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ABSTRACT

Diffusion models that can generate high-quality data from randomly sampled
Gaussian noises have become the mainstream generative method in academia and
industry. Are randomly sampled Gaussian noises equally effective for diffusion
models? Some methods explore the impact of noise variations on the results, but
they either do not operate in the pure noise space, requiring additional evaluation
models, or cannot be adapted to general text-to-image tasks. In this paper, we
mainly made three contributions. First, we are the first to hypothesize and empiri-
cally observe that the generation quality of diffusion models significantly depends
on the noise inversion stability. This naturally provides a noise quality metric for
noise selection, grounded in a mathematical property. Second, we further propose
a novel noise optimization method that actively enhances the inversion stability
of arbitrary given noises. Our method is the first one that purely optimizes noises
for the general text-to-image task without relying on any additional evaluator or
specifically designed prompts. Third, our extensive experiments demonstrate that
the proposed noise selection and noise optimization methods both significantly
improve representative diffusion models, such as SDXL and SDXL-turbo, in terms
of human preference and other objective evaluation metrics. For example, the
human preference winning rates of noise selection and noise optimization over the
baselines can be up to 57% and 72.5%, respectively, on DrawBench.

1 INTRODUCTION

Generative diffusion models, renowned for the impressive performance (Dhariwal & Nichol, 2021),
serve as the mainstream generative paradigm with wide applications in image generation (Nichol
et al., 2021; Zhang et al., 2023; Saharia et al., 2022), image editing (Qi et al., 2023; Kawar et al.,
2023), 3D generation (Gupta et al., 2023; Erkoç et al., 2023), and video generation (Ho et al., 2022a;c).
Diffusion-based Generative AI products attracted much attention and a large number of users in recent
years. Understanding and improving the capabilities of diffusion models has become an essentially
important topic in machine learning.

It is well known that diffusion models can generate diverse results, which, of course, contain good
ones and bad ones. Previous studies mainly enhance the generated results by working on model
weight and architecture space (Song et al., 2020; Fang et al., 2023; Podell et al., 2023; Sauer et al.,
2023; Ho et al., 2022b; Lin et al., 2024), while the noise space is largely overlooked. In this paper,
we focus on the noise space. Some methods (Karthik et al., 2023; Ben-Hamu et al., 2024; Wallace
et al., 2023) tried to select the results (equivalent to selecting initial noises) or optimize noise values
with extra information, such as an additional image quality evaluator (Kirstain et al., 2023; Xu
et al., 2024) or token IDs, which are used to construct a “noise-prompt” attention loss (Guo et al.,
2024; Chefer et al., 2023; Agarwal et al., 2023) to improve the results in terms of visual effects and
alignment. First, relying on an external evaluator introduces bias and limits generalization beyond the
evaluator data. Since the evaluator’s scores don’t directly affect the noise, gradient backpropagation
through the network is needed for optimization, which increases memory usage. Second, although
the “noise-prompt” attention loss directly influences the noise, it only applies to specifically designed
prompts, such as the A+B-type prompts, rather than handling real-world general prompts, including
style, detail description, and counting, as shown in Figure 1.
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Figure 1: The qualitative results of noise selection and noise optimization. Left: SDXL-turbo. Right:
SDXL. The proposed methods make improvements in multiple aspects.

In this work, we address two fundamental issues in the noise space of diffusion models. First, can a
better noise be selected based on a mathematical metric rather than relying on external evaluation
results? Second, is it possible to directly optimize a given noise to produce improved results using a
general prompt and without any additional information? The answer to both questions is affirmative.
Fortunately, we not only confirm the possibility but also propose practical algorithms.

Contributions. We summarize the three main contributions of this work as follows:

First, we hypothesize and empirically verify that not all noises are created equally. Specifically,
random noises with high inversion stability usually lead to better generation than noises with lower
inversion stability. The inversion stability measures the similarity of the sampled initial noise ϵ
and the inverse noise ϵ′. The mathematical quantitative metric naturally provides us with a novel
noise selection method to select stable noises, which often correspond to better results. Unlike other
methods that judge noise quality by image quality (we call this post-selection), we directly select
the noise without introducing an additional evaluator. We present several qualitative results of noise
selection in Figures 1 and 5.

Second, we further proposed a novel noise optimization method that actively enhances the inversion
stability of arbitrary given noises. More specifically, we optimize an inversion-stability loss via
gradient descent with respect to the sampled noise (rather than the conventional model weight space).
The proposed noise optimization method is the first one that purely optimizes noises for the general
text-to-image task, reducing memory usage while achieving better visual effects and alignments with
general prompts. We present several qualitative results of noise optimization in Figures 1 and 7.

Third, our extensive experiments demonstrate that the proposed noise selection and noise optimization
methods both significantly improve representative diffusion models, such as SDXL and SDXL-turbo.
On the one hand, the human preference winning rates of noise selection and noise optimization over
the baseline can be up to 57% and 72.5%, respectively, on DrawBench in terms of human preference.
On the other hand, noise selection and noise optimization are also preferred by Human Preference
Score (HPS) v2 (Wu et al., 2023b), a recent powerful human preference model trained on diverse
high-quality human preference data, with winning rates up to 67% and 88%, respectively. Human
preference, considered as the ground-truth ultimate evaluation metric for text-to-image generation,
and objective evaluation metrics all generally support our methods.

2 PREREQUISITES

In this section, we formally introduce prerequisites and notations.
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Notations. Suppose a diffusion model M can generate a clean sample x0 based on some condition c,
such as a general text prompt, given a sampled random noise ϵ.1 We denote the score neural network
as uθ(xt, t), the model weights as θ, the noisy sample at the t-th step as xt, and T as the total number
of denoising steps.

