[Hijill = sup [Hyw(Z)|lp < sup  [Prleijn)lrllbdiag(Pr(ein)l #l| 2] r
|Z|| F=1 1Z]| r=1 (63)
2pR
= sup [[Prley)#IZ]r < ’
1Z]| F=1 "

where the last inequality use Eq. (12). On the other hand, by direct computation, we have HZ ik (Z) =

(P~ i3k — 1)? (s, Pr(Z)) (eijn, Pr(eijn)) bdiag(Pr(ein)). Note that E[(p~16;, — 1)%] <
p~ L. We have

—92 - . JE
Z]E[Hijk(z)] <p! Z(%‘k,'PT(Z» (eijk, Pr(eijr)) bdiag(Pr(eijx))
ijk » ijk »
< p 1Pr(ein)lz || D (eik Pr(2)) (69)
ik "
< p  [Prlei)llz 1P (2)lp < o~ [Prleiin)5 112
_ = 2uR
< p 1Pl 2] < = 12 -
y)
By Theorem 3, we have
P[Hp_l’PT'PQ'PT — 'PTH > 6] =P Z’Hijk >e|l =P Zﬁijk > €
ijk ijk (70)
< 2nrs exp 23 < < 2(n)t—3C0/16
= 8 2uR/(np)) ~ ’

where the last inequality uses p > Coe~ 2R 1og(n)/(n). p ' PrPaPr — Prl| < € holds

with high probability for smoe numerical constant Cy.

|
2.4.3 Proof of Lemma 6
Proof From the proof of Lemma 5 (i.e., the last subsection), we have
[Pr — (1—p) '"PrParPrl < (71)
provided that 1 — p > Coe~?(uR1og(n)/n). Note that T = Pgq + Pgq., we have
IPr — (1~ p) " PrParPr| = (1~ p)~ (PrPaPr — pPr). (72)
Then, by the triangular inequality
[PrPaPr| < e(l—p)+pllPrll = p+ el —p). (73)
This proof is completed by using |PaPr|* = |PrPaPr]|. [ |
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2.4.4 Proof of Lemma 7

Proof For any tensor Z € T, we write
1,PQ’PT Z P 51]k21jkPT(el]k)
ijk

The (a, b, c)-th entry of p~*PaoPr(Z)— Z can be written as a sum of independent random variables,
Le.,

(p7"PaPr(Z) — Z,eqpc) = Z(pfl%k — Dzijk (Pr(ijk)s tabe) thﬂw (74)

ijk ijk
where t;;1,’s are independent and E(t;j) = 0. Now next bound |t;j| and | 3, E[t?;4]]. First
_ 2,uR
ltijel < P I ZllollPr(eisi) | PP (ease) 7 < “np 121l (75)

Second, we have
OB <o 212D (Prleije)s cave) = p 1212 Y (eijis Pr(ease))

ijk ijk ijk (76)

_ ZMR

= p 215 P (eabe) I3 < |

Let € < 1. By Theorem 3, we have

2%

P (|0 PrPa(Z) = Zlabel 2 €l Zlloc] =P | |D _ltisl| > €| 2|
ijk (77)
3 &z ) s
§2exp <—-OO < 2n" 16 o
8 2uR|Z|%./(np)

where the last inequality uses p > Coe 2R log(n)/n. Thus, |p ' PrPa(Z) — Z|le < €| 2|
holds with high probability for some numerical constant C. |

2.4.5 Proof of Lemma 8
Proof Denote the tensor H;ji, = (1 — p’léijk)zijkeijk. Then we have
(I — pil'PQ)Z = Z’H'”k (78)
ijk
Note that 6;51,’s are independent random scalars. Thus, H.;;i,’s are independent random tensors and

H,;1.’s are independent random matrices. Observe that E[H, ;] = 0 and | H;;i|| < p~ || 2|00, we
have

S BEH | = | Y BRG] = | D E = o 6ik) 286 )
ijk ijk ijk
(719)
1—p
= Zzzﬂc j ¥L Q S ||Z||2
ijk
A similar calculation yields sz]k]E[ﬁ;kﬁmk]H <  plnng| Z|%. Let t =

v/Connglog(nns)/p|| Z||s. When p > Colog(n)/n, we apply Theorem 3 and obtain

P(Z —p "Po)Z|| >t =P | D Hi|| >t| =P |[|D_ Hiy|| >

ijk ijk
3 C 1 Z|?
< 2y exp (_ . Corns log(nns)| ||oo/p) < 2(nr) =300/,
8 nns|| 2|3 /p
(80)
(Z — p~YPq)Z|| > t holds with high probability for some numerical constant Cy. [ ]
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3 The Proof of Exact Recovery Theorem about TC Model

The following fact is used frequently in this section.
Lemma 9 Suppose Q ~ Ber(p). Then with high probability,

PrRaPT — Pr| <, 81

provided that p > coe 2(uRlog(n))/(n) for some numerical constant co > 0. For the ten-
sor of rectangular frontal slices, we need p > coe *(uRlog(n)))/(ne)), where ngy =
max{ni,n2}, ey = min{ng, na}.

Proof By replacing p~'P with Rq in Lemma 5, this Lemma holds. |
Lemma 10 Suppose that Z is fixed, and € ~ Ber(p). Then, with high probability,
log(n log(n
(Ra = D2 < ¢ (B 2 + B0 20 (52)

for some numerical constant ¢ > 0.

Lemma 11 Suppose that Z € T is a fixed tensor and 2 ~ Ber(p). Then, with high probability,

1 n 1
IPrRaZ — 2|2 < 51/M7R|\Z\\oo+§||z||oo,2, (83)

provided that p > coprRlog(n)/(n).
Lemma 12 Suppose that Z € T is a fixed tensor and Q2 ~ Ber(p). Then, with high probability,
12 = PrRa(Z)le < €] 2], (84)

provided that p > coe 2(uRlog(n))/(n) (for the tensor of rectangular frontal slice, p >
coe 2(uRlog(n(1)))/(n(2)) for some numerical constant co > 0.)

Proof By replacing p~—'P with Rq in Lemma 7, this Lemma holds. |

3.1 The Proof of Exact Recovery Theorem about TC Model

Proposition 1 The tensor X is the unique optimal solution of TC model (14) if the following
conditions hold: 1. ||PrRaPr — Pr|| < %

2. There exists a dual certificate VW € R™*"™2X"3 which satisfies Po (W) = W and
(@) [ParW)|l < 3.
(b) [PaW —Ux, V| < 1,/2.

