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A PROOFS

A.1 PROOF OF VALIDITY OF INSTRUMENT

Proof. We check the instrument conditions in order:

1. Unconfounded Instrument: Z ?? U : The Z ! X  U , V ! X  U , and X ! Y  U

triples are blocked by standard d-separation rules (Pearl et al., 2016). All paths from Z to
U must pass through one of these triples so Z ?? U .

2. Exclusion: Z ?? Y |X,U : The Z ! X ! Y , X  U ! Y , and V ! X ! Y triples
are blocked by standard d-separation rules. All paths from Z to Y must pass through one
of these triples so Z ?? Y |X,U .

3. Relevance: Z 6?? X: There is a Z ! X edge, which is assumed to be non-degenerate.

Thus, Z is a valid instrument for determining the causal relationship between X and Y .

A.2 PROOF OF THEOREM 1

Proof. We simplify notation for clarity in our proof. Consider two vectors of the same dimension,
a and b. Assume that

P
N

i
a
2
i
 ✏ and

P
N

i
b
2
i
 �. This implies that kak2 

p
✏ and kbk2 p

�. Then, by the triangle inequality, ka� bk2  kak2 + kbk2 
p
✏ +
p
�. Setting ai =p

P (z)(E[Y |z]� Ex̂⇠g(z)[bh(x̂)]) and bi =
p

P (z)(Ex̂⇠g(z)[bh(x̂)]� E[bh(x)|z]) proves that

max
bh2H

EZ [(Ex⇠g(z)[bh(x)]� Ex⇠P (X|z)[bh(x)])2]  �, (22)

Ez[(E[Y |z]� Ex̂⇠g(z)[bh(x̂)])2]  ✏ (23)

) PRMSE(bh) =
q
Ez[(E[Y |z]� Ex⇠P (X|z)[bh(x)])2] 

p
✏ +
p

� (24)

A.3 PROOF OF THEOREM 2

Proof. The population version of (12) is
min
h2H

max
f2F

E[2(Y � h(X))f(Z)� f
2(Z)] (25)

An ✏-approximate equilibrium is an (bh, bf) pair such that:

max
f2F

E[2(Y � bh(X))f(Z)� f
2(Z)]�

✏

2
(26)

 E[2(Y � bf(X)) bf(Z)� bf2(Z)] (27)

 min
h2H

E[2(Y � h(X)) bf(Z)� bf2(Z)] +
✏

2
(28)

Taking the derivative w.r.t f(z) of the payoff and setting it equal to 0, we arrive at

2P (z)E[Y � bh(X)|z]� 2P (z)f(z) = 0) f(z) = E[Y � bh(X)|z]. (29)
Plugging this back into (35) gives us the inequality

EZ [E[Y � bh(X)|z]2]�
✏

2
 min

h2H

E[2(Y � h(X)) bf(Z)� bf2(Z)] +
✏

2
. (30)

Assuming we are in the realizable setting (e.g. h(x) = E[Y |do(x)] 2 H), minh2H E[2(Y �

h(X)) bf(Z)� bf2(Z)]  0. Thus, we can write that:

EZ [E[Y � bh(X)|z]2]�
✏

2


✏

2
) PRMSE(bh) 

p
✏. (31)

We note that Theorem 2 follows somewhat directly from the main theorems of Dikkala et al. (2020)
but that it was not stated in this precise form in their work.
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A.4 PROOF OF LEMMA 1

Proof. Notice that
max
⇡2⇧

Est�1 [(Est⇠
bT (st�1,⇡1(st�1))

[⇡(st)]� Est⇠P (st|st�1)[⇡(st)])
2]  � (32)

can be re-written as
max
⇡2⇧

EZ [(Ex⇠g(z)[⇡(x)]� Ex⇠P (X|z)[⇡(x)])2]  �. (33)

Thus, the proof of Theorem 1 holds as written.

A.5 PROOF OF LEMMA 2

An ✏-approximate equilibrium for the policy player is a ⇡ such that

max
f2F

E[2(at�⇡(st))f(st�1)�f
2(st�1)]�

✏

2
 min

⇡2⇧
E[2(at�h(st)) bf(st�1)� bf2(st�1)]+

✏

2
. (34)

With a change of notation, we can re-write this as:

max
f2F

E[2(Y � ⇡(X))f(Z)� f
2(Z)]�

✏

2
 min

⇡2⇧
E[2(Y � h(X)) bf(Z)� bf2(Z)] +

✏

2
. (35)

Thus, the proof of Theorem 2 holds as written.