Diffusion Models. The diffusion models (Ho et al., 2020) typically denoise a Gaussian noise along
a reverse diffusion path (steps: T → 1) to generate an image step by step. The probability via uθ,
denoted as pθ, represents the sampling probability given the previous step’s data. The starting point
is sampled from a Gaussian distribution, p(xT ) = N (xT |0, I). The probability of the whole chain,
pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt). The deterministic sampling of xt−1 in DDIM is as follows:

xt−1 =
√

αt−1

(xt −
√
1− αtuθ(xt, t)√

αt

)
+

√
1− αt−1uθ(xt, t), (1)

where at = 1−βt and αt =
∏s

t=1 αs. The βt is the pre-defined parameters for scheduling the scales
of adding noises. Based on the basic reverse process described above, many variations (Song et al.,
2020; Sauer et al., 2023; Lin et al., 2024) have emerged.

Noise Inversion. The noise inversion is to invert a clean data into a noise along a pre-defined diffusion
path. We can write the DDIM inversion process (Hertz et al., 2022) as

xt ≈
√

αt

αt−1
xt−1 +

√
αt−1(

√
1− αt

αt
−

√
1− αt−1

αt−1
)uθ(xt−1, t, c), (2)

where people approximate the denoising score prediction at xt with the inversion score prediction at
xt−1. We note that equation 1 can gradually transform a sampled noise ϵ into a generated sample
x0 along the denoising path, and equation 2 can gradually transform a generated sample x0 back
to a noise ϵ′ along the noise inversion path. We note that the standard noising path which adds
independent Gaussian noises is essentially different from the noise inversion path which adds the
predicted noise of the score neural network uθ. While the generation denoising path and the noise
inversion path are both guided by the score neural network uθ, the sampled noise ϵ and the inverse
noise ϵ′ are close but not identical due to the cumulative numerical differences.

Fixed Points. We denote the denoising-inversion transformation, ϵ → x0 → ϵ′, as the transformation
function ϵ′ = F (ϵ). If ϵ and ϵ′ are ideally identical, namely ϵ = F (ϵ), we call ϵ a fixed point of this
mapping function F . In this case, the inverse noise ϵ′ can perfectly recover the sample x0 generated
from ϵ. This suggests that a state can remain fixed under some transformation. The fixed points
have various great properties and many important applications in various fields, such as projective
geometry (Coxeter, 1998), Nash Equilibrium (Nash Jr, 1950), and Phase Transition (Wilson, 1971).

3 METHODOLOGY

In this section, we first introduce the noise inversion stability hypothesis and show how it naturally
leads to two novel noise-space algorithms, including noise selection and noise optimization.

Algorithm 1 Noise Selection
1: Input: the diffusion model:M, text prompt:

c, the number of seeds: K
2: Output: the stable noise ϵs
3: for i = 1 to K do
4: seed← i // Set the random seed
5: Sampling a Gaussian noise ϵi
6: x0 =M(ϵi, c)

// Generate an image
7: ϵ′i = Inversion(x0, c)

// Inverse noise
8: s(ϵi) = cos(ϵi, ϵ

′
i)

9: end for
10: ϵs = argmax

ϵ∈{ϵi|i=1,2,··· ,K}
s(ϵ)

// The noise with the highest stability score

Algorithm 2 Noise Optimization
1: Input: the diffusion model:M, text prompt:

c, the number of gradient descent steps: n, the
learning rate: η, the momentum value: β

2: Output: the optimized noise ϵ⋆

3: Sampling a Gaussian noise ϵ
4: for i = 1 to n do
5: x0 =M(ϵ, c)

// Generate an image
6: ϵ′ = Inversion(x0, c)

// Inverse noise
7: J(ϵ) = 1− cos(ϵ, ϵ′)
8: mi = βmi−1 +∇ϵJ(ϵ)
9: ϵ = ϵ− ηmi

10: end for
ϵ⋆ = ϵ

1For simplicity, we abuse the latent space and the original data space in the presence of latent diffusion.
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“A bird”
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Noise 2

Noise 1

1
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3

HPS v2: 27.1250

Stable path

Unstable path

Unstable path

Figure 2: When the semantic information of noise and prompt are more similar, the noise is closer
to the fixed point state under the denoising-inversion path. Left: the various semantic information
implicit in different initial noises. We pick the prompt (“A tree”) related to noise1 and the unrelated
prompt (“A bird”). Right: the stronger the correlation between the noise and the prompt, the better
the result, with greater similarity between the initial noise and the inverse noise.

Noise 
inversion 
stability 

optimization

a needle-felted palm tree

the denoising path

the noise inversion path

ϵ

ϵ’

𝐹: ϵ → 𝑖𝑚𝑎𝑔𝑒 → 𝜖′

initial noiseclean image inverse noise optimized noise

Figure 3: The overview of noise inversion stability and noise optimization. Left: the denoising-
inversion path. If ϵ is a fixed-point noise, then ϵ = ϵ′. Right: random noises are not perfect fixed-point
noises for the denoising-and-inversion transformation, which leads to some difference between
original noises and inverse noises. We can select stable noises or directly optimize the given random
noises to get closer to a fixed point.

Noise Inversion Stability. It is well known that fixed points are stable under the transformation and,
thus, have great properties (Burton, 2003; Connell, 1959; Pata et al., 2019). May the fixed-point
Gaussian noises under the denoising-inversion transformation F also exhibit some advantages? As
finding the fixed points of this complex dynamical system is intractable, unfortunately, we cannot
empirically verify it. Instead, we can formulate Definition 1 to measure the stability of noise for the
denoising-inversion transformation F .
Definition 1 (Noise Inversion Stability). We define F as the denoising-inversion transformation,
ϵ → x0 → ϵ′. Suppose a sampled noise ϵ has its inverse noise ϵ′ = F (ϵ) given by a diffusion model
M with the condition c. We define the noise inversion stability of the sampled noise ϵ as

s(ϵ) = cos(ϵ, ϵ′) (3)

for the diffusion M with the condition c, where cos is the cosine similarity between two vectors.