Proof Consider any feasible solution X to TC model (14). Let G be an n X n X ng tensor which
satisfies | PG| = 1and (Pg1G, Pqr (X — Xo)) = [P (X —X0)|«. Such G always exists
by duality between the tensor nuclear norm and tensor spectral norm. Note that U *, VT4 ParG
is a subgradient of Z and Z = Xy, we have

12 = 1 &o ]l > (U1, VT +PgG, X — Xo). (85)

We also have (W, X — X o) = (PaW,Pa(X — Xy)) = 0 since Pa(W) = W. It follows that
J ) = X0l = (U VT + PG - W, X - Xo)

= [Pae (X = Xo)|l. + (UL VT = PrW, X = Xy ) — (Pru W, X - Xo)

> [|[Pau (X = Xo)u + U+ VT = PrW|p|P(X — Xo)|
NP WI[[Pre(X = Xo)|.

1 1 /p
SIPqr(X = X0l — 11| ZIPr(x - Xo) |
3

v

(86)
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where the last inequality uses Conditions (1) and (2) in the proposition. Now, by using Lemma 13
below, we have

1 1 [p [2rs
[ X[ = | %ol = S Poe (X = Xo)ll« — 24/ 1/ P (X = Xo)ll
2 4\ rg 14 (87)
1
> LIPge (X = Xo)|..
Note that the right hand side of the above inequality is strictly positive for all X with Pa (X —X) =

0and X # X . Otherwise, we must have Pp(X —Xy) = X — X and PrRaPr(X -—M) =0,
contradicting the assumption |PrRaPTt — Pr| < % Therefore, X is the unique optimum. W

Lemma 13 If |[PrRoPT — Prl|| < L, then we have

27"3

1PrZ||r < ?HPTLZH*,VZ e {2 :Pa(Z) =0} (88)

Proof We deduce
lvPRaPrZ|r = V{(PrRaPr — Pr)Z,PrZ) + (PrZ,PrZ)

= /IPr2I} ~ [PrRaPr — Prl[Pr2I% (89)

1
> 72||,PTZHF

where the last inequality uses ||PrRaPr — Pr| < 3. On the other hand, Po(Z) = 0 implies
that Ra(Z) = 0 and thus

1 T
IVPRaPrZ|r = [ViRaPrs Zlr < ZPr2lr <[ P22l 0
where the last inequality uses
IAllF = [Allr < [|A]. < [ A On
The proof is completed by combining Eq. (89) and (90). |

New we give the completed proof of the Exact Recovery Theorem (i.e., Theorem 3 in the manuscript)
about TC model.

Proof First, as shown in Lemma 9, the Condition 1 of Proposition 1 holds with high probability.
Now we construct a dual certificate YV which satisfies Condition 2 in Proposition 1. We do this using
the Golfing Scheme. For the choice of p in Theorem 3 in the manuscript, we have

2
5 ConRllog(m)? 1

n n

92)

for some sufficiently large co > 0. Set to := 20log(n). Assume that the set Q of observed entries
is generated from Q@ = U2 | Q,, where each t and tensor index (i, j, k), P[(i,,k) € Q] = q :==
1-(1- p)l/ o and is independent of all others. Clearly this S has the same distribution as the
original model. Let Wy := 0 and fort = 1,--- | to, define

Wi =W 1+ Ra,PrU . VT = PaW, 1), 93)
where the operator R, is defined analogously to Rq as R, (Z) := 3, a1 j k), ZijkCigh-
Then the dual certificate is given by W := Wy,. We have P (W) = W by construction. To prove
Theorem 2, we only need to show that VY satisfies Conditions 2 in Proposition 1 w.h.p.

Validating Condition 2(b). Denote Dy :=U %1, VI — Pr W), fort =0, - - - , to. By the definition
of Wk, we have Dy = U VT and

D; = (Pr — PrRa,Pr)D:-1. 94
Obviously Dy € T for allt > 0. Note that €, is independent of Dy_1 and by the choice of p in
Theorem 3 in the manuscript, we have

¢> b > onRlog(n) (95)
t() n
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Applying Lemma 9 with §2 replaced by 2, we obtain that w.h.p.
1
IDellr < IPr = PrRa.PrllPe-1lr < 5 Pe-1llr (96)
for each t. Applying the above inequality recursively witht = tq,to — 1,--- , 1 gives
1 1 1 1 [p
~ U, V| p = Dy llr < G0 U L VT |r < R< < =, 97
IPrY — U VEllr = [Delr < () U= VVllr < g7=VR < e < 44 [0 O7)
where the last inequality uses Eq. (92) and r3 < ns.
Validating Condition 2(a). Note that W = Ziozl Ra,PrD;:—_1 by construction. We have

to to
IPoWlr < Pr:(Ra,Pr —Pr)Dia] <D [(Ra, —D)PrDiaf.  (98)
t=1 t=1
Applying Lemma 10 with 2 replaced by §2; to the above inequality, we get that w.h.p.

lo log(n
IPa-Plr <o Z( P o+ 2 >||Dt_1||oo,2>

t=1

to
C n n
< & DD lloo + 1] |Do 00’)
\/%;:1 (uR” -1l uR” t—1llc0,2

where the last inequality uses Eq. (95). Now we bound ||Di_1||ccand ||Di—1||co,2. Using Eq. (94)
and repeatedly applying Lemma 4 with S replaced as €2, we obtain that w.h.p.
1.,_
IDirlloe = (P = PrRa, , Pr) - (P = PrRa, Pr)Dollse < ()" [U #1 V' |oc.

(100)

99)

By Lemma 11 with 2 replaced by €2, we obtain that w.h.p.

