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A PROOFS

A.1 PROOF OF VALIDITY OF INSTRUMENT

Proof. We check the instrument conditions in order:

1. Unconfounded Instrument: Z Ll U: The Z - X < U,V - X < U,and X - Y < U
triples are blocked by standard d-separation rules (Pearl et al., [2016). All paths from Z to
U must pass through one of these triples so Z 1L U.

2. Exclusion: Z 1L Y|X,U: The Z - X - Y, X+ U —=Y,andV — X — Y triples
are blocked by standard d-separation rules. All paths from Z to Y must pass through one
of these triples so Z 1l Y| X, U.

3. Relevance: Z Y X: There is a Z — X edge, which is assumed to be non-degenerate.

Thus, Z is a valid instrument for determining the causal relationship between X and Y. O

A.2 PROOF OF THEOREM/[I]

Proof. We simplify notation for clarity in our proof. Consider two vectors of the same dimension,
aand b. Assume that 3 a2 < e and 3. b2 < 4. This implies that ||a]|, < /€ and ||b]|, <
V6. Then, by the triangle inequality, [|a —b|, < |a], + [|bll, < /€ + V4. Setting a; =

P(2)(E[Y|2] = Egmg(e) [1(£)]) and b; = /P(2)(Egm gy [1(£)] — E[(z)|2]) proves that

~

%?ﬁEZ[(EINQ(Z) [h(m)] IEnnNP(XIZ) [h( )])2} < 67 (22)

E.[(E[Y 2] — By [R(2)])?] < € (23)

= PRMSE(R) = \/E.[(E[Y |2] - Erop(x) [h(@)))?] < Ve + V3 (24)
O

A.3 PROOF OF THEOREM[2]

Proof. The population version of (I2) is

;}ggipea;E[Q(Y h(X))f(Z) — f2(2)] (25)

An e-approximate equilibrium is an (h, f ) pair such that:

maxE[2(Y —h(X))f(2) = /*(2)] - 5 6)
<ER(Y - f(X)[(2) - [*(2)] 27)
< minE[2(Y - WXNF(Z) - F2(2)) + % (28)
Taking the derivative w.r.t f(z) of the payoff and setting it equal to 0, we arrive at
2P(2)EY ~ h(X)|e] = 2P(2)(2) = 0= f(2) = E[Y ~ h(X)]2]. (29)
Plugging this back into gives us the inequality
Ez[ElY ~ h(X)|1°) - 5 < minER(Y - h(X)J(2) - P(2)] + 5. (30)

Assuming we are in the realizable setting (e.g. h(z) = E[Y|do(z)] € H), minpey E[2(Y —
XN f(Z) - J?Z(Z)] < 0. Thus, we can write that'

EZ[E[Y — h(X)|z]?] — 5 << 5= PRMSE(h) < ve. 31)
O

We note that Theorem [2|follows somewhat directly from the main theorems of |Dikkala et al. (2020)
but that it was not stated in this precise form in their work.
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A.4 PROOF OF LEMMA[I]

Proof. Notice that

max By, (B, 7 (q,_, m, (s [T(50)] = Bapnparfaen [T(56)])] < 6 (32)

can be re-written as
max Ez[(Brng(e) [7(2)] = Banp(x|z)[m(2)])?] < 6. (33)
Thus, the proof of Theorem |I|holds as written. O

A.5 PROOF OF LEMMA[2]

An e-approximate equilibrium for the policy player is a 7 such that

o~

max B[2(a, —(s0)) f (s0-1) ~f*(se-1)] 5 < minE[2(a,—h(s0)f(se1) =P (se-)]+5. B9

With a change of notation, we can re-write this as:

o~

2 € . ™ €
_ _ _ - < _ _ hy
I]pea;E[Q(Y (X)) f(Z) = fA(2)] = 5 <minER(Y — h(X))f(2) = F(2)] + 5. B9
Thus, the proof of Theorem@holds as written.
A.6 PROOF OF THEOREM[3]
Proof. By definition,
PRMSE(r \/EM"E @ —(s)|s]]? = e. (36)

Recall that the measure of ill-posedness of the problem (Dikkala et al.,2020; |(Chen & Pouzo, [2012)
can be defined as

\/Eswl,E [(mE(s) — m(s))?] B RMSE(n) 37
~ nen \/Es o armdsy [Ela’ — 7(s")[s]]2 ~ el PRMSE(r) 37
Directly,
RMSE(7) < ex(II) (38)
We repeat the definition of total variation stability of a distribution P(U):
la—=0bll, <é6=drv(a+Ub+U) <cb. (39)
We proceed by noting that TV-stability implies that Vs € S,
dryv(m(s) + U,mp(s) + U) < clln(s) — e (s)|| (40)
= dpy(n(s) + U,mp(s) + U)? < 2 ||n(s) — mu(s)|? (41)