We use cosine similarity to measure stability for simplicity, while it is also possible to use other
similarity metrics. The results using other metrics can be found in Appendix B. Our empirical analysis
in Section 4 suggests that the simple cosine similarity metric works well.
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Evidence. We refer to the content generated under the “NULL” prompt as the semantic information
implicit in the corresponding initial noise (see the left part of Figure 2). This semantic information
reflects the generation trends of sampling noise points. For instance, noise1 tends to produce a “tree”
layout of displays. We calculate the inversion stability score for three scenarios: (1) noise and prompt
matching (setting 1⃝ in Figure 2), (2) noise and prompt not matching (settings 2⃝ and 3⃝ in Figure 2).
We observed a strong correlation between the inversion stability scores and the degree of match, with
higher inversion stability scores leading to better image quality. When the noise matches the prompt,
the noise is closer to the fixed point in the denoising-inversion path guided by the prompt.

Noise Selection. Based on the evidence results and inspired by the intriguing mathematical properties
of fixed points, we hypothesize that the noise with higher inversion stability can lead to better results.
If this hypothesis is reasonable, this naturally provides a novel and useful noise selection algorithm
that selects the noise seed with the highest stability score from K noise seeds (e.g. K = 100 in this
work). We present the pseudocode in Algorithm 1.

Noise Optimization. As we have an objective to increase the noise inversion stability, is it possible
to actively optimize a given noise by maximizing the stability score? We further propose the noise
optimization algorithm that directly performs Gradient Descent (GD) on the loss, 1− cos(ϵ, ϵ′), with
respect to ϵ, where we keep the diffusion model weights and ϵ′ constant for each optimization step.
We take the diffusion models as a fixed mapping function and the optimization objective is directly
act on the noise. This make us directly optimize the initial noise and do not let gradients flow through
the network, greatly saving the memory. We present the illustration of noise optimization in the right
column of Figure 3. We present the pseudocode in Algorithm 2.

4 EMPIRICAL ANALYSIS

In this section, we conduct extensive experiments to demonstrate the effectiveness of our methods.
We take text-to-image generation as our main setting.

4.1 EXPERIMENTAL SETTINGS

Models: SDXL-turbo (Sauer et al., 2023) and SDXL (Podell et al., 2023). SDXL is a representative
and powerful diffusion model. SDXL-turbo is a recent accelerated diffusion model that can produce
results better than standard SDXL but only takes 4 denoising steps. We choose the denoising steps
for SDXL-turbo as 4 steps and SDXL as 10 steps for reducing computational time and carbon
emissions, unless we specify otherwise. We use the model’s default scheduler for denoising and
DDIM scheduler for inversion in experiments. We also empirically study the impact of denoising
steps on the optimization effectiveness in Section 4.3.

Dataset: We select common datasets to evaluate our algorithm’s performance in the general text-to-
image task. We use all 200 test prompts from the DrawBench dataset (Saharia et al., 2022) which
contain comprehensive and diverse descriptions beyond the scope of the common training data. We
use the first 100 test prompts from the Pick-a-Pic (Kirstain et al., 2024) which consist of interesting
prompts gathered from the users of the Pick-a-Pic web application. We also use HPD v2 dataset
which contains 400 prompts and related results are shown in Appendix B.

Evaluation metrics: We evaluate the quality of the generated images using both human preference
and popular objective evaluation metrics, including HPS v2 (Wu et al., 2023b), AES (Schuhmann
et al., 2022), PickScore (Kirstain et al., 2024), and ImageReward (Xu et al., 2024). AES indicates a
conventional aesthetic score for images, while HPS v2, PickScore, and ImageReward are all emerging
human reward models that approximate human preference for text-to-image generation. Particularly,
HPS v2 is a better human reward model and offers a metric closer to human preference (see Table
6 in (Wu et al., 2023b)) than other objective evaluation metrics. Moreover, human preference is
regarded as the ground truth and ultimate evaluation method for text-to-image generation. Thus, we
regard human preference and HPS v2 as the two most important metrics.

Hyperparameters: For the noise selection experiments, we select the (most) stable noise and the
(most) unstable noise from 100 noise seeds according to the noise inversion stability. We evaluate
generated results using human preference and objective evaluation metrics. For the noise optimization
experiments, we initialize the noise using one random seed and perform GD to optimize the noise with
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Table 1: The quantitative results of noise selection. Each reported score is the mean score over all
evaluated prompts. The corresponding winning rate results are shown in Figure 4 and the qualitative
results are shown in Figure 5. Model: SDXL-turbo.

Dataset Noise HPS v2 AES PickScore ImageReward Average

Pick-a-Pic Unstable noise 27.2688 5.9265 21.6227 0.7812 13.8998
Stable noise 27.4934 5.9960 21.6372 0.8981 14.0062

DrawBench Unstable noise 28.1377 5.3945 22.4251 0.7021 14.1646
Stable noise 28.4266 5.6082 22.4200 0.7325 14.2968

HPD v2 Unstable Noise 28.3594 5.9663 22.4641 0.9525 14.4356
Stable Noise 28.6250 6.0075 22.4644 0.9856 14.5206

Figure 4: The winning rate results from noise selection. The blue bars represent the side of stable
noises. The orange bars represent the side of unstable noises. Mode: SDXL-turbo.

100 steps. The default values of the learning rate and the momentum are 100 and 0.5, respectively.
More details can be found in Appendix A.2.

4.2 THE EXPERIMENTS OF NOISE SELECTION

The noise selection experiments are to compare the results denoised from stable noises and unstable
noises, where the noise with the highest stability score is the stable noise, and the noise with the
lowest stability score is defined as unstable noise.

Quantitative results. We present the objective evaluation scores in Table 1. The HPS v2 is the main
objective evaluation metric. The HPS v2 score of stable noises surpasses its counterpart of unstable
noise by 0.225, 0.289 and 0.266, respectively, on Pick-a-Pic, DrawBench and HPD v2. The average
scores also support the advantage of stable noises over unstable noises. The quantitative results
support the noise inversion stability hypothesis and suggest that stable noises often significantly
outperform unstable noises in practice.