1 n 1
|Pi-1lloo,2 = [|(PT — PrRa, ,P1)Di—2|c02 < 21 / E||Dt—2||m + §||Dt—2Hoo,2- (101)

Using Eq. (94) and combining the last two display equations gives w.h.p.
1

1., /nn3

1Pe-1lloo,2 < t(3) R UL Voo + () 7HIU #2 Voo 2- (102)
Substituting back to Eq. (99), we get w.h.p.
to to
1
4 t+1
[Pardllr < — \ﬁ RHU #L Voo E (t+1) \/ e, VT oo 51(5)

T T /

Now we proceed to bound |[U 1, V|| oo and |[U %1, V7 || oo 2. First, by the definition of t-product, we
have

U =1, VT lloo = max

2,7

ZL{ i,t,:) xp V(4,t,:)

t=1

< nga]t.xz UGt ) eVt o)lle
00 Yot=1

<max2 (UGt )% + VG, )13 (104)

R
= max (||uT s tilh+ IV 1) < B

Also, we have

. . R
U 5L VT ooz < max{max”elr xp U V|| p,max U x5 V xp, ej||p} <4/ % (105)

It follows that w.h.p.
2c 1
[ProY| < —=+—=< (106)
f f 2’

provided that cg is sufficiently large. This completes the proof of Theorem 3 in the manuscript.
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3.2 Proof of Some Lemmas
3.2.1 Proof of Lemma 10
Proof Denote the tensor H;j, = (1 — p_15ijk)zijkeijk. Then we have
(Z-Ra)Z=) Hip (107)
ik

Note that 6;1,’s are independent random scalars. Thus, H;1.’s are independent random tensors and
H, ;1 ’s are independent random matrices. Observe that E[H; ;] = 0 and |H;jx|| < p™|| 2| 00, we
have

Z E[H,, ;] Z E[H;; Hijkl|| = ZE[(l = 0in) 2120 (& x €)
ijk ijk ik
(108)

1—p o o _ _
= TZZ%k(ej w1 6)| < p7hmax |y 2l <o 21
ik ik

A similar calculation yields HZz‘jk ]E[ﬁ:jkﬁijk] H <p! HZHZOQ Then the proof is completed by
applying the matrix Bernstein inequality in Theorem 3. |
3.2.2 Proof of Lemma 11

Proof For fixed Z € T and fixed b € [n], the b-th column of the tensor PrRq(Z) — Z can be
written as

(PTRa(Z) - Z)xp & = Z(Pfl — 1)dijrzijePr(eijr) *L & = Z%ijka (109)

ijk ijk

where H.;;1.’s are independent column tensor in R™ Ixns and P[H;ix] = 0. Let h;j, € R"™ be
the column vector obtained by vectorizing H ;1. Then we have

_ . _ 2uR 1 2n
Rl < o=z < 1zm\/7<zm. 110
el < 7 el Prege) <0l < o |2y 2 € s [ 2 (110)
We also have
. 1—0p o
D Ehhi | = DB HGkIF| < —= ) 22 Pr(eir) <L el 7 (111)
ijk ijk P
Note that

[P (eijr) *r &7
=|[U s, UT 5 & %, &g %1, ¢ kL ey — (T —Us, UT) 5p & %1 b %1 ¢ *xr V*p VN el 7
SN L U wp &5 &l )€ #L & p

+ ||(I—M*LMT) X7, Ei X7, ek||||3; *LV*L VT X7, Eb”F

R . . : ¢
S\/ZH; 1 ellp 4 [|€f L WV xi, Vil

(112)
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It follows that

2 R . 2 o .
ZE hihije]| = p Z ijk%He; * &% + » Z%‘ijHe; x, Vorp V1 osp &7

ijk ijk ijk

2uR 2 N .

= ILL Z wk-l-*ZHej *LV*L VT X7, eb||%Zzi2jk
ik P ik (113)

< A IIZH + *IIV* LA (=]
=~ 00,2 L L %l F 00,2

4uR
< ——l2l%e < 1215

co log()

We can bound || 3, E[h Ukhz]k] | by the same quantity in a similar manner. Treating h;ji’s as
nng X 1 matrices and applying the matrix Bernstein inequality in Theorem 3 gives that w.h.p.

Z Hiji|| = Z hijk

ijk ijk

C /2n C (114)
- *R||Z||oo+4\/*HZHoo72
oV M Co
1 /2n 1
<- Y Z [e%e] a Z 00,29
< 5\ gl Ele + 512l

provided that cg in the lemma statement is large enough. In a similar way, we prove that ||¢} *p,
(PrRa(Z) — Z) ||F is bounded by the same quantity w.h.p. The lemma follows from a union bound
over all (a,b) € [n] x [n]. [ ]

1 (PrRa(Z) — Z) #L &llr

IN

4 Algorithm Details

4.1 Details of Algorithm 1 about ATNN-TRPCA model
We first write the augmented Lagrangian function of the ATNN-TRPCA model (15) as:

min ML+ NIE + E Y - M xa L— €+ A/ul% (115)
M,EALTL=I 2

where p is the penalty parameter and A is the lagrange multiplier.

Update M. Fixing other variables except M in Eq. (115), we obtain the following sub-problem:
argininHﬂH*—ﬁ—gﬂﬁ—()}—g—i—A/m x3 LT||%. (116)
M

Using the following equation (i.e., Eq. (11) in the manuscript):
Al = ISl = IS]. = [IAll. = [ Al (117)
and the definition of bdiag (i.e., Eq. (6) in the manuscript):

X(l)
_ _ A _ _
A = bdiag(A) = ) , A = bfold (A) , (118)
. X(R)
Eq. (116) can be rewritten as the following r3 equations:
argmin [M")], + £M" - Y|, (119)

M
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foreachi =1, -+ ,rs, where Y := bdiag ((¥ — € + A/p) x3 LT).

Then the each M@, i =1,---,r3 can be updated by the soft-thresholding operator SVD7(-) [8]:

M = BS,,,(C)DT, where M ¥ BCDT, (120)
where S; is the soft threshold operator S defined by [9].
Update L. Fixing other variables except L in Eq. (115), we obtain the following sub-problem:

argmin [|[M — (¥ — € + A/p) x3 LT||%. (121)
LTL=I

The Eq. (121) can be rewritten as:

arg max (unfold;(Y — € + A/u) " unfolds (bfold(M)), L) . (122)
LTL=1I

According to Theorem 1 in [10], we can get the solution of Eq. (122) as follows:

[B, C, D] = svd(unfolds(Y — € + A/u)Tunfolds(bfold(M))),
{L = BD7”. (123)
Update E. Extracting all items containing E in Eq. (115), we can get:
argénin)\HSH*+%||y—ﬂ><3L—E+A/u||%. (124)
By using the soft-thresholding operator, the solution of Eq. (125) is:
E=8,(Y-—MxsL+A/u) (125)

Update multiplier A. Based on the general ADMM principle, the multiplier is further updated by the
following equations:

{A:A+u()7—M><3L_S) (126)

= pp,
where p is a constant value greater than 1.