A.6 PROOF OF THEOREM 3

Proof. By definition,

PRMSE(⇡) =
q
Es⇠d⇡E

[E[a0 � ⇡(s0)|s]]2 = ✏. (36)

Recall that the measure of ill-posedness of the problem (Dikkala et al., 2020; Chen & Pouzo, 2012)
can be defined as

(⇧) = sup
⇡2⇧

q
Es⇠d⇡E

[(⇡E(s)� ⇡(s))2]
q

Es,s0,a0⇠d⇡E
[E[a0 � ⇡(s0)|s]]2

= sup
⇡2⇧

RMSE(⇡)

PRMSE(⇡)
(37)

Directly,
RMSE(⇡)  ✏(⇧) (38)

We repeat the definition of total variation stability of a distribution P (U):
ka� bk2  � ) dTV (a + U, b + U)  c�. (39)

We proceed by noting that TV-stability implies that 8s 2 S ,
dTV (⇡(s) + U,⇡E(s) + U)  c k⇡(s)� ⇡E(s)k (40)

) dTV (⇡(s) + U,⇡E(s) + U)2  c
2
k⇡(s)� ⇡E(s)k2 (41)

) Es⇠d⇡E
[dTV (⇡(s) + U,⇡E(s) + U)2]  c

2Es⇠d⇡E
[k⇡(s)� ⇡E(s)k2] = c

2MSE(⇡). (42)
By Jensen’s inequality,
Es⇠d⇡E

[dTV (⇡(s)+U,⇡E(s)+U)]2  Es⇠d⇡E
[dTV (⇡(s)+U,⇡E(s)+U)2]  c

2MSE(⇡). (43)
Taking the square root of both sides, we arrive at

Es⇠d⇡E
[dTV (⇡(s) + U,⇡E(s) + U)]  c RMSE(⇡)  c(⇧)✏. (44)

Lastly, we apply the Performance Difference Lemma of Kakade & Langford (2002) as follows:
J(⇡E)� J(⇡) = TEs,a⇠d⇡E

[Q⇡(s, a)� Ea0⇠⇡(s)[Q
⇡(s, a0)]] (45)

= TEs,a⇠d⇡E
[Q⇡(s,⇡E(s) + u + eu1)� E[Q⇡(s,⇡(s) + u + eu2)]] (46)

 T
2Es⇠d⇡E

[dTV (⇡(s) + U,⇡E(s) + U)] (47)

 c(⇧)✏T 2
. (48)

We use the fact that the same u would be added to both the learner and the expert’s actions and that
rewards are in the range [�1, 1] in the third step.
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A.7 PROOF OF LEMMA 3

Proof.

E[at|do(st)] = E[⇡E(st) + ut + ut�1|do(st)] = ⇡E(st) + E[ut] + E[ut�1] = ⇡E(st) (49)

E[at|st] = E[⇡E(st) + ut + ut�1|st] = ⇡E(st) +E[ut] +E[ut�1|st] = ⇡E(s) +E[ut�1|st] (50)
⇡BC(s)� ⇡E(s) = E[at|st]� E[at|do(st)] = E[ut�1|st] = E[u|s] (51)

B EXPERIMENT DETAILS

B.1 LUNARLANDER EXPERIMENTS

For ease of simulation, we remove the legs from the LunarLander vehicle (the joints connecting
them to the main body have a state that is not recorded in the observed state), remove the dispersion
noise, and generate trajectories with a fixed ground layout.

For all learned functions, we use two-layer ReLu MLPs with 64 hidden units. We use the Adam
optimizer (Kingma & Ba, 2014) for behavioral cloning and DoubIL and use the optimistic variant
for ResiduIL. We apply a weight decay of 1e-3 to all. We train all methods for 50k steps.

PARAMETER VALUE

LEARNING RATE 3E-4
BATCH SIZE 128

Table 2: Parameters for behavioral cloning.

For computational ease, we only learn the mean of P (a|s) for DoubIL and add fresh standard
normal noise on-top of it to simulate drawing actions. For more complex noise models, one would
need to use a moment matching algorithm (Swamy et al., 2021) in the first stage.

PARAMETER VALUE

LEARNING RATE 3E-4
BATCH SIZE 128
NUM. SAMPLES FOR E 8

Table 3: Parameters for DoubIL.

For implementing the “double samples” for the gradient, we compute E1[a0 � ⇡(s0)|s] and
E2[a0 � ⇡(s0)|s] using independent samples. Then, we apply a stop-gradient operator to the for-
mer expectation before taking a product between the expectations and averaging over s:

L(⇡) = Es[!(E1[a
0
� ⇡(s0)|s])E2[a

0
� ⇡(s0)|s]]. (52)

This loss function has the correct gradient as it uses independent samples for computing the two
expectations.

PARAMETER VALUE

LEARNING RATE 5E-5
BATCH SIZE 128
BC REGULARIZER WEIGHT 5E-2
f NORM PENALTY 1E-3
ADAM �S 0, 1E-2

Table 4: Parameters for ResiduIL.
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B.2 LQG EXPERIMENTS

We compute the optimal policy for the following canonical linear system via solving a Discrete-Time
Algebraic Ricatti Equation via the standard iterative method:

xt = Axt�1 + But�1 (53)

J(K) =
TX

t

x
T

t
Qxt + (Kxt)

T
RKxt (54)

A =


1 �T

0 1

�
, B =


0.5(�T )2

�T

�
, Q =


1 0
0 1

�
, R = [0.1] ,�T = 0.1

This is the dynamics of a “sliding brick on a frozen lake.” We then simulate rollouts of 200 timesteps
with ut being drawn i.i.d. from the standard normal distribution. We confound actions with the sum
of confounders going H steps back:

at = K
⇤
st +

tX

j=t�H

uj . (55)

We simulate 1000 such rollouts to compute (21) empirically. We calculate E[X|z] = E[st|st�H ] =
(A + BK

⇤)Hst�H analytically instead of via samples due to the small value of the quantity in
comparison to the variance of the noise.
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