Besides the scores, the winning rates can tell the percentage of one result better than the other on
the evaluated prompts. We particularly show the winning rates of human preference and HPS v2 in
Figure 4 to visualize two representative evaluation metrics. All winning rates are significantly higher
than 50%. The human preference winning rates are up to 56%, 57% and 62%, respectively, over
Pick-a-Pic, DrawBench and HPD v2, while the HPS v2 winning rates are even up to 65%, 67% and
59.25% respectively.

Qualitative results. We conduct case studies for qualitative comparison. We not only care about the
standard visual quality, but also further focus on those challenging cases for diffusion models, such
as color, style, text rendering, object co-occurrence, position, and counting. The results in Figure
5 show that the images denoised from stable noise are significantly better than images denoised
from unstable noise in various aspects. 1) Color: the stable noise leads to a yellow fork accurately,
while the unstable noise can only lead to a yellow hand with an incorrect fork. 2) Style: the stable
noise obviously corresponds to the “1950s batman comic” style more precisely with rich background
details. 3) Text rendering: the stable noise can render the correct “diffusion”. 4) Object co-occurrence,
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Figure 5: The qualitative results of noise selection. The results highlight the improvements of stable
noises in various aspects, such as color, style, text rendering, object co-occurrence, position, and
counting. The prompts are from the benchmark datasets. Model: SDXL-turbo.

Table 2: The quantitative results of noise optimization. The qualitative results are shown in Figure 7,
and the winning rate results are shown in Figure 6. Model: SDXL.

Dataset Noise HPS v2 AES PickScore ImageReward Average

Pick-a-Pic Original Noise 25.9800 5.9903 21.0183 0.2500 13.3207
Optimized Noise 26.6422 6.0504 21.2344 0.4622 13.5973

DrawBech Original Noise 26.6203 5.4889 21.4815 0.0575 13.4121
Optimized Noise 27.3651 5.5438 21.6508 0.1767 13.6841

HPD v2 Random Noise 26.8750 6.0185 21.8770 0.4597 13.8076
Optimized Noise 27.8125 6.0722 22.0395 0.6449 14.1423

the stable noise can generate correct combinations of two objects, while the unstable noise falsely
merges two concepts together. 5) Position, the stable noise corrects the wrong position relation of the
unstable noises. 6) Counting, the stable noises accurately correct the number of both cats and dogs.

In summary, both quantitative and qualitative results demonstrate the significant effectiveness of
noise selection according to the noise inversion stability.

4.3 THE EXPERIMENTS OF NOISE OPTIMIZATION

The noise optimization experiments are to compare the results of original noises and optimized noises.
For each prompt, we sample a Gaussian noise as the original noise and learn optimized noises by
Algorithm 2. Note that optimized noises are approximately but not real Gaussian noises.

Quantitative results. We present quantitative results in Table 2. All objective evaluation metrics
in the experiment consistently support the advantage of optimized noises over original noises. The
HPS v2 score of optimized noises surpasses its counterpart of original noises by 0.662, 0.745 and
0.938, respectively, on the Pick-a-Pic, DrawBench, and HPD v2. The average score again supports
the advantage of optimized noises over original noises.

Similarly, we visualize the winning rates of the two most important metrics, HPSv2 and human
preference to show the percentage of improved cases in Figure 4. The human preference winning
rates of noise optimization are 69%, 72.5% and 83.25%, respectively, over Pick-a-Pic, DrawBench
and HPD v2, while the HPS v2 winning rates are even up to 87%,88% and 87.25%. The winning
rate improvements are comparable to the performance gap between two generations of SD models,
such as SDXL-turbo (Sauer et al., 2023) and cascaded pixel diffusion models (IF-XL) (Saharia et al.,
2022). We also compare our method with DOODL in Appendix B.
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Figure 6: The winning rate result of noise optimization. The blue bars represent the side of optimized
noises. The orange bars represent the side of the original noise. Model: SDXL.
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Figure 7: The qualitative results of noise optimization on benchmark datasets. Each pair of results is
generated by SDXL. The results demonstrate that the optimized noise outperforms the original noise
in various aspects, such as color, style, text rendering, object co-occurrence, position, and counting.

Qualitative results. We present the qualitative results of original noises and optimized noises in
Figure 7. Similar to what we observe for noise selection, noise optimization also improves multiple
challenging cases, such as color, style, text rendering, object co-occurrence, position, and counting
we mentioned above. Moreover, we also present examples that noise optimization can improve the
details of human characters and bodies in Figure 8. Optimized noises can lead to more accurate
human motion and appearance. For example, the huntress’s hand generated by the optimized noise is
accurately holding the end of the arrow.

Impacts of denoising steps T on optimization. The noise inversion process directly depends on
the number of denoising steps T . We apply our noise optimization to SDXL with various denoising
steps to study the impact of denoising steps. We present the winning rates of noise selection with
T ∈ {5, 10, 30, 50} in Figure 9. The results show that the improvement of noise optimization is
relatively robust to a wide choice of denoising steps. Optimized noises are especially good for very
few denoising steps.

Noise Optimization for 3D Generation. It is easy to see that the proposed methods can be generally
applied to other diffusion models. Here, we provide an example. We apply noise optimization to
3D generation tasks with a popular image-to-3D generative model, SV3D (Voleti et al., 2024). We
clearly observe the improvements in the body details of these 3D characters. Due to the space limit,
we leave more experimental details and results in Appendix E.

In summary, noise optimization can significantly improve generated results in multiple challenging
aspects. It is especially surprising that optimized noises deviated from Gaussian noises can help
diffusion models generate better results than real Gaussian noises.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

O
rig

in
al

 N
oi

se
O

pt
im

iz
ed

N
oi

se

Painting of a beautiful woman, painted by van Gogh, 
starry night

Anime portrait of a beautiful vamire witch, sci fi suit, intricate, elegant, highly 
detailed, digital painting, artstation, concept art, smooth, sharp focus, 

illustration, art by grep rutkowski

Fantasy art of a huntress shooting a bow

Figure 8: The character and body details of original noises and optimized noises. The prompts are
from Pick-a-Pic. Model: SDXL

Figure 9: The winning rates of noise optimization with respect to various denoising steps. Metric:
HPS v2. Model: SDXL.