4.2 Details of Algorithm 2 about ATNN-TC model

Introducing the auxiliary variable £, the TC model can be written as follows:
max [|M]|, s.t. Y =M x3L+E Pa(€)=0,LTL=1. (127)
ML

The augmented Lagrangian function of the ATNN-TC model (127) can be written as:

~ min M+ B Y -M xsL— €+ AJpl%, st Pa(E) =0, (128)
M.E,ALTL=I 2

where p is the penalty parameter and A is the lagrange multiplier.

The Eq. (128) can be divided into four sub-problems:

M =min [M|. + G1¥ ~ Moxs L~ €+ A/ult
L:= mi — M x3L—E+A/p|3
Juin Y =Mz L— &+ A/ullp

£:= mi ~ M xsL—E+ A/l
plnin 1Y X3 +A/ullF

A=A+pu(Yy-—Mx3L-E€)
=P,

(129)
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The update processes of M, L, A of Eq. (129) are given in Eq. (119), Eq. (123) and Eq. (126),
respectively.

Regarding the update of £, a closed-form solution can be obtained using the following equation
(130).

E=Pa(Y —-Mx3L+A/p). (130)

4.3 Convergence Analysis of the Algorithm 1 and Algorithm 2

Since Algorithms 1 and 2 solve a non-convex model, we cannot directly apply the theory of con-
vex optimization [11] to provide a proof of their global convergence. Here, we can establish the
convergence of these two algorithms by relying on the following two lemmas.

Lemma 14 The sequence of dual variable A in Algorithm 1 and 2 is bounded.

Proof According to the optimality principle, we have

0. DM ) = AR g T = (9= M g LA — g8 ) AT

——k+1 (131)
0 € N EFL) — AF — g, (y—M xy L1 _5k+1).
Combining this with the update criterion of the A* in Algorithm 1 and 2, we have
AR+ Lk+1T Vil i
<o 17 e o ML), 1)

AR e (|| EF ).

Note the fact that the dual norm of || - ||« and || - ||1 are || - ||2 and || - ||co, respectively, and
|- ll2 =AY - lloo by the definition in [8, 12]. Thus, using Theorem 4 in [12], we get that A**1 are
bounded. u

Lemma 15 The accumulation point (ﬂk, Lk, g* ) generated by Algorithm 1 and 2 is a feasible
solution of ATNN model (15).

Proof Based on the general ADMM principle, we have
||Ak+1 _ Ak”F — uk‘”y _ ﬂlﬁ"l X5 Lk‘+1 _ gk—i—lHF (133)

Since {1} is an increasing sequence and limy_, o, i* = 400, and according to Lemma 14, we
have

lim Y — M g LE g =0 (134)

k—+oco
This completes the proof. |
Next, we give the following convergence theorem about Algorithm 1 and 2 in the manuscript.

Theorem 4 The sequence (X k= ﬂk x3 Lk & k) generated by Algorithm 1 and 2 converge to the
optimal solution of model (15).

Proof Suppose (X*,E™) are the optimal solution of Algorithm I and 2. Since X* has many

equivalent decomposition forms according to Theorem 2, the decomposition form X = ﬂ;k x 3Ly
will not lose information of X*, where Ly, is the solution of model (15) in the k-th iteration.

Based on Eq. (132) and the definition of subgradient, we have
—k —k T —— —k . B
A + M EF|l < [ Mpell« — (A" x3 L My — M) + A€ — (A*, €" — €F)
= ML clls + AIE [l — (A%, Mips x5 LF — M" x5 LF) — (AF, €% — £F)
— Kk % ——k
= [Mupells + M E [ — (A", Y = M xz L* — €F)
= [ Mol + AIE [ + (A" M xg LF + 5~ )
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Combining the above equation with Lemma 15, we further have

. ——k k . * *
1 " =1 " . 1
i A A€M = Tim [M .+ AE (135)

According to the optimality criterion, we have

—_ % % —_k —k
[Mpell + ME I < IMpells + AIE I < M|l + AIE* |1 (136)
Taking the limit of k on both sides of Eq. (136), we can get
lim M|, = lim [Mie|.,
k—-+o00 k—+4o0

) (137)
lim ||€%||1 = lim [&;.
k—4o00 k——~4o00

Based on the above equation, we can deduce that limy,_, | o EF = limy_, 1 oo E*. Moreover, as per

Lemma 15, we know that ﬂk, Lk, &% are all feasible solutions of the model (15). Consequently, we
can derive that

lim M x3LF= lim Y- =Y — lim EF =Yy = X", (138)
k——+o0 k——+oco k——+oo
This completes the proof. |

S More Experiments about ATNN-based Models

In the manuscript, due to page limitations, we only include the recovery results for the TRPCA task
with a sparse noise variance of 0.6 and the recovery results for the TC task with an observation
rate of 0.05. Here, we present more experimental results. The experimental numerical results of all
compared methods for the TRPCA task under various sparse noises are provided in Tables 1 and 2.
The experimental numerical results of all compared methods for the TC task under various sparse
noises are provided in Tables 3, 4, 5 and 6.

From the results in Tables 1 and 2, it can be observed that despite our method only utilizing low-rank
prior on spectral bands, it outperforms methods such as CTV and TCTYV, which simultaneously
incorporate spatial smoothness and spectral low-rankness priors. This demonstrates the effectiveness
of the proposed ATNN norm. Additionally, our method exhibits significant advantages in terms of
speed. In certain cases with sparse noise, the running time of our method is even lower than that of
RPCA methods based on matrix nuclear norm. It should be noted that the running time of our method
varies in different scenarios of sparse noise. This is because the chosen rank, i.e., rs, is different for
different sparse noise scenarios. In more complex scenarios where the proportion of valid information
in the data is lower and the proportion of erroneous information is higher, assigning a high value
to r3 would not only fail to learn an effective COM but also increase the algorithm’s running time.
Therefore, for sparse noise with large variance, a smaller rank, i.e., 3, should be chosen.

Compared to the TRPCA task, the tensor completion (TC) task has received more extensive attention
since it has the higher practical value. As a result, many strong comparative methods have emerged,
such as S2NTNN based on nonlinear transformations using neural networks, KBR model based
on Tucker and CP joint decomposition, and the recently proposed TCTV that integrates both low-
rankness and local smoothness properties. Nevertheless, from Tables 3 to (6), we can observe that
the performance of the proposed ATNN is comparable to these three state-of-the-art tensor methods.
Considering the recoverability theory and running time of our proposed model, the ATNN model
demonstrates strong competitiveness.
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Table 1: Quantitative comparison of all RPCA-based competing methods on WDC dataset under
salt-and-pepper noise with various variance. The best and second results are highlighted in bold
italics and underline.