= Esd,, [drv(n(s) + U, mp(s) + U)? < cgEsNdWE [I7(s) — 7(s)||’] = MSE(n). (42)
By Jensen’s inequality,
B, [drv(n(s)+U, 75 (s)+U)]* < Egua,  [drv(n(s)+U, mp(s)+U)?] < *MSE(n). (43)
Taking the square root of both sides, we arrive at

Eswd,, [drv(n(s) + U, mg(s) + U)] < ¢ RMSE(m) < cr(Il)e. (44)

Lastly, we apply the Performance Difference Lemma of |Kakade & Langford (2002)) as follows:
J(mg) — J(7) = TEs qm, [Q”(s a) = Eoon(s)[Q7 (s, a")]] (45)
=TEsand,, [Q" (s, 7E(s) + u+ u1) — E[Q7 (s, 7(s) + u + U2)]] (46)
< T?Eyn,, [dry (n(s) + U, wp(s) + U)] (47)
< cr(IT)eT?. (48)

We use the fact that the same u would be added to both the learner and the expert’s actions and that
rewards are in the range [—1, 1] in the third step.

O
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A.7 PROOF OF LEMMA[3]

Proof.
Ela¢|do(st)] = E[mrg(st) + ur + ue—1|do(se)] = mr(st) + Elue] + Elug—1] = mr(st)  (49)
Elat|s:] = E[rg(st) + ut + ur—1|st] = 7p(st) + Elue] + Elus—1]s:] = 7r(s) + E[us—1]st] (50)
mpc(s) — mr(s) = Elat|s:] — Elat|do(s:)] = Elur—1]st] = Eluls] (51
O

B EXPERIMENT DETAILS

B.1 LUNARLANDER EXPERIMENTS

For ease of simulation, we remove the legs from the LunarLander vehicle (the joints connecting
them to the main body have a state that is not recorded in the observed state), remove the dispersion
noise, and generate trajectories with a fixed ground layout.

For all learned functions, we use two-layer ReLu MLPs with 64 hidden units. We use the Adam
optimizer (Kingma & Ba, 2014) for behavioral cloning and DoubIL and use the optimistic variant
for ResiduIL. We apply a weight decay of le-3 to all. We train all methods for 50k steps.

PARAMETER VALUE

LEARNING RATE 3E-4
BATCH SIZE 128

Table 2: Parameters for behavioral cloning.

For computational ease, we only learn the mean of P(als) for DoubIL and add fresh standard
normal noise on-top of it to simulate drawing actions. For more complex noise models, one would
need to use a moment matching algorithm (Swamy et al.,2021) in the first stage.

PARAMETER VALUE
LEARNING RATE 3E-4
BATCH SIZE 128

NUM. SAMPLES FOR E 8

Table 3: Parameters for DoubIL.

For implementing the “double samples” for the gradient, we compute E;[a’ — 7(s’)|s] and
Eqla’ — m(s")|s] using independent samples. Then, we apply a stop-gradient operator to the for-
mer expectation before taking a product between the expectations and averaging over s:

L(m) = E{[®(Eq[a’ — 7(s")|s])Eala’ — 7 (s")|s]]. (52)

This loss function has the correct gradient as it uses independent samples for computing the two
expectations.

PARAMETER VALUE
LEARNING RATE 5E-5
BATCH SIZE 128
BC REGULARIZER WEIGHT 5E-2
f NORM PENALTY 1E-3
ADAM f3S 0, 1E-2

Table 4: Parameters for ResidulIl.

15



Under review as a conference paper at ICLR 2022

B.2 LQG EXPERIMENTS

We compute the optimal policy for the following canonical linear system via solving a Discrete-Time
Algebraic Ricatti Equation via the standard iterative method:

Ty = Al’t,l + B'U/t,I (53)
T
J(K) =" 2} Qu\ + (Kz,)" RKx, (54)
t
oar] o JosAT)?] . [1oo] L, B

This is the dynamics of a “sliding brick on a frozen lake.” We then simulate rollouts of 200 timesteps
with u; being drawn i.i.d. from the standard normal distribution. We confound actions with the sum
of confounders going H steps back:

t
a=K'si+ Y u (55)
j=t—H

We simulate 1000 such rollouts to compute empirically. We calculate E[X |z] = E[s¢|s:—n]| =
(A + BK*)H s,y analytically instead of via samples due to the small value of the quantity in
comparison to the variance of the noise.

16



	Introduction
	Related Work
	A Brief Review of Instruments in Causal Modeling
	Generative Modeling Approach
	Game-Theoretic Approach

	Causal Confounding in Imitation Learning
	Algorithms for Causal Imitation Learning
	With a Simulator: DoubIL
	Without state re-sampling: ResiduIL

	Experiments
	Conclusion
	Reproducibility Statement
	Proofs
	Proof of Validity of Instrument
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Lemma 3

	Experiment Details
	LunarLander Experiments
	LQG Experiments