4.4 SUPPLEMENTARY RESULTS

We provide details of our experimental settings and additional results in the Appendix. (1) Ex-
perimental settings: Appendix A presents the experimental settings and hyperparameter details.
(2) Ablation and comparison experiments: Appendix B presents results using different similarity
measures(Tables 3 and 5), and comparisons with other methods(Table 6). (3) Related work and
discussion: Appendix C presents the detailed contents. (4) Additional task results: Appendix E
presents results for the image-to-3d task(Table 8).

5 DISCUSSION AND LIMITATIONS

In this section, we discuss related works and three main limitations of our method.

Related work. Some works (Wallace et al., 2023; Chefer et al., 2023; Agarwal et al., 2023; Guo et al.,
2024) have noted that noise plays a significant role in the final results. However, they typically require
additional information to optimize the noise, such as image quality evaluators or token IDs used for
constructing attention loss. The first type of methods relies on the performance of the evaluator and
demands more memory due to the need for gradients through the denoising process. The second type
operates in the noise space but requires user-specified token IDs or an LLM to extract them, which
limits their applicability to general prompts. In contrast, our method is based on a mathematical
property of noise, allowing it to work directly within the noise space and adapt to general prompts. In
summary, from a perspective of real-world practice, previous so-called noise optimization methods
cannot be directly applied or compared with our method for a general text-to-image generation task.
We discuss more about this key point in Appendix C.
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Figure 10: The qualitative results of noise optimization for 3D generation. The small images are the
input. The red box highlights the differences. Model: SV3D.

Theoretical Understanding. With the inspirations from fixed points in dynamic systems, we still
do not theoretically understand why not all noises are created for diffusion models. We formulated
and empirically verified the hypothesis that random noises with higher inversion stability often lead
to better results, it is still difficult to theoretically analyze how the performance of diffusion models
mathematically depends on noise stability. We believe theoretically understanding noise selection
and noise optimization will be a key step to further improve them.

Optimization Strategies. In this work, we only applied simple gradient descent with multiple (e.g.,
100) steps to optimize the noise-space loss, but noise optimization seems like a difficult optimization
task. In some cases, we observe that the loss does not converge smoothly. Due to computational
costs and a limited understanding of the noise-space loss landscape, we did not carefully fine-tune
the hyperparameters or employ advanced optimizers, such as Adam (Kingma & Ba, 2015) in this
work. Thus, while the current optimization strategy works well, it is far from releasing the power of
noise-space algorithms. We think it will be very promising and important to better analyze and solve
this emerging optimization task with advanced optimization methods.

Computational Costs. Both noise selection and noise optimization require significantly more
computational resources and time compared to standard generation. For noise selection, we compute
the inversion stability loss across 100 noise seeds and select the one with the highest stability score,
repeating the forward and inversion processes 100 times. In noise optimization, we perform gradient
descent over 100 steps, repeating the forward pass and inversion 100 times. While accelerating noise
selection may be challenging, noise optimization could likely be sped up by reducing the number of
gradient descent steps in the future.

6 CONCLUSION

In this paper, we report an interesting noise inversion stability hypothesis and empirically observe
that noises with higher inversion stability often lead to better results. This hypothesis motivates us
to design two novel noise-space algorithms, noise selection and noise optimization, for diffusion
models. To the best of our knowledge, we are the first to apply the selection and optimization
methods in a pure noise space that does not involve any additional estimators and extra annotated
information. Unlike previous related methods that require specifically designed prompts, both of our
algorithms can directly adopt to general text-to-image generation with standard text prompts. Our
extensive experiments demonstrate that the proposed methods can significantly improve multiple
aspects of qualitative results and enhance human preference rates as well as objective evaluation
scores. Moreover, the proposed methods can be generally applied to various diffusion models in a
plug-and-play manner. While some limitations exist, our work has made the first solid step to explore
this promising direction. We believe our work will motivate more studies on understanding and
improving diffusion models from the perspective of noise space.
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Our work proposes noise selection and optimization for diffusion models. As previously emphasized,
our algorithm does not introduce additional information, ensuring that the generated results remain
free from any ethical biases. We have also confirmed that none of the data used in our experiments
presents ethical risks. Given the potential impact of our algorithms in both academic and commercial
settings, we stress the importance of responsible use to minimize risks such as misuse or unintended
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for textured mesh generation. arXiv preprint arXiv:2303.05371, 2023.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022c.

Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise
space: Inversion and manipulations. arXiv preprint arXiv:2304.06140, 2023.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. If you use this software, please cite it as below.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Shyamgopal Karthik, Karsten Roth, Massimiliano Mancini, and Zeynep Akata. If at first you don’t
succeed, try, try again: Faithful diffusion-based text-to-image generation by selection. arXiv
preprint arXiv:2305.13308, 2023.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd International
Conference on Learning Representations, ICLR 2015, 2015.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation. Advances in Neural
Information Processing Systems, 36:36652–36663, 2023.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation. Advances in Neural
Information Processing Systems, 36, 2024.

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Haofeng Liu, Chenshu Xu, Yifei Yang, Lihua Zeng, and Shengfeng He. Drag your noise: Interactive
point-based editing via diffusion semantic propagation. arXiv preprint arXiv:2404.01050, 2024.

Jiafeng Mao, Xueting Wang, and Kiyoharu Aizawa. Guided image synthesis via initial image editing
in diffusion model. In Proceedings of the 31st ACM International Conference on Multimedia, pp.
5321–5329, 2023.