Variance || Metric | Observed | RPCA| SNN KBR TNN CTNN | CTV | TCTV Ours
MPSNR| 14.26 45.35 | 47.68 | 35.65 | 47.27 28.79 | 50.11 | 49.46 50.19
MSSIM | 0.2830 0.9980| 0.9990| 0.9720| 0.9940 | 0.8820 | 0.9980| 0.9950 | 0.9990
0.1 MFSIM | 0.7200 0.9980| 0.9990| 0.9820| 0.9960 | 0.9260 | 0.9990| 0.9970 | 0.9990
: ERGAS | 836.82 28.99 | 2241 | 71.06 | 34.20 | 149.31 | 16.35 | 26.38 15.16

MSAM 43.10 1.49 1.04 4.52 2.50 7.82 1.23 2.08 1.02

Times / 27.18 | 291.36| 219.16| 808.74 | 339.07 | 122.16| 607.60 | 43.39

MPSNR| 11.24 4399 | 46.27 | 3498 | 44.99 27.17 | 48.70 | 47.78 49.05
MSSIM | 0.1370 0.9970| 0.9980| 0.9680| 0.9920 | 0.8190 | 0.9980| 0.9950 | 0.9980
02 MFSIM | 0.5850 0.9970| 0.9980| 0.9800| 0.9950 | 0.8970 | 0.9990| 0.9970 | 0.9990
’ ERGAS | 1184.15 | 33.34 | 2598 | 76.09 | 38.53 179.40 | 18.51 | 28.87 17.25

MSAM 48.61 1.65 1.25 4.84 2.87 11.65 1.34 2.28 1.10

Times / 32.05 | 460.46| 352.29| 1115.37 498.99 | 210.54| 838.54 | 37.67

MPSNR 9.48 4233 | 44.55 | 34.05 | 41.94 25.06 | 47.21 | 45.70 47.62
MSSIM | 0.0830 0.9960| 0.9970| 0.9620| 0.9880 | 0.7030 | 0.9980| 0.9930 | 0.9980
03 MFSIM | 0.5020 0.9960| 0.9980| 0.9760| 0.9920 | 0.8560 | 0.9980| 0.9960 | 0.9992
’ ERGAS | 1450.57 | 39.61 | 3098 | 84.55 | 45.26 | 228.60 | 21.92 | 32.33 20.12

MSAM 50.91 1.88 1.70 5.49 3.53 16.90 1.50 2.56 1.23

Times / 37.83 | 474.72| 340.09| 1096.57| 498.69 | 210.93| 839.23 | 32.36

MPSNR 8.23 3998 | 4220 | 32.63 | 37.17 22.39 | 45.35 | 43.09 45.73
MSSIM | 0.0540 0.9940| 0.9940| 0.9480| 0.9710 | 0.5230 | 0.9940| 0.9900 | 0.9970
0.4 MFSIM | 0.4470 0.9940| 0.9960| 0.9670| 0.9840 | 0.7950 | 0.9950| 0.9940 | 0.9980
: ERGAS | 167542 | 49.52 | 39.29 | 98.13 | 62.72 | 312.13 | 29.41 | 37.60 24.61

MSAM 52.03 2.21 2.61 6.43 5.59 24.02 1.78 3.04 1.48

Times / 26.52 | 482.14| 253.40| 1108.16] 456.48 | 211.40| 873.60 | 42.30

MPSNR 7.26 36.58 | 38.01 | 28.55 | 28.92 19.70 | 41.07 | 39.49 42.82
MSSIM | 0.0370 0.9840| 0.9780| 0.8710| 0.8210 | 0.3430 | 0.9890| 0.9820 | 0.9950
05 MFSIM | 0.4090 0.9880| 0.9870| 0.9230| 0.9220 | 0.7240 | 0.9910{ 0.9900 | 0.9970
’ ERGAS | 1873.12 | 68.70 | 58.84 | 153.34| 147.67 | 427.94 | 41.11 | 48.65 32.55

MSAM 52.52 2.83 5.19 9.27 13.59 31.54 2.53 4.14 2.20

Times / 42.45 | 481.57| 289.15| 1017.68 454.77 | 212.01| 876.65 | 32.83

MPSNR 6.47 32.09 | 26.02 | 22.65 19.62 17.21 | 33.85 | 31.95 39.82
MSSIM | 0.0260 0.9520] 0.7170| 0.6430| 0.3720 | 0.2030 | 0.9450| 0.9080 | 0.9910
06 MFSIM | 0.3820 0.9700{ 0.8770| 0.8390| 0.7290 | 0.6530 | 0.9670| 0.9500 | 0.9940
’ ERGAS | 205229 | 11291 211.96| 303.49| 432.62 | 570.94 | 87.23 | 103.47 | 45.81

MSAM 52.68 443 | 21.52 | 12.82 | 29.85 37.78 7.70 9.43 2.47

Times / 29.00 | 736.19| 167.21| 419.22 | 485.74 | 170.22| 815.04 | 21.34
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Table 2: Quantitative comparison of all RPCA-based competing methods on PaviaU dataset under
salt-and-pepper noise with various variance. The best and second results are highlighted in bold
italics and underline.