Barak Meiri, Dvir Samuel, Nir Darshan, Gal Chechik, Shai Avidan, and Rami Ben-Ari. Fixed-point
inversion for text-to-image diffusion models. arXiv preprint arXiv:2312.12540, 2023.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6038–6047, 2023.

Naila Murray, Luca Marchesotti, and Florent Perronnin. Ava: A large-scale database for aesthetic
visual analysis. In 2012 IEEE conference on computer vision and pattern recognition, pp. 2408–
2415. IEEE, 2012.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

12

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Vittorino Pata et al. Fixed point theorems and applications, volume 116. Springer, 2019.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

John David Pressman, Katherine Crowson, and Simulacra Captions Contributors. Simulacra aesthetic
captions. Technical Report Version 1.0, Stability AI, 2022. url https://github.com/JD-P/simulacra-
aesthetic-captions .

Zipeng Qi, Guoxi Huang, Zebin Huang, Qin Guo, Jinwen Chen, Junyu Han, Jian Wang, Gang
Zhang, Lufei Liu, Errui Ding, et al. Layered rendering diffusion model for zero-shot guided image
synthesis. arXiv preprint arXiv:2311.18435, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vincent YF Tan, and Song Bai. Dragdif-
fusion: Harnessing diffusion models for interactive point-based image editing. arXiv preprint
arXiv:2306.14435, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin, Christian
Laforte, Robin Rombach, and Varun Jampani. Sv3d: Novel multi-view synthesis and 3d generation
from a single image using latent video diffusion. arXiv preprint arXiv:2403.12008, 2024.

Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent optimiza-
tion improves classifier guidance. In Proceedings of the IEEE/CVF International Conference otn
Computer Vision, pp. 7280–7290, 2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Zijie J Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng
Chau. Diffusiondb: A large-scale prompt gallery dataset for text-to-image generative models.
arXiv preprint arXiv:2210.14896, 2022.

Kenneth G Wilson. Renormalization group and critical phenomena. i. renormalization group and the
kadanoff scaling picture. Physical review B, 4(9):3174, 1971.

Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu, Lei Yang, Jiaqi
Wang, Chen Qian, et al. Omniobject3d: Large-vocabulary 3d object dataset for realistic perception,
reconstruction and generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 803–814, 2023a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis. arXiv preprint arXiv:2306.09341, 2023b.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL SETTINGS OF MAIN EXPERIMENTS

Computational environment. The experiments are conducted on a computing cluster with GPUs of
NVIDIA® Tesla™ A100.

A.1 DATASETS AND DATA PREPROCESSING

we conduct experiments across three datasets as follows:

Pick-a-Pic. (Kirstain et al., 2024): This dataset is composed of data collected from users of the
Pick-a-Pic web application. Each example in this dataset consists of a text prompt, a pair of images,
and a label indicating the preferred image. It is worth noting that for fast validation and saving
computational resources, we only use the first 100 prompts as text conditions to generate images in
the main experiment.

DrawBench. (Saharia et al., 2022): The examples in this dataset contain a prompt, a pair of images,
and two labels for visual quality and prompt alignment. The total number of examples in this dataset
is approximately 200. This dataset contains 11 categories of prompts that can be used to test various
properties of generated images, such as color, number of objects, text in the scene, etc. The prompts
also contain long, complex descriptions, rare words, etc.

HPD v2 Wu et al. (2023b): HPD v2 comprises a test split and a training split. The test split consists
of 400 groups of images. Among them, 300 groups use prompts from DiffusionDB Wang et al. (2022)
, and 100 groups use prompts from COCO Captions Lin et al. (2014).

The difference between these datasets: The prompts in Pick-a-Pic are from real users and have
more daily descriptions. The prompts in DrawBench have more complex descriptions and contain
rare words. The prompts in HPD v2 contain more comprehensive situation.

In all main experiments, we set all tensors as half-precision to improve experimental efficiency. In
calculating the inversion stability, we expand the noise tensor to a one-dimensional vector along the
channel dimension.

A.2 THE HYPERPARAMETERS

Noise Selection. In noise selection experiments, for each prompt, we sample 100 noises using random
seeds from 0 to 99. According to the inversion stability score, we select the stable noise among all
candidate noises, using the algorithm 1.

Noise Optimization. In noise optimization experiments, for each prompt, we first randomly sample
a noise using a random seed selected from 0 to 99. This noise is denoted as the original noise. We
use algorithm 2 to optimize the original noise with 100 gradient descent steps. We set the defaulted
learning rate is 100 and equip it the learning rate with a cosine annealing schedule. The default value
of momentum is 0.5.

Hyperparameter tuning and fluctuation. We need to choose a relatively large learning rate, e.g.
100, which matters to successful optimization, as the order of magnitude of the gradient norm is about
10−5. In our experiment, we select the optimal learning rate η from {0.1, 1, 10, 100, 1000}. Moreover,
we chose the momentum value as 0.5 with careful fine-tuning, as the momentum value does not
significantly affect the final results. According to the empirical analysis, the performance closely
depends on the learning rate due to the convergence problem and is robust to other hyperparameters.
This is not strange, as the learning rate matters to nearly all optimization tasks.

A.3 EVALUATION METRICS

Human Preference Score v2 (HPS v2): This score is calculated by a finetuned CLIP2 on the HPD
v2 dataset (Wu et al., 2023b), a comprehensive human preference dataset. This human preference
dataset is known for its diversity and representativeness. Each instance in the dataset contains a pair
of images with prompts and a label of human preference.

2The CLIP version is ViT-H/14
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Aesthetic Score (AES): The AES3 is calculated by the Aesthetic Score Predictor (Schuhmann et al.,
2022), which is designed by adding five MLP layers on top of a frozen CLIP4 and only the MLP
layers are fine-tuned by a regression loss term on SAC (Pressman et al., 2022), LAION-Logos5 and
AVA (Murray et al., 2012) datasets. The score ranges from 0 to 10. A higher score means the image
has better visual quality.