Variance || Metric | Observed | RPCA| SNN KBR TNN CTNN | CTV | TCTV Ours
MPSNR| 14.52 46.51 | 43.33 | 33.69 | 46.83 27.42 | 47.80 | 47.89 50.20

MSSIM | 0.2750 0.9970| 0.9970| 0.9670| 0.9900 | 0.8640 | 0.9980| 0.9930 | 0.9987

0.1 MFSIM | 0.7230 0.9970| 0.9970| 0.9800| 0.9930 | 0.9050 | 0.9980| 0.9950 | 0.9987
: ERGAS | 699.00 3496 | 3594 | 81.40 | 44.20 | 159.33 | 16.07 | 34.02 15.38
MSAM 39.55 0.107 1.12 4.25 3.81 6.05 1.06 3.26 1.04
Times / 5.01 124.39| 59.76 | 71.26 123.12 | 39.55 | 140.24 | 38.57
MPSNR| 11.51 4321 | 41.14 | 32.77 | 44.48 25.73 | 46.54 | 46.46 49.03

MSSIM | 0.1280 0.9940| 0.9950| 0.9610| 0.9870 | 0.7720 | 0.9970| 0.9910 | 0.9985

02 MFSIM | 0.5780 0.9940| 0.9950| 0.9760| 0.9910 | 0.8700 | 0.9988| 0.9940 | 0.9991
’ ERGAS | 989.25 62.63 | 45.73 | 90.50 | 49.20 | 191.17 | 18.71 | 36.61 17.15
MSAM 45.48 1.26 1.38 4.97 4.17 8.96 1.12 3.40 1.10
Times / 5.76 183.52| 71.26 | 80.19 | 126.71 | 30.18 | 352.36 | 34.28
MPSNR 9.75 39.10 | 38.69 | 3091 | 41.67 2348 | 44.77 | 44.20 47.34

MSSIM | 0.0750 0.9890| 0.9900| 0.9430| 0.9830 | 0.6020 | 0.9960| 0.9900 | 0.9979

03 MFSIM | 0.4910 0.9890| 0.9920| 0.9640| 0.9890 | 0.8140 | 0.9980| 0.9930 | 0.9987
’ ERGAS | 1210.8 95.28 | 58.77 | 109.37| 55.73 | 244.06 | 22.76 | 40.25 20.73
MSAM 47.77 1.64 1.70 5.88 4.70 13.66 145 3.67 1.29
Times / 4.68 122.71| 48.22 | 71.34 | 12486 | 41.42 | 139.44 | 24.56
MPSNR 8.51 3425 | 36.22 | 30.50 | 36.84 20.47 | 42.47 | 41.89 45.68

MSSIM | 0.0480 0.9750| 0.9830| 0.9390| 0.9660 | 0.3730 | 0.9940| 0.9860 | 0.9971

0.4 MFSIM | 0.4340 0.9790| 0.9880| 0.9580| 0.9790 | 0.7230 | 0.9970| 0.9910 | 0.9982
: ERGAS | 1398.3 130.85| 75.09 | 112.64| 69.88 | 341.05 | 29.31 | 45.29 24.49
MSAM 48.76 2.18 2.14 5.94 6.31 21.62 1.73 4.01 1.46
Times / 541 181.80| 69.68 | 81.77 | 122.99 | 39.48 | 155.01 | 24.38
MPSNR 7.53 29.55 | 33.84 | 24.34 | 26.62 17.70 | 39.22 | 38.35 42.68

MSSIM | 0.0320 0.9330| 0.9710| 0.6920| 0.7440 | 0.2100 | 0.9860| 0.9770 | 0.9949

05 MFSIM | 0.3940 0.9590| 0.9810| 0.8130| 0.8820 | 0.6280 | 0.9930| 0.9850 | 0.9968
’ ERGAS | 1564.1 174.67| 94.08 | 221.35| 173.54 | 467.76 | 41.93 | 55.62 33.38
MSAM 49.08 3.23 2.79 8.35 15.95 30.13 2.24 4.93 1.96
Times / 4.63 160.38| 41.61 91.40 93.01 30.50 | 140.86 | 19.64
MPSNR 6.74 2499 | 31.34 | 20.92 | 17.09 1538 | 31.91 | 29.63 38.86

MSSIM | 0.0220 0.8260| 0.9490| 0.4470| 0.2340 | 0.1160 | 0.8870| 0.8550 | 0.9847

06 MFSIM | 0.3660 0.9170] 0.9700| 0.7080| 0.6410 | 0.5480 | 0.9460| 0.9190 | 0.9908
’ ERGAS | 1713.1 243.65| 117.44| 328.18| 513.59 | 610.53 | 94.59 | 123.22 | 52.78
MSAM 49.04 5.74 4.79 8.61 33.63 36.86 6.10 11.54 4.44
Times / 6.59 121.03| 58.63 | 120.21 | 130.77 | 41.85 | 172.51 | 19.53
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Table 3: Quantitative comparison of all competing methods on Akiyo dataset under difference
sampling ratio (SR). The best and second results are highlighted in bold italics and underline,

respectively.

SR Metric LRMC| HaLRTC| KBR | TNN | CTNN| FTNN| OITNN | TCTV| S2NTNN| Ours
MPSNR 10.80 17.66 29.77 | 31.95 | 28.64 | 22.74 32.69 33.42 33.16 33.73

MSSIM | 0.2620{ 0.5300 | 0.9110{ 0.9340| 0.8460| 0.7090| 0.9530 | 0.9530| 0.9519 | 0.9566

0.05 MFSIM | 0.6590| 0.7480 | 0.9440| 0.9620| 0.9190| 0.8440| 0.9700 | 0.9690| 0.9716 | 0.9778
’ ERGAS | 706.08| 32244 | 79.83 | 63.42 | 91.09 | 190.88| 58.52 53.17 55.06 52.01
MSAM 19.94 7.17 2.53 2.40 4.05 6.87 1.98 2.13 2.02 1.84
Times 8.06 61.04 696.93| 217.47| 188.90| 1204.6] 397.54 | 874.80| 99.96 79.89
MPSNR | 22.75 21.68 38.94 | 3495 | 32.11 | 27.88 | 36.01 37.54 36.40 37.84

MSSIM | 0.6760[ 0.6670 | 0.9870 0.9630| 0.9200| 0.8480| 0.9760 | 0.9800| 0.9757 | 0.9807

0.1 MFSIM | 0.8520[ 0.8120 | 0.9910| 0.9780| 0.9550| 0.9130| 0.9840 | 0.9870| 0.9848 0.9890
’ ERGAS 183.5 201.9 28.8 45.7 61.4 104.2 40.9 339 38.3 32.8
MSAM 5.35 522 0.95 1.76 2.85 4.18 1.42 1.32 1.45 1.13
Times 10.51 42.92 689.19| 197.99| 175.24| 870.32| 347.57 | 876.51| 99.67 92.87
MPSNR | 39.04 2523 45.17 | 39.09 | 36.70 | 33.73 | 40.23 41.95 39.66 41.07

MSSIM | 0.9860| 0.7960 | 0.9960| 0.9840| 0.9690| 0.9680| 0.9890 | 0.9920| 0.9877 0.9910

0.2 MFSIM | 0.9920{ 0.8810 | 0.9970| 0.9900| 0.9820| 0.9790| 0.9930 | 0.9940| 0.9919 | 0.9950
’ ERGAS | 29.30 | 134.11 14.50 | 2939 | 36.70 | 51.59 | 26.06 21.17 26.48 2241
MSAM 1.00 3.94 0.52 1.16 1.71 1.46 0.94 0.82 1.03 0.78

Times 10.46 35.44 835.68| 220.64| 179.44| 655.12| 381.47 | 922.82| 100.95 158.19
MPSNR | 44.39 27.67 48.81 | 42.08 | 40.02 | 36.89 | 43.23 44.82 42.02 45.17

MSSIM | 0.9950| 0.8670 | 0.9980| 0.9910| 0.9850| 0.9830| 0.9940 | 0.9950| 0.9924 | 0.9960

03 MFSIM | 0.9970| 0.9210 | 0.9990| 0.9940| 0.9910| 0.9890| 0.9960 | 0.9970| 0.9949 | 0.9970
” ERGAS 16.61 101.26 9.41 21.35 | 25.26 | 36.21 18.88 15.52 20.35 14.04
MSAM 0.58 3.21 0.37 0.86 1.17 0.98 0.70 0.61 0.79 0.55

Times 9.02 25.10 888.15| 207.23| 181.30| 545.51| 382.85 | 905.03| 102.42 189.51

Table 4: Quantitative comparison of all competing methods on Carphone dataset under difference
sampling ratio (SR). The best and second results are highlighted in bold italics and underline,
respectively.

SR Metric LRMC| HaLRTC| KBR | TNN | CTNN| FINN| OITNN | TCTV| S2NTNN| Ours
MPSNR | 11.58 14.20 26.49 | 26.27 | 25.06 | 2543 | 27.14 29.10 27.33 27.44

MSSIM | 0.2710] 0.3440 | 0.8160| 0.7650| 0.7260| 0.7770| 0.8340 | 0.8740| 0.8090 | 0.8095

0.05 MFSIM | 0.6470| 0.6410 | 0.8920( 0.8820| 0.8590| 0.8810| 0.9060 | 0.9240| 0.9025 | 0.9056

ERGAS | 676.72| 499.98 122.16| 127.62| 144.13| 139.69| 11592 | 91.71 | 112.74 110.17
MSAM | 22.09 13.58 5.69 6.96 7.69 7.83 5.90 5.06 6.01 5.87
Times 6.92 21.12 798.21| 493.22| 195.56| 1135.70 472.97 | 1103.24 100.76 | 80.11
MPSNR | 21.88 19.79 32.00 | 28.23 | 27.84 | 28.16 | 29.31 31.29 30.31 30.38

MSSIM | 0.6230| 0.5890 | 0.9260| 0.8240| 0.8160| 0.8560| 0.8800 | 0.9110| 0.8843 | 0.8870

0.1 MFSIM | 0.8160] 0.7800 | 0.9550| 0.9110| 0.9050| 0.9210| 0.9310 | 0.9470| 0.9371 0.9380
’ ERGAS | 210.44| 262.79 | 65.14 | 102.32| 104.97| 102.30| 90.66 71.57 80.76 80.88
MSAM 9.36 9.89 3.30 5.76 5.89 5.83 4.79 4.03 4.31 4.34
Times 7.91 42.07 606.52| 158.53| 136.74| 722.46| 275.82 | 759.54| 98.32 88.81
MPSNR | 30.97 19.73 36.63 | 30.94 | 31.27 | 31.04 | 32.04 33.59 33.34 33.71

MSSIM | 0.9080| 0.5540 | 0.9660| 0.8880| 0.8970| 0.9130| 0.9230 | 0.9413| 0.9321 0.9310

02 MFSIM | 0.9520| 0.7610 | 0.9800| 0.9420| 0.9460| 0.9510| 0.9560 | 0.9640| 0.9617 | 0.9650
’ ERGAS | 76.79 | 264.66 | 38.82 | 7534 | 71.01 | 73.78 | 66.53 54.29 56.86 53.33
MSAM 3.98 10.08 2.17 4.37 4.15 4.24 3.65 3.08 3.15 3.06

Times 9.27 21.94 849.07| 416.23| 166.91| 608.54| 337.33 | 884.53| 100.88 151.87
MPSNR | 34.84 23.64 39.58 | 33.01 | 33.80 | 33.21 34.11 35.83 35.38 36.40

MSSIM | 0.9550{ 0.7280 | 0.9800| 0.9230| 0.9360| 0.9420| 0.9470 | 0.9610| 0.9531 0.9580

03 MFSIM | 0.9750| 0.8510 | 0.9890| 0.9600| 0.9660| 0.9670| 0.9700 | 0.9770| 0.9733 | 0.9780
’ ERGAS | 50.08 | 168.64 | 27.80 | 59.55 | 53.23 | 57.66 | 52.57 42.71 45.02 40.18
MSAM 2.61 7.11 1.62 3.51 3.17 3.33 2.95 2.49 2.56 2.33

Times 12.92 29.82 881.66| 409.21| 170.54| 462.46| 342.69 | 870.83| 93.99 196.46
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Table 5: Quantitative comparison of all competing methods on WDC dataset under difference
sampling ratio (SR). The best and second results are highlighted in bold italics and underline,

respectively.

SR Metric LRMC| HaLRTC| KBR | TNN | CTNN| FTNN| OITNN | TCTV| S2NTNN| Ours
MPSNR 14.70 18.12 20.27 | 22.86 | 2291 | 21.42 25.75 26.30 2749 26.62

MSSIM | 0.0480{ 0.2890 | 0.3590| 0.5510| 0.5130| 0.5490| 0.7350 | 0.7360| 0.8165 | 0.7630

0.01 MFSIM | 0.4840| 0.5410 | 0.6100| 0.7850| 0.7550| 0.7780| 0.8590 | 0.8520| 0.9031 0.8830

’ ERGAS | 773.63| 512.73 399.62| 299.11| 295.56| 402.06| 219.65 | 201.04| 174.34 197.95
MSAM 21.45 17.85 1699 | 16.71 | 14.53 | 21.45 13.06 12.23 10.73 12.15

Times 14.00 88.58 1349.8| 470.75| 472.85| 2472.0| 957.36 | 1720.7| 162.30 113.20
MPSNR | 18.54 22.01 31.42 | 30.06 | 33.36 | 34.70 | 32.29 33.33 37.30 38.06