PickScore: This is also involves a human preference model, where the score is generated by a
fine-tuned CLIP model. This model has been trained on the Pick-a-Pic dataset, which contains a large
number of user-annotated samples reflecting human preferences.

ImageReward: This is an early human preference model (Xu et al., 2024).

Figure 11: The web page for human evaluation.

3The Github page: https://github.com/christophschuhmann/improved-aesthetic-predictor
4The CLIP version is ViT-H/14
5https://laion.ai/blog/laion-aesthetics/
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Human evaluation: Human annotators select a better one from a pair of images following the
criteria:

• The correctness of semantic alignment

• The correctness of object appearance and structure

• The richness of details

• The aesthetic appeal of the image

• Your preference for upvoting or sharing it on social networks

We built a web page for human evaluation, as shown in Figure 11.

The difference between these metrics: The AES is primary for evaluating the visual quality, while
others are for human preference and text-image alignment.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

B.1 THE EXPERIMENTS OF OTHER SIMILARITY METRICS

We present the comparative results of various metrics here following the setting of Table 1 in the
main paper. We show the winning rate results of each metric on Pick-a-Pic, DrawBench and HPD v2
datasets.

Table 3: The winning rate results of noise selction. Model: SDXL-turbo. Dataset: Pick-a-Pic.
Metrics HPS v2 AES PickScore ImageReward Avg. rate

Cosine similariy 65% 54% 51% 55% 56.25%

MSE 54% 52% 50% 51% 51.75%

MAE 55% 50% 52% 54% 52.5%

Table 4: The winning rate results of noise selection. Model: SDXL-turbo. Dataset: DrawBench.
Metrics HPS v2 AES PickScore ImageReward Avg. rate

Cosine similariy 67% 58% 48.5% 57% 57.63%

MSE 68.5% 53% 56.5% 55% 58.25%

MAE 65% 53% 51% 56% 56.25%

Table 5: The winning rate results of noise selection. Model: SDXL-turbo. Dataset: HPD v2.
Metrics HPS v2 AES PickScore ImageReward Avg. rate

Cosine similariy 61.75% 55.75% 50.75% 49.50% 54.44%

MSE 59% 51.25% 53% 51.50% 53.69%

MAE 57.25% 51.75% 49.50% 56% 53.63%

The results show that the cosine similarity metric has good performance on both datasets compared
to the Mean Squared Errors (MSE) and Mean Absolute Errors (MAE). This suggests that the cosine
similarity is a more effective evaluation metric, further justifying its use in noise selection and
optimization and optimization experiments.
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B.2 THE COMPARISON EXPERIMENTS

We select DOODL (Wallace et al., 2023) as a comparison method. DOODL leverages CLIP to guide
noise optimization for improved results, but it requires additional memory to backpropagate gradients
through the diffusion model (which indirectly affects the noise), and its performance is influenced by
the evaluator’s choice. In contrast, our method is mathematically grounded, operates entirely within
the noise space, and does not rely on an external evaluator, thus avoiding additional bias. While
DOODL uses SD 1.4 by default, our method, with similar memory usage, supports SDXL. For a
fair comparison, we report the winning rates to highlight the improvements achieved through noise
optimization. The experiments are conducted on the Pick-a-Pic, DrawBench, and HPD v2 datasets.

Table 6: The winning rate results of DOODL (Wallace et al., 2023) and ours.
Dataset Method HPS v2 AES PickScore ImageReward Ave. rate

Pick-a-Pic DOODL 69.00% 50.00% 67.00% 62.00% 62.00%
Ours 83.00% 55.00% 67.00% 68.00% 68.25%

DrawBench DOODL 52.5% 51.00% 62% 59.5% 56.25%
Ours 87.00% 55.00% 64.00% 68.00% 68.50%

HPD v2 DOODL 59.50% 50.00% 61.25% 61.00% 57.94%
Ours 87.25% 57.75% 63.50% 71.50% 70.00%

The results demonstrate that our method outperforms DOODL across all metrics on the three datasets.
This consistent improvement stems from the robustness of our approach, which is grounded in
mathematical principles, making it adaptable to various data types. And, our method is not limited by
the performance of the evaluation model, allowing for more reliable results.

C RELATED WORK AND DISCUSSION

Noise inversion and editing. The noise inversion technique is mainly applied in image editing
(Mokady et al., 2023; Meiri et al., 2023; Huberman-Spiegelglas et al., 2023) in very similar ways.
They usually invert a clean image into a relatively noisy one via a few inverse steps and then denoise
the inverse noisy images with another prompt to achieve instruction editing. Some work (Mao
et al., 2023) in this line of research realized that editing noises can help editing generated results.
Specifically, modifying a portion of the initial noise can affect the layout of the generated images.
Other works (Liu et al., 2024; Shi et al., 2023) focused on dragging and dropping image content
via interactive noise editing. However, the goal of previous studies is to control image layout under
fine-grained control conditions, such as input layout or editing operations. In contrast, we focus on
generally improving the generated results of diffusion models by selecting or optimizing a Gaussian
noise according to the stability score.

Noise selection and optimization. In recent years, there have been some works on select-
ing/optimizing the results in the noise space. Typically, these methods rely on additional information,
such as image quality evaluators or token IDs provided by the user/extracted by a large language
model (LLM) to construct a “noise-prompt” attention loss. However, our method is based on a
mathematical property and directly operates on the pure noise space, adopting for general prompts
and various models.

(1) For example, Karthik et al. (2023) first generates many candidate images and selects the best
one from these by comprehensive scoring from a VAQ model (e.g. GPT) and an image quality
evaluator (e.g. ImageReward). (Selecting images equals selecting the initial noises). This type of
selecting method is a post-selection method that cannot directly judge the quality of the noise and
is seriously affected by the quality of the evaluator. The potential for introducing additional bias
may also increase. In contrast, our method evaluates the initial noise via inverse stability. This is a
mathematical property that is independent of any additional input information and does not introduce
additional bias.