MSSIM | 0.4620[ 0.6670 | 0.9020 0.8800| 0.9430| 0.9530| 0.9270 | 0.9390| 0.9749 | 0.9790

0.05 MFSIM | 0.7610{ 0.8350 | 0.9420| 0.9350| 0.9660| 0.9710] 0.9570 | 0.9640| 0.9846 | 0.9870
’ ERGAS | 521.83| 374.09 117.56| 132.83| 90.49 | 83.78 | 106.21 | 91.52 56.89 52.93
MSAM 17.24 23.33 7.37 1046 | 6.64 6.82 8.27 7.64 4.71 4.35

Times 24.38 54.38 1589.7| 1019.6| 378.99| 4376.2| 838.68 | 2116.5| 168.75 149.70
MPSNR | 27.62 29.55 44.11 | 3358 | 3948 | 39.75 | 36.40 37.68 40.57 43.47

MSSIM | 0.8620| 0.9110 | 0.9930| 0.9400| 0.9680| 0.9810| 0.9670 | 0.9740| 0.9868 0.9920

0.1 MFSIM | 0.9300{ 0.9460 | 0.9960| 0.9660| 0.9870| 0.9880| 0.9800 | 0.9840| 0.9918 0.9962
’ ERGAS | 215.13| 176.03 28.86 | 90.43 | 43.49 | 5146 | 68.77 57.41 40.11 29.80
MSAM 11.86 8.78 2.64 7.95 3.72 4.88 6.05 5.34 3.57 2.74

Times 20.87 54.75 1585.2| 1000.7| 358.34| 3021.0| 828.60 | 2088.7| 203.58 245.32
MPSNR | 46.38 25.21 50.52 | 38.23 | 4735 | 4545 | 41.29 42.58 43.73 48.91

MSSIM | 0.9950| 0.7040 | 0.9980| 0.9750| 0.9970| 0.9930| 0.9860 | 0.9890| 0.9931 0.9974

0.2 MFSIM | 0.9970| 0.8330 | 0.9990| 0.9850| 0.9980| 0.9950| 0.9910 | 0.9930| 0.9958 0.9984
’ ERGAS 2494 | 224.65 14.87 | 55.10 | 19.77 | 31.12 41.80 35.07 28.33 17.32
MSAM 2.45 11.85 1.52 5.33 1.96 3.21 4.04 3.50 2.65 1.69

Times 36.58 53.34 1893.5| 462.46| 383.57| 3128.3| 881.75 | 2203.5| 163.28 280.35

Table 6: Quantitative comparison of all competing methods on Cloth dataset under difference
sampling ratio (SR). The best and second results are highlighted in bold italics and underline,
respectively.

SR Metric LRMC| HaLRTC| KBR | TNN | CTNN| FINN| OITNN | TCTV| S2NTNN| Ours
MPSNR | 11.82 16.46 17.47 | 18.03 | 18.16 | 16.16 19.27 22.68 2043 18.71
MSSIM | 0.0280| 0.3050 | 0.2790| 0.2270| 0.2750| 0.2430| 0.3360 | 0.5850| 0.3895 | 0.3425
0.01 MFSIM | 0.4230[ 0.5090 | 0.5390( 0.6320| 0.6440| 0.7010| 0.6810 | 0.8340| 0.8017 | 0.7046
ERGAS | 904.39| 539.99 | 487.47| 458.03| 453.74| 549.95| 394.66 | 264.38| 344.39 | 420.81
MSAM | 24.56 17.90 2191 | 21.14 | 2091 | 2247 17.24 11.03 14.02 17.64
Times 10.54 | 110.61 1223.6| 412.56| 124.18| 1930.5| 517.37 | 1430.0| 82.32 28.04
MPSNR | 13.10 19.00 24.14 | 23.46 | 25.70 | 25.26 | 24.01 28.39 27.44 25.81
MSSIM | 0.1900{ 0.3570 | 0.6420| 0.6010| 0.7360| 0.7250| 0.6510 | 0.8440| 0.7589 | 0.7340
0.05 MFSIM | 0.6250| 0.6100 | 0.8800| 0.8670| 0.9170| 0.9110| 0.8790 | 0.9540| 0.9491 0.9270
’ ERGAS | 783.44| 417.77 | 223.50| 240.91| 183.60| 193.82| 226.05 | 135.61| 151.35 182.67
MSAM | 22.17 15.20 9.51 12.01 | 8.92 8.82 10.94 6.50 7.21 8.65
Times 10.95 92.65 1292.4| 441.03| 136.16] 2054.4| 391.88 | 1488.6| 86.35 121.61
MPSNR | 15.96 20.62 31.87 | 26.771 | 29.23 | 29.49 | 27.45 31.78 32.21 29.65
MSSIM | 0.3970] 0.4540 | 0.9080| 0.7640| 0.8720| 0.8680| 0.8020 | 0.9140| 0.9061 0.8510
0.1 MFSIM | 0.7950| 0.7080 | 0.9800| 0.9340| 0.9640| 0.9600| 0.9420 | 0.9780| 0.9802 | 0.9660
’ ERGAS | 574.58| 346.60 | 90.79 | 164.37| 119.83| 118.33| 150.88 | 92.23 89.16 116.70
MSAM 18.93 12.61 4.52 8.90 5.84 5.97 8.02 4.81 4.77 6.18
Times 10.61 73.22 1285.5| 437.32| 131.46| 1553.0| 397.20 | 1459.8| 88.22 182.20
MPSNR | 24.78 23.25 38.54 | 31.09 | 34.28 | 3438 | 31.87 35.87 37.75 35.21
MSSIM | 0.7310{ 0.6320 | 0.9730| 0.8890| 0.9420| 0.9440| 0.9070 | 0.9580| 0.9672 | 0.9440
0.2 MFSIM | 0.9460| 0.8400 | 0.9950| 0.9740| 0.9810| 0.9850| 0.9780 | 0.9910| 0.9938 | 0.9893
’ ERGAS | 233.65| 255.15 | 44.78 | 99.67 | 68.33 | 69.51 | 91.39 58.83 49.15 66.54
MSAM 9.24 9.55 2.66 5.89 3.83 3.90 5.35 3.39 2.90 3.80
Times 9.85 49.62 1221.9] 356.16| 117.28| 1052.4| 412.30 | 1402.2| 88.44 226.42
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