(2) Some noise optimization methods mainly target image quality scores to optimize noise values. For
example, DOODL (Wallace et al., 2023) takes the score from an additional image quality evaluator
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as the optimization target to gradually change the values of initial noise. However, it depends on the
performance of the chosen image quality evaluator, which increases the likelihood of introducing
additional bias and memory usage. Moreover, the evaluation scores require gradient backpropagation
to influence the initial noise, resulting in significantly higher memory usage. Other methods use
the attention score map and user-specified or LLM extraction token IDs to design a “noise-prompt”
attention loss to maximum correlation between noise features and special tokens. The general form
of the loss function is as follows:

loss = 1− min
yi∈Y

max(Ayi
), (4)

where Y denotes the set of target tokens, Ayi
denotes the attention map that corresponds to the yi

token. A&E (Chefer et al., 2023) and A-STAR (Agarwal et al., 2023) apply attention loss at each
denoising step, which may lead to over-optimization or under-optimization. INITNO (Guo et al.,
2024) sets a threshold and applies attention loss to the initial noise and each step noise. However,
relying in the attention loss can only optimize results for selected tokens, limiting these methods to
work with concept combination prompts (e.g., A+B prompts like “a cat and a dog”). They struggle to
handle high-level concepts such as style, detail descriptions, and similar abstract elements.

In contrast, our method directly evaluates and optimizes the initial noise, reducing memory usage and
accommodating general prompts. Table 7 shows more comparisons between above methods and ours.
For a reasonable comparison, we only compare with DOODL in Appendix B.2.

Methods SD version Prompt type Optimization object Extra information
DOODL SD 1.4 General Initial noise CLIP
A&E SD 1.4/1.5 A+B Each step noise Token IDs
A-STAR - A+B Each step noise Token IDs
INITNO SD 1.4/2.1 A+B Initial noise & each step noise Token IDs
Ours SDXL General Initial noise None

Table 7: The comparison of other noise optimization methods and Ours

D SUPPLEMENTARY EXPERIMENTAL RESULTS

We show more results of noise optimization experiments in Figure 12

E 3D OBJECT GENERATION

In this section, we analyze noise optimization for 3D diffusion models.

E.1 METHODOLOGY

The noise inversion rule of image-to-3D diffusion models is different from text-to-image diffusion.
Here we derive the noise inversion rule for the popular image-to-3D diffusion model, SV3D (Voleti
et al., 2024).

SV3D employs the EDM framework (Karras et al., 2022), which improves upon DDIM with a
reparameterized to the denoising process. Taking a single image as input, SV3D generates a multi-
view consistent video sequence of the object based on a specified camera trajectory, showcasing
remarkable spatio-temporal properties and generalization capabilities. Specifically, we choose the
SV3D-U variant, which, during training, consistently conditions on a static trajectory to generate a
21-frame 3D video sequence, with each frame representing a 360/21-degree rotation of the object.

The denoising process xt+1 → xt within the EDM framework can be written as

xt = xt+1 +
σt − σt+1

σt+1
µ, (5)

µ = xt+1 −
(
ct+1
skipxt+1 + ct+1

coutuθ(c
t+1
in x̂t+1; c

t+1
noise)

)
. (6)
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Figure 12: More results of optimized noises. The large images are generated by SDXL, and small
images are generated by SDXL-turbo.

We denote σt as the noise level of the scheduler at the t-th time step and uθ denotes the scoring
network. cskip, cout, cin, and cnoise are coefficients dependent on the noise schedule and the current
time step t in the Euler sampling method. Subsequently, if we intend to achieve noise inversion x̂t →
x̂t+1, we can modify Equation equation 5 accordingly as

x̂t+1 =
σt+1x̂t + (σt − σt+1) c

t+1
out uθ

(
(ct+1

in x̂t+1; c
t+1
noise

)
(σt − σt+1)

(
1− ct+1

skip

)
+ σt+1

. (7)

Following previous work (Fan et al., 2024; Hertz et al., 2022), during the noise inversion process, we
have utilized the noise prediction results at xt to approximate those at xt+1.

E.2 EXPERIMENTAL SETTING

E.2.1 DATASETS

We randomly sample 30 objects from the OmniObject3D Dataset (Wu et al., 2023a) and render them
using Blender’s Eevee engine. Each object is rendered in a video sequence comprising 84 frames,
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with the camera rotating 360/84 degrees between each frame. Additionally, we set the ambient
lighting to a white background to match the conditions stipulated by SV3D. It is important to note
that, as SV3D has not disclosed the rendering details of its test dataset, achieving pixel-level similarity
was challenging.

E.2.2 THE HYPERPARAMETERS

We set the inference steps to 50 with a cfg coefficient of 2.5, following SV3D’s configuration, and
utilize the Euler sampling method for denoising. Noise optimization comprises 20 steps using a
gradient descent optimizer with a learning rate of 1500 and a momentum of 0.5.

E.3 PERFORMANCE EVALUATION

We mainly use Perceptual Similarity (LPIPS (Zhang et al., 2018)), Structural SIMilarity (SSIM
(Wang et al., 2004)), and CLIP similarity score (CLIP-S (Ilharco et al., 2021)) to measure the quality
of generated results. Due to the lack of multi-view ground truth, pixel-level evaluation metric, such
as PSNR, is not applicable.

The quantitative results in Table 8 demonstrate that optimized noises lead to higher image-to-3D
generation quality.

To facilitate a more intuitive comparison, we also present the qualitative results of original noises and
optimized noises in Figure 10. It illustrates the significant difference between the optimized noise and
the original noise. We can observe that the 3D objects of optimized generally exhibit fewer jagged
edges, smoother surfaces, and better fidelity than the results of original noises.

Table 8: The quantitative results of noise optimization for image-to-3D diffusion models according to
novel multi-view synthesis on OmniObject3D static orbits.

Model Noise LPIPS↓ SSIM↑

SV3D-U Original Noise 0.2538 0.8664
Optimized Noise 0.2523 0.8768
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